MicroProfile OpenAPI Specification

Arthur De Magalhaes (Spec Lead), Eric Wittmann, Anna Safonov, Matt Gill, Ivan
Junckes Filho, Jérémie Bresson, Jana Manoharan, Rui Qi Wang, Tommy
Wojtczak, Martin Smithson, Michael Edgar, Andrew Rouse

4.1.1, October 21, 2025: Final

Table of Contents

Copyright
Eclipse Foundation Specification License - v1.1
Disclaimers
1. Introduction
2. Architecture
3. Configuration
3.1. List of configurable items
3.1.1. Core configurations
3.1.2. Vendor extensions
4. Documentation Mechanisms
4.1. Annotations
4.1.1. Quick overview of annotations
4.1.1.1. Overrides
4.1.2. Detailed usage of key annotations
4.1.2.1. Operation
4.1.2.2. RequestBody
4.1.2.3. Servers
4.1.2.4. Schema
4.1.3. Jakarta Bean Validation Annotations
4.2. Static OpenAPI files
4.2.1. Location and formats
4.3. Programming model
4.3.1. OASFactory
4.3.2. OASModelReader
4.4, Filter
4.4.1. OASFilter
4.5. Processing rules
5. OpenAPI Endpoint
5.1. Overview
5.2. Content format
5.3. Query parameters
5.4. Context root behavior
5.5. Multiple applications
5.6. User Interface

6. Integration with other MicroProfile specifications

6.1. MicroProfile Rest Client
7. Limitations

7.1. Internationalization

© © © 00 O O O U1 = DN N DN

T N N N N N N N N N N N N e S e S Y
G G b R W WwNNDNNRNOO © © © O 0 00 J 06 b W N N -

7.2. Validation
7.3. Cross Origin Resource Sharing (CORS)

8. Release Notes

8.1. Release Notes for MicroProfile OpenAPI 4.1
8.1.1. API/SPI changes
8.2. Release Notes for MicroProfile OpenAPI 4.0
8.2.1. Incompatible Changes
8.2.2. API/SPI changes
8.2.3. Other changes
8.3. Release Notes for MicroProfile OpenAPI 3.1
8.3.1. API/SPI Changes
8.3.2. Other Changes
8.4. Release Notes for MicroProfile OpenAPI 3.0
8.4.1. Incompatible Changes
8.4.1.1. API/SPI Changes
8.4.1.2. Other Changes
8.5. Release Notes for MicroProfile OpenAPI 2.0
8.5.1. Incompatible Changes
8.5.2. API/SPI Changes
8.5.3. Functional Changes
8.5.4. Other Changes
8.6. Release Notes for MicroProfile OpenAPI 1.1
8.7. Release Notes for MicroProfile OpenAPI 1.0

25
25
26
26
26
26
26
26
27
28
28
28
28
28
29
29
29
29
31
32
32
32
33

Specification: MicroProfile OpenAPI Specification
Version: 4.1.1
Status: Final

Release: October 21, 2025

Copyright

Copyright (c) 2017, 2025 Eclipse Foundation.

Eclipse Foundation Specification License - v1.1

By using and/or copying this document, or the Eclipse Foundation document from which this
statement is linked or incorporated by reference, you (the licensee) agree that you have read,
understood, and will comply with the following terms and conditions:

Permission to copy, and distribute the contents of this document, or the Eclipse Foundation
document from which this statement is linked, in any medium for any purpose and without fee or
royalty is hereby granted, provided that you include the following on ALL copies of the document,
or portions thereof, that you use:

¢ link or URL to the original Eclipse Foundation document.

* All existing copyright notices, or if one does not exist, a notice (hypertext is preferred, but a
textual representation is permitted) of the form: "Copyright (c) [$date-of-document] Eclipse
Foundation AISBL <<url to this license>> "

Inclusion of the full text of this NOTICE must be provided. We request that authorship attribution
be provided in any software, documents, or other items or products that you create pursuant to the
implementation of the contents of this document, or any portion thereof.

No right to create modifications or derivatives of Eclipse Foundation documents is granted
pursuant to this license, except anyone may prepare and distribute derivative works and portions
of this document in software that implements the specification, in supporting materials
accompanying such software, and in documentation of such software, PROVIDED that all such
works include the notice below. HOWEVER, the publication of derivative works of this document
for use as a technical specification is expressly prohibited.

The notice is:

"Copyright (c) [$date-of-document] Eclipse Foundation AISBL. This software or document includes
material copied from or derived from [title and URI of the Eclipse Foundation specification
document]."

Disclaimers

THIS DOCUMENT IS PROVIDED "AS IS," AND TO THE EXTENT PERMITTED BY APPLICABLE LAW
THE COPYRIGHT HOLDERS AND THE ECLIPSE FOUNDATION AISBL MAKE NO REPRESENTATIONS
OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT
THE CONTENTS OF THE DOCUMENT ARE SUITABLE FOR ANY PURPOSE; NOR THAT THE
IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS,
COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

TO THE EXTENT PERMITTED BY APPLICABLE LAW THE COPYRIGHT HOLDERS AND THE ECLIPSE

FOUNDATION AISBL WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE DOCUMENT OR THE
PERFORMANCE OR IMPLEMENTATION OF THE CONTENTS THEREOF.

The name and trademarks of the copyright holders or the Eclipse Foundation AISBL may NOT be
used in advertising or publicity pertaining to this document or its contents without specific, written
prior permission. Title to copyright in this document will at all times remain with copyright
holders.

Chapter 1. Introduction

Exposing APIs has become an essential part of all modern applications. At the center of this
revolution known as the API Economy we find RESTful APIs, which can transform any application
into language agnostic services that can be called from anywhere: on-premises, private cloud,
public cloud, etc.

For the clients and providers of these services to connect there needs to be a clear and complete
contract. Similar to the WSDL contract for legacy Web Services, the OpenAPI v3.1 specification is
the contract for RESTful Services.

This MicroProfile specification, called OpenAPI, aims to provide a set of Java interfaces and
programming models which allow Java developers to natively produce OpenAPI v3.1 documents
from their applications written using Jakarta RESTful Web Services (Jakarta REST).

https://spec.openapis.org/oas/v3.1.0.html

Chapter 2. Architecture

There are different ways to augment a Jakarta REST application in order to produce an OpenAPI
document, which are described in Documentation Mechanisms. The picture below provides a quick
overview of the different types of components that make up the MP OpenAPI specification:

MP OpenAPI Application

/ META-INF JAX-RS + OAS3 Annotations\

- \

OASModelReader OASFilter MP OpenAPI Vendor

MP Config

Jopenapi

Users

The remaining sections of this specification will go into the details of each component.

Chapter 3. Configuration

Configuration of various parts of this specification is provided via the MicroProfile Config
mechanism, which means that vendors implementing the MP OpenAPI specification must also
implement the MP Config specification.

There are various ways to inject these configuration values into an MP OpenAPI framework,
including the default ConfigSource as well as custom ConfigSource.

Vendors implementing the MP OpenAPI specification can optionally provide additional native ways
for these configuration values to be injected into the framework (e.g. via a server configuration
file), as long as they also implement the MP Config specification.

3.1. List of configurable items

Vendors must support all the Core configurations of this specification. Optionally, they may also
support Vendor extensions that allow the configuration of framework-specific values for
configurations that affect implementation behavior.

For convenience of vendors (and application developers using custom ConfigSources), the full list of
supported configuration keys is available as constants in the OASConfig class.

3.1.1. Core configurations

The following is a list of configuration values that every vendor must support.

mp.openapi.model.reader

Configuration property to specify the fully qualified name of the OASModelReader
implementation.

mp.openapi.filter

Configuration property to specify the fully qualified name of the OASFilter implementation.

mp.openapi.scan.disable

Configuration property to disable annotation scanning. Default value is false.

mp.openapi.scan.packages

Configuration property to specify the list of packages to scan. Classes within the package and any
subpackages will be scanned for annotations. For example,
mp.openapi.scan.packages=com.xyz.packageA,com.xyz.packageB

mp.openapi.scan.classes

Configuration property to specify the list of classes to scan. For example,
mp.openapi.scan.classes=com.xyz.MyClassA,com.xyz.MyClassB

mp.openapi.scan.exclude.packages

Configuration property to specify the list of packages to exclude from scans. Classes within the
package and any subpackages will be excluded from scans. For example,

https://github.com/eclipse/microprofile-config
https://download.eclipse.org/microprofile/microprofile-config-3.1/microprofile-config-spec-3.1.html#default_configsources
https://download.eclipse.org/microprofile/microprofile-config-3.1/microprofile-config-spec-3.1.html#custom_configsources
https://github.com/eclipse/microprofile-open-api/blob/main/api/src/main/java/org/eclipse/microprofile/openapi/OASConfig.java

mp.

mp.

mp.

mp.

mp.

mp.

mp.openapi.scan.exclude.packages=com.xyz.package(,com.xyz.packageD

openapi.scan.exclude.classes

Configuration property to specify the list of classes to exclude from scans. For example,
mp.openapi.scan.exclude.classes=com.xyz.MyClassC,com.xyz.MyClassD

The following rules are used to determine whether a class is scanned for annotations:

1. A class is not scanned if it’s listed in mp.openapi.scan.exclude.classes
2. A class is scanned if it’s listed in mp.openapi.scan.classes

3. A class is not scanned if its package, or any of its parent packages are listed in
mp.openapi.scan.exclude.packages, unless a more complete package or parent package is
listed in mp.openapi.scan.packages

4. A class is scanned if its package or any of its parent packages are listed in
mp.openapi.scan.packages

5. A class is scanned if mp.openapi.scan.classes and mp.openapi.scan.packages are both empty or
not set

openapi.scan.beanvalidation

Configuration property to enable or disable the scanning and processing of Jakarta Bean
Validation annotations. Defaults to true.

openapi.servers

Configuration property to specify the list of global servers that provide connectivity information.
For example, mp.openapi.servers=https://xyz.com/v1,https://abc.com/v1

openapi.servers.path.

Prefix of the configuration property to specify an alternative list of servers to service all
operations in a path. For example,
mp.openapi.servers.path./airlines/bookings/{id}=https://xyz.i0/v1

openapi.servers.operation.

Prefix of the configuration property to specify an alternative list of servers to service an
operation. Operations that want to specify an alternative list of servers must define an
operationld, a wunique string wused to identify the operation. For example,
mp.openapi.servers.operation.getBooking=https://abc.io0/v1

openapi.schema.

Prefix of the configuration property to specify a schema for a specific class, in JSON format. The
remainder of the property key must be the fully-qualified class name. The value must be a valid
OpenAPI schema object, specified in the JSON format. The use of this property is functionally
equivalent to the use of the @Schema annotation on a Java class, but may be used in cases where
the application developer does not have access to the source code of a class.

When a name key is provided with a string value, the schema will be added to the schemas
collection in the components object of the resulting OpenAPI document using name's value as the
key.

For example, in the case where an application wishes to represent Java Dates in epoch
milliseconds, the following configuration could be used (line escapes and indentation added for
readability):

mp.openapi.schema.java.util.Date = { \
"name": "EpochMillis", \
"type": "number", \
"format": "int64", \
"description": "Milliseconds since January 1, 1970, 00:00:00 GMT" \

3.1.2. Vendor extensions

Vendors that wish to provide vendor-specific configuration via MP Config (instead of another native
configuration framework) must use the prefix mp.openapi.extensions.

Chapter 4. Documentation Mechanisms

There are many different ways to provide input for the generation of the resulting OpenAPI
document.

The MP OpenAPI specification requires vendors to produce a valid OpenAPI document from pure
Jakarta REST applications. This means that vendors must process all the relevant Jakarta REST
annotations (such as @Path and @Consumes) as well as Java objects (POJOs) used as input or output to
Jakarta REST operations. This is a good place to start for application developers that are new to
OpenAPI: just deploy your existing Jakarta REST application into a MP OpenAPI vendor and check
out the output from /openapi!

The application developer then has a few choices:

1. Augment those Jakarta REST annotations with the OpenAPI Annotations. Using annotations
means developers don’t have to re-write the portions of the OpenAPI document that are already
covered by the Jakarta REST framework (e.g. the HTTP method of an operation).

2. Take the initial output from /openapi as a starting point to document your APIs via Static
OpenAPI files. It’s worth mentioning that these static files can also be written before any code,
which is an approach often adopted by enterprises that want to lock-in the contract of the APIL
In this case, we refer to the OpenAPI document as the "source of truth", by which the client and
provider must abide.

3. Use the Programming model to provide a bootstrap (or complete) OpenAPI model tree.

Additionally, a Filter is described which can update the OpenAPI model after it has been built from
the previously described documentation mechanisms.

4.1. Annotations

Many of these annotations were derived from the Swagger Core library, which allows for a mostly-
mechanical transformation of applications that are using that library and wish to take advantage to
the official MP OpenAPI interfaces.

4.1.1. Quick overview of annotations

The following annotations are found in the org.eclipse.microprofile.openapi.annotations package.

Annotation Description
@Callback Represents a callback URL that will be invoked.
@Callbacks Represents an array of Callback URLs that can be invoked.

@CallbackOperati Represents an operation that will be invoked during the callback.
on

@Components A container that holds various reusable objects for different aspects of the
OpenAPI Specification.
@Explode Enumeration used to define the value of the explode property.

https://github.com/swagger-api/swagger-core
https://github.com/eclipse/microprofile-open-api/tree/main/api/src/main/java/org/eclipse/microprofile/openapi/annotations
https://github.com/eclipse/microprofile-open-api/blob/main/api/src/main/java/org/eclipse/microprofile/openapi/annotations/callbacks/Callback.java
https://github.com/eclipse/microprofile-open-api/blob/main/api/src/main/java/org/eclipse/microprofile/openapi/annotations/callbacks/Callbacks.java
https://github.com/eclipse/microprofile-open-api/blob/main/api/src/main/java/org/eclipse/microprofile/openapi/annotations/callbacks/CallbackOperation.java
https://github.com/eclipse/microprofile-open-api/blob/main/api/src/main/java/org/eclipse/microprofile/openapi/annotations/callbacks/CallbackOperation.java
https://github.com/eclipse/microprofile-open-api/blob/main/api/src/main/java/org/eclipse/microprofile/openapi/annotations/Components.java
https://github.com/eclipse/microprofile-open-api/blob/main/api/src/main/java/org/eclipse/microprofile/openapi/annotations/enums/Explode.java

Annotation
@ParameterIn
@ParameterStyle

@SecuritySchemel
n

@SecurityScheme
Type
@Extension

@Extensions

@ExternalDocume
ntation

@Header
@Contact

@Info

@License

@Link
@LinkParameter
@Content

@DependentRequi
red

@DependentSche
ma

@DiscriminatorM
apping
@Encoding
@ExampleObject

@PatternProperty

@Schema
@SchemaProperty

@OpenAPIDefiniti
on

@Operation
@Parameter
@Parameters

@RequestBody

10

Description
Enumeration representing the parameter’s in property.
Enumeration for the parameter’s style property.

Enumeration for the security scheme’s in property.

Enumeration for the security scheme’s type property.

Adds an extension with contained properties.
Adds custom properties to an extension.

References an external resource for extended documentation.

Describes a single header object.

Contact information for the exposed API.

This annotation encapsulates metadata about the APIL
License information for the exposed API.

Represents a design-time link for a response.

Represents a parameter to pass to the linked operation.
Provides schema and examples for a particular media type.

Used within @Schema to indicate properties that are required if another
property is present.

Used within @Schema to indicate additional rules that are required if a named
property is present.

Used to differentiate between other schemas which may satisfy the payload
description.

Single encoding definition to be applied to single Schema Object.
[lustrates an example of a particular content.

Used within @Schema to define validation rules for properties whose names
match a regular expression.

Allows the definition of input and output data types.
Allows the definition of a property nested within a parent @Schema.

General metadata for an OpenAPI definition.

Describes an operation or typically a HTTP method against a specific path.
Describes a single operation parameter.
Encapsulates input parameters.

Describes a single request body.

https://github.com/eclipse/microprofile-open-api/blob/main/api/src/main/java/org/eclipse/microprofile/openapi/annotations/enums/ParameterIn.java
https://github.com/eclipse/microprofile-open-api/blob/main/api/src/main/java/org/eclipse/microprofile/openapi/annotations/enums/ParameterStyle.java
https://github.com/eclipse/microprofile-open-api/blob/main/api/src/main/java/org/eclipse/microprofile/openapi/annotations/enums/SecuritySchemeIn.java
https://github.com/eclipse/microprofile-open-api/blob/main/api/src/main/java/org/eclipse/microprofile/openapi/annotations/enums/SecuritySchemeIn.java
https://github.com/eclipse/microprofile-open-api/blob/main/api/src/main/java/org/eclipse/microprofile/openapi/annotations/enums/SecuritySchemeType.java
https://github.com/eclipse/microprofile-open-api/blob/main/api/src/main/java/org/eclipse/microprofile/openapi/annotations/enums/SecuritySchemeType.java
https://github.com/eclipse/microprofile-open-api/blob/main/api/src/main/java/org/eclipse/microprofile/openapi/annotations/extensions/Extension.java
https://github.com/eclipse/microprofile-open-api/blob/main/api/src/main/java/org/eclipse/microprofile/openapi/annotations/extensions/Extensions.java
https://github.com/eclipse/microprofile-open-api/blob/main/api/src/main/java/org/eclipse/microprofile/openapi/annotations/ExternalDocumentation.java
https://github.com/eclipse/microprofile-open-api/blob/main/api/src/main/java/org/eclipse/microprofile/openapi/annotations/ExternalDocumentation.java
https://github.com/eclipse/microprofile-open-api/blob/main/api/src/main/java/org/eclipse/microprofile/openapi/annotations/headers/Header.java
https://github.com/eclipse/microprofile-open-api/blob/main/api/src/main/java/org/eclipse/microprofile/openapi/annotations/info/Contact.java
https://github.com/eclipse/microprofile-open-api/blob/main/api/src/main/java/org/eclipse/microprofile/openapi/annotations/info/Info.java
https://github.com/eclipse/microprofile-open-api/blob/main/api/src/main/java/org/eclipse/microprofile/openapi/annotations/info/License.java
https://github.com/eclipse/microprofile-open-api/blob/main/api/src/main/java/org/eclipse/microprofile/openapi/annotations/links/Link.java
https://github.com/eclipse/microprofile-open-api/blob/main/api/src/main/java/org/eclipse/microprofile/openapi/annotations/links/LinkParameter.java
https://github.com/eclipse/microprofile-open-api/blob/main/api/src/main/java/org/eclipse/microprofile/openapi/annotations/media/Content.java
https://github.com/eclipse/microprofile-open-api/blob/main/api/src/main/java/org/eclipse/microprofile/openapi/annotations/media/DependentRequired.java
https://github.com/eclipse/microprofile-open-api/blob/main/api/src/main/java/org/eclipse/microprofile/openapi/annotations/media/DependentRequired.java
https://github.com/eclipse/microprofile-open-api/blob/main/api/src/main/java/org/eclipse/microprofile/openapi/annotations/media/DependentSchema.java
https://github.com/eclipse/microprofile-open-api/blob/main/api/src/main/java/org/eclipse/microprofile/openapi/annotations/media/DependentSchema.java
https://github.com/eclipse/microprofile-open-api/blob/main/api/src/main/java/org/eclipse/microprofile/openapi/annotations/media/DiscriminatorMapping.java
https://github.com/eclipse/microprofile-open-api/blob/main/api/src/main/java/org/eclipse/microprofile/openapi/annotations/media/DiscriminatorMapping.java
https://github.com/eclipse/microprofile-open-api/blob/main/api/src/main/java/org/eclipse/microprofile/openapi/annotations/media/Encoding.java
https://github.com/eclipse/microprofile-open-api/blob/main/api/src/main/java/org/eclipse/microprofile/openapi/annotations/media/ExampleObject.java
https://github.com/eclipse/microprofile-open-api/blob/main/api/src/main/java/org/eclipse/microprofile/openapi/annotations/media/PatternProperty.java
https://github.com/eclipse/microprofile-open-api/blob/main/api/src/main/java/org/eclipse/microprofile/openapi/annotations/media/Schema.java
https://github.com/eclipse/microprofile-open-api/blob/main/api/src/main/java/org/eclipse/microprofile/openapi/annotations/media/SchemaProperty.java
https://github.com/eclipse/microprofile-open-api/blob/main/api/src/main/java/org/eclipse/microprofile/openapi/annotations/OpenAPIDefinition.java
https://github.com/eclipse/microprofile-open-api/blob/main/api/src/main/java/org/eclipse/microprofile/openapi/annotations/OpenAPIDefinition.java
https://github.com/eclipse/microprofile-open-api/blob/main/api/src/main/java/org/eclipse/microprofile/openapi/annotations/Operation.java
https://github.com/eclipse/microprofile-open-api/blob/main/api/src/main/java/org/eclipse/microprofile/openapi/annotations/parameters/Parameter.java
https://github.com/eclipse/microprofile-open-api/blob/main/api/src/main/java/org/eclipse/microprofile/openapi/annotations/parameters/Parameters.java
https://github.com/eclipse/microprofile-open-api/blob/main/api/src/main/java/org/eclipse/microprofile/openapi/annotations/parameters/RequestBody.java

Annotation

Description

@RequestBodySch Describes a single request body with schema implementation class.

ema

@Pathltem Describes a set of operations available at the same location. Mostly only used
to document webhooks as the paths for operations within the application can
be discovered from Jakarta REST resources.

@PathItemOperati Used within @PathItem to describe an operation.

on

@APIResponse Describes a single response from an API operation.

@APIResponses A container for multiple responses from an API operation.

@APIResponseSch Describes a single response with schema implementation class from an API

ema operation.

@OAuthFlow Configuration details for a supported OAuth Flow.

@OAuthFlows Allows configuration of the supported OAuth Flows.

@OAuthScope Represents an OAuth scope.

@SecurityRequire Specifies a security requirement for an operation.

ment

@SecurityRequire Represents an array of security requirements where only one needs to be

ments satisfied.

@SecurityRequire Represents an array of security requirements that need to be satisfied.

mentsSet

@SecurityScheme Defines a security scheme that can be used by the operations.

@SecuritySchemes Represents an array of security schemes that can be specified.

@Server Represents a server used in an operation or used by all operations in an
OpenAPI document.

@Servers A container for multiple server definitions.

@ServerVariable Represents a server variable for server URL template substitution.

@Tag Represents a tag for the API endpoint.

@Tags A container of multiple tags.

4.1.1.1. Overrides

When the same annotation is used on a class and a method, the values from the method instance
will take precedence for that particular method. This commonly occurs with the @Server and @Tag
annotations.

In other cases, such as with @Parameter and @RequestBody, the annotation values from the method’s
parameters takes precedence over corresponding annotation values from the method itself - in this
scenario the combined usage of these annotations is allowed but discouraged, as it is error prone.

The @Schema annotation has a complex set of possible combinations. It can placed on POJOs (and

11

https://github.com/eclipse/microprofile-open-api/blob/main/api/src/main/java/org/eclipse/microprofile/openapi/annotations/parameters/RequestBodySchema.java
https://github.com/eclipse/microprofile-open-api/blob/main/api/src/main/java/org/eclipse/microprofile/openapi/annotations/parameters/RequestBodySchema.java
https://github.com/eclipse/microprofile-open-api/blob/main/api/src/main/java/org/eclipse/microprofile/openapi/annotations/PathItem.java
https://github.com/eclipse/microprofile-open-api/blob/main/api/src/main/java/org/eclipse/microprofile/openapi/annotations/PathItemOperation.java
https://github.com/eclipse/microprofile-open-api/blob/main/api/src/main/java/org/eclipse/microprofile/openapi/annotations/PathItemOperation.java
https://github.com/eclipse/microprofile-open-api/blob/main/api/src/main/java/org/eclipse/microprofile/openapi/annotations/responses/APIResponse.java
https://github.com/eclipse/microprofile-open-api/blob/main/api/src/main/java/org/eclipse/microprofile/openapi/annotations/responses/APIResponses.java
https://github.com/eclipse/microprofile-open-api/blob/main/api/src/main/java/org/eclipse/microprofile/openapi/annotations/responses/APIResponseSchema.java
https://github.com/eclipse/microprofile-open-api/blob/main/api/src/main/java/org/eclipse/microprofile/openapi/annotations/responses/APIResponseSchema.java
https://github.com/eclipse/microprofile-open-api/blob/main/api/src/main/java/org/eclipse/microprofile/openapi/annotations/security/OAuthFlow.java
https://github.com/eclipse/microprofile-open-api/blob/main/api/src/main/java/org/eclipse/microprofile/openapi/annotations/security/OAuthFlows.java
https://github.com/eclipse/microprofile-open-api/blob/main/api/src/main/java/org/eclipse/microprofile/openapi/annotations/security/OAuthScope.java
https://github.com/eclipse/microprofile-open-api/blob/main/api/src/main/java/org/eclipse/microprofile/openapi/annotations/security/SecurityRequirement.java
https://github.com/eclipse/microprofile-open-api/blob/main/api/src/main/java/org/eclipse/microprofile/openapi/annotations/security/SecurityRequirement.java
https://github.com/eclipse/microprofile-open-api/blob/main/api/src/main/java/org/eclipse/microprofile/openapi/annotations/security/SecurityRequirements.java
https://github.com/eclipse/microprofile-open-api/blob/main/api/src/main/java/org/eclipse/microprofile/openapi/annotations/security/SecurityRequirements.java
https://github.com/eclipse/microprofile-open-api/blob/main/api/src/main/java/org/eclipse/microprofile/openapi/annotations/security/SecurityRequirementsSet.java
https://github.com/eclipse/microprofile-open-api/blob/main/api/src/main/java/org/eclipse/microprofile/openapi/annotations/security/SecurityRequirementsSet.java
https://github.com/eclipse/microprofile-open-api/blob/main/api/src/main/java/org/eclipse/microprofile/openapi/annotations/security/SecurityScheme.java
https://github.com/eclipse/microprofile-open-api/blob/main/api/src/main/java/org/eclipse/microprofile/openapi/annotations/security/SecuritySchemes.java
https://github.com/eclipse/microprofile-open-api/blob/main/api/src/main/java/org/eclipse/microprofile/openapi/annotations/servers/Server.java
https://github.com/eclipse/microprofile-open-api/blob/main/api/src/main/java/org/eclipse/microprofile/openapi/annotations/servers/Servers.java
https://github.com/eclipse/microprofile-open-api/blob/main/api/src/main/java/org/eclipse/microprofile/openapi/annotations/servers/ServerVariable.java
https://github.com/eclipse/microprofile-open-api/blob/main/api/src/main/java/org/eclipse/microprofile/openapi/annotations/tags/Tag.java
https://github.com/eclipse/microprofile-open-api/blob/main/api/src/main/java/org/eclipse/microprofile/openapi/annotations/tags/Tags.java

their fields / methods) and referenced from many other annotations. In the event that a
@Schema#fimplementation value points to a POJO that also contains a @Schema annotation, the values
are merged but with precedence given to the referrer annotation (i.e. the one that contains the
implementation key). This allows POJO models to be reusable and configurable.

4,

1.2. Detailed usage of key annotations

4.1.2.1. Operation

Sample 1 - Simple operation description

@GET
@Path("/findByStatus")
@0peration(summary = "Finds Pets by status",
description = "Multiple status values can be provided with comma separated
strings")
public Response findPetsByStatus(...) { ... }

Output for Sample 1

/pet/findByStatus:
get:
summary: Finds Pets by status
description: Multiple status values can be provided with comma separated strings
operationId: findPetsByStatus

Sample 2 - Operation with different responses

@GET
@Path("/{username}")
@0peration(summary = "Get user by user name")
@APIResponse(description = "The user",
content = @Content(mediaType = "application/json",
schema = @Schema(implementation = User.class))),

@APIResponse(responseCode = "400", description = "User not found")
public Response getUserByName(

@Parameter(description = "The name that needs to be fetched. Use user1 for
testing. ", required = true) @PathParam("username") String username)

{...}

Output for Sample 2

12

/user/{username}:
get:
summary: Get user by user name
operationId: getUserByName
parameters:
- name: username
in: path

description: 'The name that needs to be fetched. Use user1 for testing. '

required: true
schema:

type: string

responses:

default:

description: The user

content:

application/json:
schema:
$ref: "#/components/schemas/User’

400:

description: User not found

4.1.2.2. RequestBody

Sample 1 - Simple RequestBody

@POST
@Path("/user")
@0peration(summary = "Create user",
description = "This can only be done by the logged in user.")
public Response methodWithRequestBody(
@RequestBody(description = "Created user object", required = true,

content = @Content(schema = @Schema(implementation = User.

class))) User user,
@QueryParam("name") String name, @QueryParam("code") String code)

{...}

Output for Sample 1

post:
summary: Create user
description: This can only be done by the logged in user.
operationId: methodWithRequestBody
parameters:
- name: name
in: query
schema:
type: string
- name: code
in: query
schema:
type: string
requestBody:
description: Created user object
content:
BV
schema:
$ref: "#/components/schemas/User'

13

required: true
responses:
default:
description: no description

4.1.2.3. Servers

Sample 1 - Extended Server scenarios

@0penAPIDefinition(
servers = {
@Server (
description = "definition server 1",
url = "http://{var1}.definition1/{var2}",
variables = {
@ServerVariable(name = "var1",
description = "var 1",
defaultValue = "1",
enumeration = {"1", "2"}),
@ServerVariable(name = "var2",
description = "var 2",
defaultValue = "1",
enumeration = {"1", "2"HH}H)
@Server (
description = "class server 1",
url = "http://{var1}.class1/{var2}",
variables = {
@ServerVariable(
name = "var1",
description = "var 1",
defaultValue = "1",
enumeration = {"1", "2"}),
@ServerVariable(
name = "var2",
description = "var 2",
defaultValue = "1",
enumeration = {"1", "2"PH})
@Server(
description = "class server 2",
url = "http://{var1}.class2",
variables = {
@ServerVariable(
name = "var1",
description = "var 1",
defaultValue = "1",
enumeration = {"1", "2"}H)})
public class ServersResource {

@GET
ePath("/")

14

@Server (
description = "method server 1",
url = "http://{var1}.method1",
variables = {
@ServerVariable(
name = "var1",
description = "var 1",
defaultValue = "1",
enumeration = {"1", "2"PH})
@Server(
description = "method server 2",
url = "http://method2"
)
public Response getServers() {
return Response.ok().entity("ok").build();
Iy

Output for Sample 1

openapi: 3.1.0

servers:

- url: http://{var1}.definition1/{var2}
description: definition server 1
variables:

varl:

description: var 1

enum:

- "‘|"

- "2"

default: "1"

var?:

description: var 2

enum:

- "’]"

= WU

default: "1"

paths:

/:
get:

operationld: getServers

responses:
default:

description: default response
servers:

- url: http://{var1}.class1/{var2}
description: class server 1
variables:

varl:
description: var 1

15

enum:
- “’|"
- "2"
default: "1"
varl:
description: var 2
enum:
nqn
- "2"
default: "1"

- url: http://{var1}.class2
description: class server 2
variables:

varl:
description: var 1
enum:
- "‘]"
- "2"
default: "1"

- url: http://{var1}.method1
description: method server 1
variables:

varl:
description: var 1
enum:
- “’|"
- "2"
default: "1"

- url: http://method2
description: method server 2
variables: {}

4.1.2.4. Schema

Sample 1 - Schema POJO

@Schema(name="MyBooking", description="P0JO that represents a booking.")

public class Booking {
@Schema(required = true, example
private String airMiles;

"32126319")

@Schema(required = true, example = "window")
private String seatPreference;

Output for Sample 1
components:

schemas:
MyBooking:

16

description: P0JO that represents a booking.
required:
- airMiles
- seatPreference
type: object
properties:
airMiles:
type: string
example: "32126319"
seatPreference:
type: string
example: window

Sample 2 - Schema POJO reference

public Response createBooking(
(description = "Create a new booking.",
content = (mediaType = "application/json",
schema = (implementation = Booking.class)
)) Booking booking) {

Output for Sample 2

post:

operationId: createBooking
requestBody:

description: Create a new booking.

content:

application/json:
schema:
$ref: '#/components/schemas/MyBooking'

For more samples please see the MicroProfile Wiki.

4.1.3. Jakarta Bean Validation Annotations

In some cases, additional schema restrictions can be inferred from Jakarta Bean Validation
annotations and used to enhance the generated OpenAPI document.

If an implementation includes support for the Jakarta Bean Validation specification, then it must
also process Jakarta Bean Validation annotations when creating OpenAPI schemas. Such
implementations must add the properties listed in the table below to the schema model when:

* the annotation is applied to to an element for which a schema is generated and

 the annotation and generated schema type are listed together in the table below and

* the annotation has a group attribute which is empty or includes
jakarta.validation.groups.Default and

17

https://github.com/eclipse/microprofile-open-api/wiki

* the user has not set any of the relevant property values using other annotations and

* processing of bean validation annotations has not been disabled via configuration

Annotation Schema type Schema properties to set
@NotEmpty string minLength = 1
@NotEmpty array minItems = 1
@NotEmpty object minProperties = 1
@NotBlank string pattern = \S
@Size(min = a, max = b) string minLength = a
maxLenth = b
@Size(min = a, max = b) array minltems = a
maxItems = b
@Size(min = a, max = b) object minProperties = a
maxProperties = b
@DecimalMax(value = a) number or integer maximum = a
@DecimalMax(value = a, number or integer exclusiveMaximum = a
inclusive = false)
@DecimalMin(value = a) number or integer minimum = a
@ecimalMin(value = a, number or integer exclusiveMinimum = a
inclusive = false)
@Max(a) number or integer maximum = 3
@Min(a) number or integer minimum = a
@Negative number or integer exclusiveMaximum = 0
@NegativeOrZero number or integer maximum = 0
@Positive number or integer exclusiveMinimum = 0
@PositiveOrZero number or integer minimum = 0

4.2. Static OpenAPI files

Application developers may wish to include a pre-generated OpenAPI document that was written
separately from the code (e.g. with an editor such as this).

Depending on the scenario, the document may be fully complete or partially complete. If a
document is fully complete then the application developer will want to set the
mp.openapi.scan.disable configuration property to true. If a document is partially complete, then
the application developer will need to augment the OpenAPI snippet with annotations,
programming model, or via the filter.

4.2.1. Location and formats

Vendors are required to fetch a single document named openapi with an extension of yml, yaml or
json, inside the application module’s root META-INF folder. If there is more than one document found
that matches one of these extensions the behavior of which file is chosen is undefined (i.e. each

18

https://editor.swagger.io/

vendor may implement their own logic), which means that application developers should only
place a single openapi document into that folder.

For convenience, you may also place your microprofile-config.properties in the root META-INF
folder, if you wish to keep both documents in the same directory. This is in addition to the default
locations defined by MicroProfile Config.

4.3. Programming model

Application developers are able to provide OpenAPI elements via Java POJOs. The complete set of
models are found in the org.eclipse.microprofile.openapi.models package.

4.3.1. OASFactory

The OASFactory is used to create all of the elements of an OpenAPI tree.
For example, the following snippet creates a simple Info element that contains a title, description,

and version.

OASFactory.createObject(Info.class).title("Airlines").description("Airlines APIs")
.version("1.0.0");

4.3.2. OASModelReader

The OASModelReader interface allows application developers to bootstrap the OpenAPI model tree
used by the processing framework. To use it, simply create an implementation of this interface and
register it using the mp.openapi.model.reader configuration key, where the value is the fully
qualified name of the reader class.

Sample META-INF/microprofile-config.properties

mp.openapi.model.reader=com.mypackage.MyModelReader

Similar to static files, the model reader can be used to provide either complete or partial model
trees. If providing a complete OpenAPI model tree, application developers should set the
mp.openapi.scan.disable configuration to true. Otherwise this partial model will be used as the base
model during the processing of the other Documentation Mechanisms.

Vendors are required to call the OASReader a single time, in the order defined by the Processing
rules section. Only a single OASReader instance is allowed per application.

4.4. Filter

There are many scenarios where application developers may wish to update or remove certain
elements and fields of the OpenAPI document. This is done via a filter, which is called once after all
other documentation mechanisms have completed.

19

https://github.com/eclipse/microprofile-config
https://github.com/eclipse/microprofile-open-api/tree/main/api/src/main/java/org/eclipse/microprofile/openapi/models
https://github.com/eclipse/microprofile-open-api/blob/main/api/src/main/java/org/eclipse/microprofile/openapi/OASFactory.java
https://github.com/eclipse/microprofile-open-api/blob/main/api/src/main/java/org/eclipse/microprofile/openapi/models/info/Info.java
https://github.com/eclipse/microprofile-open-api/blob/main/api/src/main/java/org/eclipse/microprofile/openapi/OASModelReader.java

4.4.1. OASFilter

The OASFilter interface allows application developers to receive callbacks for various key OpenAPI
elements. The interface has a default implementation for every method, which allows application
developers to only override the methods they care about. To use it, simply create an
implementation of this interface and register it using the mp.openapi.filter configuration key,
where the value is the fully qualified name of the filter class.

Sample META-INF/microprofile-config.properties

mp.openapi.filter=com.mypackage.MyFilter

Vendors are required to call the registered filter once for each filtered element. For example, the
method filterPathItem is called for each corresponding PathItem element in the model tree. This
allows application developers to filter the element and any of its descendants.

The order of filter methods called is undefined, with two exceptions:

1. All filterable descendant elements of a filtered element must be called before its ancestor.

2. The filterOpenAPI method must be the last method called on a filter (which is just a
specialization of the first exception).

4.5. Processing rules

The processed document available from the OpenAPI Endpoint is built from a variety of sources,
which were outlined in the sub-headings of Documentation Mechanisms. Vendors are required to
process these different sources in the following order:

Fetch configuration values from mp.openapi namespace

Call OASModelReader

Fetch static OpenAPI file

Process annotations

SR A

Filter model via OASFilter
Example processing:

* A vendor starts by fetching all available Configuration. If an 0ASMode1Reader was specified in that
configuration list, its buildModel method is called to form the starting OpenAPI model tree for
this application.

* Any Vendor extensions are added on top of that starting model (overriding conflicts), or create a
new model if an 0ASMode1Reader was not registered.

» The vendor searches for a file as defined in the section Static OpenAPI files. If found, it will read
that document and merge with the model produced by previous processing steps (if any), where
conflicting elements from the static file will override the values from the original model.

 If annotation scanning was not disabled, the Jakarta REST and OpenAPI annotations from the
application will be processed, further overriding any conflicting elements from the current

20

https://github.com/eclipse/microprofile-open-api/blob/main/api/src/main/java/org/eclipse/microprofile/openapi/OASFilter.java

model.

* The final model is filtered by walking the model tree and invoking all registered OASFilter
classes.

21

Chapter 5. OpenAPI Endpoint

5.1. Overview

A fully processed OpenAPI document must be served from the root URL /openapi in response to an
HTTP GET request if any of the following conditions are met:

» an OASModelReader has been configured with mp.openapi.model.reader

» an 0ASFilter has been configured with mp.openapi.filter

* one of the allowed static files is present, i.e. META-INF/openapi.(json|yaml|yml)

* the application uses Jakarta REST
For example, GET http://myHost:myPort/openapi.
This document represents the result of the applied Processing rules.

The protocol required is http. Vendors are encouraged, but not required, to support the https
protocol as well, to enable a secure connection to the OpenAPI endpoint.

5.2. Content format

The default format of the /openapi endpoint is YAML.

Vendors must also support the JSON format if the request contains an Accept header with a value of
application/json, in which case the response must contain a Content-Type header with a value of
application/json.

5.3. Query parameters

No query parameters are required for the /openapi endpoint. However, one suggested but optional
query parameter for vendors to support is format, where the value can be either JSON or YAML, to
facilitate the toggle between the default YAML format and JSON format.

5.4. Context root behavior

Vendors are required to ensure that the combination of each global server element and pathltem
element resolve to the absolute backend URL of that particular path. If that pathItem contains a
servers element , then this list of operation-level server elements replaces the global list of servers
for that particular pathItem.

For example: an application may have an ApplicationPath annotation with the value of /, but is
assigned the context root of /myApp during deployment. In this case, the server elements (either
global or operation-level) must either end with /myApp or a corresponding proxy. Alternatively it is
valid, but discouraged, to add that context root (/myApp) to every pathItem defined in that
application.

22

http://myHost:myPort/openapi
https://spec.openapis.org/oas/v3.1.0.html#server-object
https://spec.openapis.org/oas/v3.1.0.html#path-item-object

5.5. Multiple applications

The MicroProfile OpenAPI specification does not define how the /openapi endpoint may be
partitioned in the event that the MicroProfile runtime supports deployment of multiple
applications. If an implementation wishes to support multiple applications within a MicroProfile
runtime, the semantics of the /openapi endpoint are expected to be the logical union of all the
applications in the runtime, which would imply merging multiple OpenAPI documents into a single
valid document (handling conflicting IDs and unique names).

5.6. User Interface

Vendors may provide a separate interface to allow users to vizualize or browse the contents of the
OpenAPI document. If such a user interface is provided, it should be made available at /openapi/ui.

23

Chapter 6. Integration with other
MicroProfile specifications

This section will outline specific integrations between MicroProfile OpenAPI and other MicroProfile
specifications.

6.1. MicroProfile Rest Client

It is common that a microservice (A) using MicroProfile OpenAPI will also use MicroProfile Rest
Client to make outbound calls into another microservice (B). In this case, we do not want the
interface for microservice (B) to appear in microservice (A)'s OAS3 document.

Therefore, vendors are required to exclude from the final OAS3 document any interface annotated
with org.eclipse.microprofile.rest.client.inject.RegisterRestClient.

24

https://github.com/eclipse/microprofile-rest-client
https://github.com/eclipse/microprofile-rest-client
https://download.eclipse.org/microprofile/microprofile-rest-client-3.0/apidocs/org/eclipse/microprofile/rest/client/inject/RegisterRestClient.html

Chapter 7. Limitations

7.1. Internationalization

The MicroProfile OpenAPI spec does not require vendors to support multiple languages based on
the Accept-Language. One reasonable approach is for vendors to support unique keys (instead of
hardcoded text) via the various Documentation Mechanisms, so that the implementing framework
can perform a global replacement of the keys with the language-specific text that matches the
Accept-Language request for the /openapi endpoint. A cache of processed languages can be kept to
improve performance.

7.2. Validation

The MP OpenAPI specification does not mandate vendors to validate the resulting OpenAPI v3.1
model (after processing the 5 steps previously mentioned), which means that the behavior of
invalid models is vendor specific (i.e. vendors may choose to ignore, reject, or pass-through invalid
inputs).

7.3. Cross Origin Resource Sharing (CORS)

The MP OpenAPI specification does not mandate but recommends vendors support CORS for the
/openapi endpoint. Without CORS support, tools such as Swagger-UI might experience some errors.
However, the behavior of CORS requests is implementation dependent.

25

https://www.w3.org/TR/cors/

Chapter 8. Release Notes

8.1. Release Notes for MicroProfile OpenAPI 4.1

A full list of changes delivered in the 4.1 release can be found at MicroProfile OpenAPI 4.1
Milestone

8.1.1. API/SPI changes

* Model API changes
> New OpenAPI property jsonSchemaDialect (660)
o New methods added to Extensible: getExtension(String) and hasExtension(String) (666)

* Add @Target to @DependentRequired, @DependentSchema and @SchemaProperty where it was missing
(676)

8.2. Release Notes for MicroProfile OpenAPI 4.0

A full list of changes delivered in the 4.0 release can be found at MicroProfile OpenAPI 4.0
Milestone

8.2.1. Incompatible Changes

» /openapi endpoint now serves documentation in OpenAPI v3.1 format (333)

* Incompatible changes to the Schema model API, reflecting changes in the OpenAPI v3.1 document
format (584)

o type property type changed from SchemaType to List<SchemaType>
o exclusiveMinimum and exclusiveMaximum property types changed from Boolean to BigDecimal

o nullable property removed (replaced by the addition of NULL to SchemaType)

Default value of @RequestBody.required changed to true to reflect that this is the much more
common case where a RESTful resource method accepts a request body (349)

* Minimum Java version increased to 11

8.2.2. API/SPI changes

* Model API changes, reflecting changes in the OpenAPI v3.1 document format
o New OpenAPI property: webhooks (583)
o New Components property: pathItems (437)
o New Info property: summary (435)
o New License property: identifier (436)

o New Schema properties: booleanSchema, comment, constValue, contains, contentEncoding,
contentMediaType, contentSchema, dependentRequired, dependentSchemas, elseSchema, examples,

26

https://github.com/microprofile/microprofile-open-api/milestone/8?closed=1
https://github.com/microprofile/microprofile-open-api/milestone/8?closed=1
https://github.com/microprofile/microprofile-open-api/issues/660
https://github.com/microprofile/microprofile-open-api/issues/666
https://github.com/microprofile/microprofile-open-api/issues/676)
https://github.com/eclipse/microprofile-open-api/milestone/6?closed=1
https://github.com/eclipse/microprofile-open-api/milestone/6?closed=1
https://github.com/eclipse/microprofile-open-api/issues/333
https://github.com/eclipse/microprofile-open-api/issues/584
https://github.com/eclipse/microprofile-open-api/issues/349
https://github.com/eclipse/microprofile-open-api/issues/583
https://github.com/eclipse/microprofile-open-api/issues/437
https://github.com/eclipse/microprofile-open-api/issues/435
https://github.com/eclipse/microprofile-open-api/issues/436

o

o

[

ifSchema, maxContains, minContains, patternProperties, prefixItems, propertyNames,
schemaDialect, thenSchema, unevaluatedItems, unevaluatedProperties (584), (567)

New Schema methods for working with custom properties: set(String, Object), get(String),
setA11(Map<String, 7>), getAl1() (584)

New Schema.SchemaType enum value: NULL (584)
New SecuritySchema.Type enum value: MUTUALTLS (582)

* Annotation API changes, reflecting changes in the OpenAPI v3.1 document format

o

o

o

New @0penAPIDefinition property: webhooks (583)
New @Components property: pathItems (437)

New annotation @PathItem (437)

New annotation @PathItemOperation (437)

New @Callback property: pathItemRef (437)

New @Info property: summary (435)

New @License property: identifier (436)

New @Schema properties: comment, constValue, contains, contentEncoding, contentMediaType,
contentSchema, dependentRequired, dependentSchemas, elseSchema, examples, ifSchema,
maxContains, minContains, patternProperties, prefixItems, propertyNames, thenSchema (584),
(567)

New @SchemaProperty properties: additionalProperties, comment, constValue, contains,
contentEncoding, contentMediaType, contentSchema, dependentRequired, dependentSchemas
,elseSchema, examples, ifSchema, maxContains, minContains, patternProperties, prefixItems,
propertyNames, thenSchema (584)

New annotations supporting the new @Schema properties: @DependentRequired,
@DependentSchema, @PatternProperty (584), (567)

New SecuritySchemeType enum value: MUTUALTLS (582)

* Added module-info to the API jar (577)

8.2.3.

Other changes

» Update references to the OpenAPI spec to point to v3.1 (606)

» Update documentation and TCKs to reflect changes in OpenAPI v3.1 which don’t affect the
model API

o

o

o

All security schemes may define required roles (590)

Summary and description are now valid when §$ref is set (589)

Operation.requestBody permitted for HTTP methods which don’t allow a request body (591)
Only one of Paths, Components, or Webhooks is required (592)

New encoding options for multipart/form-data (587)

New parameter style values valid for object type (586)

Operation no longer requires responses (585)

27

https://github.com/eclipse/microprofile-open-api/issues/584
https://github.com/eclipse/microprofile-open-api/issues/567
https://github.com/eclipse/microprofile-open-api/issues/584
https://github.com/eclipse/microprofile-open-api/issues/584
https://github.com/eclipse/microprofile-open-api/issues/582
https://github.com/eclipse/microprofile-open-api/issues/583
https://github.com/eclipse/microprofile-open-api/issues/437
https://github.com/eclipse/microprofile-open-api/issues/437
https://github.com/eclipse/microprofile-open-api/issues/437
https://github.com/eclipse/microprofile-open-api/issues/437
https://github.com/eclipse/microprofile-open-api/issues/435
https://github.com/eclipse/microprofile-open-api/issues/436
https://github.com/eclipse/microprofile-open-api/issues/584
https://github.com/eclipse/microprofile-open-api/issues/567
https://github.com/eclipse/microprofile-open-api/issues/584
https://github.com/eclipse/microprofile-open-api/issues/584
https://github.com/eclipse/microprofile-open-api/issues/567
https://github.com/eclipse/microprofile-open-api/issues/582
https://github.com/eclipse/microprofile-open-api/pull/577
https://github.com/eclipse/microprofile-open-api/pull/606
https://github.com/eclipse/microprofile-open-api/issues/590
https://github.com/eclipse/microprofile-open-api/issues/589
https://github.com/eclipse/microprofile-open-api/issues/591
https://github.com/eclipse/microprofile-open-api/issues/592
https://github.com/eclipse/microprofile-open-api/issues/587
https://github.com/eclipse/microprofile-open-api/issues/586
https://github.com/eclipse/microprofile-open-api/issues/585

Replace references to "JAX-RS" with "Jakarta RESTful Web Services" (574)

8.3. Release Notes for MicroProfile OpenAPI 3.1

A full list of changes delivered in the 3.1 release can be found at MicroProfile OpenAPI 3.1
Milestone.

8.3.1. API/SPI Changes

Add extensions attribute to most annotations (387)
Improvements to the definition of security requirements (483, 468)
o Define behavior of @SecurityRequirementsSet and make it repeatable

o Clarify that a individual @SecurityRequirement annotation applied to a class or method is
equivalent to a @SecurityRequirementsSet annotation containing that @SecurityRequirement
annotation

o Add securitySets attribute to @0penAPIDefinition and @CallbackOperation
Add additionalProperties attribute to @Schema (423)

Allow @APIResponse to be applied to a class, indicating that every resource method on that class
has that response (417)

8.3.2. Other Changes

Add processing of some Jakarta Bean Validation annotations (482)
Define the precedence of the mp.openapi.scan.* config properties (422)
Clarify that the name attribute of @Extension must include the x- prefix (339)

Only require that the /openapi endpoint is made available if there is documentation to show
(413)

Recommend a standard endpoint for implementations which provide a user interface (334)

Recommend that implementations provide a way to serve CORS headers on the /openapi
endpoint (416)

8.4. Release Notes for MicroProfile OpenAPI 3.0

A full list of changes delivered in the 3.0 release can be found at MicroProfile OpenAPI 3.0
Milestone.

8.4.1. Incompatible Changes

This release aligns with Jakarta EE 9.1 (487), so it won’t work with earlier versions of Jakarta or
Java EE.

28

https://github.com/eclipse/microprofile-open-api/issues/574
https://github.com/eclipse/microprofile-open-api/milestone/5?closed=1
https://github.com/eclipse/microprofile-open-api/milestone/5?closed=1
https://github.com/eclipse/microprofile-open-api/issues/387
https://github.com/eclipse/microprofile-open-api/issues/483
https://github.com/eclipse/microprofile-open-api/issues/468
https://github.com/eclipse/microprofile-open-api/issues/423
https://github.com/eclipse/microprofile-open-api/issues/417
https://github.com/eclipse/microprofile-open-api/issues/482
https://github.com/eclipse/microprofile-open-api/issues/422
https://github.com/eclipse/microprofile-open-api/issues/339
https://github.com/eclipse/microprofile-open-api/issues/413
https://github.com/eclipse/microprofile-open-api/issues/334
https://github.com/eclipse/microprofile-open-api/issues/416
https://github.com/eclipse/microprofile-open-api/milestone/4?closed=1
https://github.com/eclipse/microprofile-open-api/milestone/4?closed=1
https://github.com/eclipse/microprofile-open-api/issues/487

8.4.1.1. API/SPI Changes

There are no functional changes introduced in this release, except the dependency updating from
javax to jakarta.

8.4.1.2. Other Changes

* Negative Test Scenario - @SchemaProperty Precedence Behaviour (466)

» Use MediaType.APPLICATION_JSON instead of application/json in some TCKs (471)

TCK Tag Collection Test contains() side effect (453)

TestNG 7.4.0 Assert.assertNotSame has a bug which causes ModelConstructionTest TCK to fail
(494)

8.5. Release Notes for MicroProfile OpenAPI 2.0

A full list of changes delivered in the 2.0 release can be found at MicroProfile OpenAPI 2.0
Milestone.

8.5.1. Incompatible Changes

* Model interfaces that were deprecated in 1.1 have been removed:

o Scopes - this interface was replaced with Map<String, ServerVariable> because it did not need
to be extensible (328)

o ServerVariables - this interface was replaced with Map<String, ServerVariable> because it
did not need to be extensible (245)

* Model interfaces that are not extensible no longer extend java.util.Map:
o APIResponses (248)
o Callback (248)

o

Content (248)
o Path (248)
o SecurityRequirement (248)

* Methods on model interfaces that were deprecated) in 1.1 have been removed:
o APIResponses

= addApiResponse(String name, APIResponse apiResponse) - use addAPIResponse(String,
APIResponse) instead (229)

get(Object key) - use getAPIResponse(String) instead (248)
= containsKey(Object key) - use hasAPIResponse(String) instead (248)
= put(String key, PathItem value) - use addAPIResponse(String, APIResponse) instead (248)

= putAll(Map<? extends String, ? extends PathItem> m) - use setAPIResponses(Map) instead
(248)

= remove(Object key) - use removeAPIResponse(String) instead (248)

29

https://github.com/eclipse/microprofile-open-api/issues/466
https://github.com/eclipse/microprofile-open-api/pull/471
https://github.com/eclipse/microprofile-open-api/issues/453
https://github.com/eclipse/microprofile-open-api/issues/494
https://github.com/eclipse/microprofile-open-api/milestone/2?closed=1
https://github.com/eclipse/microprofile-open-api/milestone/2?closed=1
https://github.com/eclipse/microprofile-open-api/issues/328
https://github.com/eclipse/microprofile-open-api/issues/245
https://github.com/eclipse/microprofile-open-api/issues/248
https://github.com/eclipse/microprofile-open-api/issues/248
https://github.com/eclipse/microprofile-open-api/issues/248
https://github.com/eclipse/microprofile-open-api/issues/248
https://github.com/eclipse/microprofile-open-api/issues/248
https://github.com/eclipse/microprofile-open-api/issues/229
https://github.com/eclipse/microprofile-open-api/issues/248
https://github.com/eclipse/microprofile-open-api/issues/248
https://github.com/eclipse/microprofile-open-api/issues/248
https://github.com/eclipse/microprofile-open-api/issues/248
https://github.com/eclipse/microprofile-open-api/issues/248

30

o Callback
= get(Object key) - use getPathItem(String) instead (248)
= containsKey(Object key) - use hasPathItem(String) instead (248)
= put(String key, PathItem value) - use addPathItem(String, PathItem) instead (248)

= putAll(Map<? extends String, ? extends PathItem> m) - use setPathItems(Map) instead
(248)

= remove(Object key) - use removePathItem(String) instead (248)
o Content
= get(Object key) - use getMediaType(String) instead (248)
= containsKey(Object key) - use hasMediaType(String) instead (248)
= put(String key, PathItem value) - use addMediaType(String, MediaType) instead (248)

= putAll(Map<? extends String, ? extends PathItem> m) - use setMediaTypes(Map) instead
(248)

= remove(Object key) - use removeMediaType(String) instead (248)
o OASFactory
= createScopes - use Map<String, String> for scopes instead (328)

= createServerVariables - use use Map<String, ServerVariable> for server variables instead
(245)

o OAuthFlow
= setScopes(Scopes scopes) - use setScopes(Map) instead (328)
= scopes(Scopes scopes) - use scopes(Map) instead (328)

o OpenAPI

= path(String name, PathItem path) - use Paths#addPathItem(String, PathItem) on
OpenAPI#getPaths instead (247)

o Path
= get(Object key) - use getPathItem(String) instead (248)
= containsKey(Object key) - use hasPathItem(String) instead (248)
= put(String key, PathItem value) - use addPathItem(String, PathItem) instead (248)

= putAll(Map<? extends String, ? extends PathItem> m) - use setPathItems(Map) instead
(248)

= remove(Object key) - use removePathItem(String) instead (248)

o PathItem
= readOperations - use Map#ivalues() on PathItemffgetOperations() instead (256)
= readOperationsMap - use getOperations() instead (256)

o Schema

= getAdditionalProperties - use getAdditionalPropertiesSchema() or

https://github.com/eclipse/microprofile-open-api/issues/248
https://github.com/eclipse/microprofile-open-api/issues/248
https://github.com/eclipse/microprofile-open-api/issues/248
https://github.com/eclipse/microprofile-open-api/issues/248
https://github.com/eclipse/microprofile-open-api/issues/248
https://github.com/eclipse/microprofile-open-api/issues/248
https://github.com/eclipse/microprofile-open-api/issues/248
https://github.com/eclipse/microprofile-open-api/issues/248
https://github.com/eclipse/microprofile-open-api/issues/248
https://github.com/eclipse/microprofile-open-api/issues/248
https://github.com/eclipse/microprofile-open-api/issues/328
https://github.com/eclipse/microprofile-open-api/issues/245
https://github.com/eclipse/microprofile-open-api/issues/328
https://github.com/eclipse/microprofile-open-api/issues/328
https://github.com/eclipse/microprofile-open-api/issues/247
https://github.com/eclipse/microprofile-open-api/issues/248
https://github.com/eclipse/microprofile-open-api/issues/248
https://github.com/eclipse/microprofile-open-api/issues/248
https://github.com/eclipse/microprofile-open-api/issues/248
https://github.com/eclipse/microprofile-open-api/issues/248
https://github.com/eclipse/microprofile-open-api/pull/256
https://github.com/eclipse/microprofile-open-api/pull/256

getAdditionalPropertiesBoolean() instead (257, 281)

= setAdditionalProperties(Schema additionalProperties) - use
setAdditionalPropertiesSchema(Schema) instead (257, 281)

= setAdditionalProperties(Boolean additionalProperties) - use
setAdditionalPropertiesBoolean(Boolean) instead (257, 281)

= additionalProperties(Schema additionalProperties) - use
additionalPropertiesSchema(Schema) instead (257, 281)

= additionalProperties(Boolean additionalProperties) - use
additionalPropertiesBoolean(Boolean) instead (257, 281)

o SecurityRequirement
= get(Object key) - use getScheme(String) instead (248)
= containsKey(Object key) - use hasScheme(String) instead (248)
= put(String key, PathItem value) - use addScheme(String, List) instead (248)
= putAll(Map<? extends String, ? extends PathItem> m) - use setSchemes(Map) instead (248)
= remove(Object key) - use removeScheme(String) instead (248)
o Server
= setVariables(ServerVariables variables) - use setVariables(Map) instead (245)

= variables(ServerVariables variables) - use variables(Map) instead (245)

8.5.2. API/SPI Changes

» The @SchemaProperty annotation has been added to allow the properties for a schema to be
defined inline. (360). For example:

@Schema(properties={
@SchemaProperty(name="creditCard", required=true),
@SchemaProperty(name="departurefFlight", description="The departure flight
information."),
@SchemaProperty(name="returningFlight")

}

* The @RequestBodySchema annotation has been added to provide a shorthand mechanism to
specify the schema for a request body (363). For example:

@RequestBodySchema(MyRequestObject.class)

* The @APIResponseSchema annotation has been added to provide a shorthand mechanism to
specify the schema for a response body (363). For example:

@APIResponseSchema(MyResponseObject.class)

31

https://github.com/eclipse/microprofile-open-api/issues/257
https://github.com/eclipse/microprofile-open-api/pull/281
https://github.com/eclipse/microprofile-open-api/issues/257
https://github.com/eclipse/microprofile-open-api/pull/281
https://github.com/eclipse/microprofile-open-api/issues/257
https://github.com/eclipse/microprofile-open-api/pull/281
https://github.com/eclipse/microprofile-open-api/issues/257
https://github.com/eclipse/microprofile-open-api/pull/281
https://github.com/eclipse/microprofile-open-api/issues/257
https://github.com/eclipse/microprofile-open-api/pull/281
https://github.com/eclipse/microprofile-open-api/issues/248
https://github.com/eclipse/microprofile-open-api/issues/248
https://github.com/eclipse/microprofile-open-api/issues/248
https://github.com/eclipse/microprofile-open-api/issues/248
https://github.com/eclipse/microprofile-open-api/issues/248
https://github.com/eclipse/microprofile-open-api/issues/245
https://github.com/eclipse/microprofile-open-api/issues/245
https://github.com/eclipse/microprofile-open-api/issues/360
https://github.com/eclipse/microprofile-open-api/issues/363
https://github.com/eclipse/microprofile-open-api/issues/363

* The mp.openapi.schema.* MicroProfile Config property has been added to allow the schema for a
specific class to be specified. This property would typically be used in cases where the
application developer does not have access to the source code of a class (364). For example:

mp.openapi.schema.java.time.Instant = { \
"name": "EpochSeconds", \
"type": "number", \
"format": "int64", \
"title": "Epoch Seconds", \
"description”: "Number of seconds from the epoch of 1970-01-01T00:00:00Z" \

8.5.3. Functional Changes

* Getter methods on model interfaces that return a list or map now return a copy of the list/map
containing the same items. This list/map CAN be immutable. (240)

» Setter methods on model interfaces that take a list or a map as a parameter MUST not use the
list/map instance directly (284)

8.5.4. Other Changes

 JavaDoc updates to clarify the behaviour of getter methods on model interfaces that return a list
or map ((240), 288)

* TCK updates to verify that getter methods on model interfaces return a list or map, return a
copy of underlying collection ((240), 288)

8.6. Release Notes for MicroProfile OpenAPI 1.1

Changes include:

* the addition of the JAXRS 2.1 PATCH method

» automatic hide MicroProfile Rest Client interfaces

* OASFactoryResolver is now a proper SPI artifact

* builder methods now have default implementations

* @Content now supports a singular example field

» @Extension now has a parseValue field for complex values

* TCK updated to support newer 3.0.x versions

 overall Javadoc enhancements (classes and packages)

* various other minor improvements to the annotations, models and TCK

> bug fixes, documentation updates, more convenience methods, deprecations, etc.

32

https://github.com/eclipse/microprofile-open-api/issues/364
https://github.com/eclipse/microprofile-open-api/issues/240
https://github.com/eclipse/microprofile-open-api/issues/284
https://github.com/eclipse/microprofile-open-api/issues/240
https://github.com/eclipse/microprofile-open-api/pull/288
https://github.com/eclipse/microprofile-open-api/issues/240
https://github.com/eclipse/microprofile-open-api/pull/288

8.7. Release Notes for MicroProfile OpenAPI 1.0

First official release of MP OpenAPI. Highlights of the release:
 set of annotations that covers the entire OpenAPI v3 specification when combined with JAX-RS
annotations.

* set of OpenAPI v3 models covering the entire OpenAPI v3 specification, with corresponding
APIs to provide a bootstrap or complete model tree.

 configuration injected via MicroProfile Config specification.
* ability to provide static (partial or complete) OpenAPI v3 files.

* definition of an HTTP endpoint, /openapi, that provides YAML and JSON representations of the
generated OpenAPI v3 document.

33

	MicroProfile OpenAPI Specification
	Table of Contents
	Copyright
	Eclipse Foundation Specification License - v1.1
	Disclaimers

	Chapter 1. Introduction
	Chapter 2. Architecture
	Chapter 3. Configuration
	3.1. List of configurable items
	3.1.1. Core configurations
	3.1.2. Vendor extensions

	Chapter 4. Documentation Mechanisms
	4.1. Annotations
	4.1.1. Quick overview of annotations
	4.1.1.1. Overrides

	4.1.2. Detailed usage of key annotations
	4.1.2.1. Operation
	4.1.2.2. RequestBody
	4.1.2.3. Servers
	4.1.2.4. Schema

	4.1.3. Jakarta Bean Validation Annotations

	4.2. Static OpenAPI files
	4.2.1. Location and formats

	4.3. Programming model
	4.3.1. OASFactory
	4.3.2. OASModelReader

	4.4. Filter
	4.4.1. OASFilter

	4.5. Processing rules

	Chapter 5. OpenAPI Endpoint
	5.1. Overview
	5.2. Content format
	5.3. Query parameters
	5.4. Context root behavior
	5.5. Multiple applications
	5.6. User Interface

	Chapter 6. Integration with other MicroProfile specifications
	6.1. MicroProfile Rest Client

	Chapter 7. Limitations
	7.1. Internationalization
	7.2. Validation
	7.3. Cross Origin Resource Sharing (CORS)

	Chapter 8. Release Notes
	8.1. Release Notes for MicroProfile OpenAPI 4.1
	8.1.1. API/SPI changes

	8.2. Release Notes for MicroProfile OpenAPI 4.0
	8.2.1. Incompatible Changes
	8.2.2. API/SPI changes
	8.2.3. Other changes

	8.3. Release Notes for MicroProfile OpenAPI 3.1
	8.3.1. API/SPI Changes
	8.3.2. Other Changes

	8.4. Release Notes for MicroProfile OpenAPI 3.0
	8.4.1. Incompatible Changes
	8.4.1.1. API/SPI Changes
	8.4.1.2. Other Changes

	8.5. Release Notes for MicroProfile OpenAPI 2.0
	8.5.1. Incompatible Changes
	8.5.2. API/SPI Changes
	8.5.3. Functional Changes
	8.5.4. Other Changes

	8.6. Release Notes for MicroProfile OpenAPI 1.1
	8.7. Release Notes for MicroProfile OpenAPI 1.0

