ADSP-BF59x Blackfin® Processor
Hardware Reference

Preliminary Revision 0.1, January 2010

Part Number
82-100102-01

Analog Devices, Inc.

One Technology Way ANALOG
Norwood, Mass. 02062-9106 DEVICES



Copyright Information

© 2010 Analog Devices, Inc., ALL RIGHTS RESERVED. This docu-
ment may not be reproduced in any form without prior, express written
consent from Analog Devices, Inc.

Printed in the USA.

Disclaimer

Analog Devices, Inc. reserves the right to change this product without
prior notice. Information furnished by Analog Devices is believed to be
accurate and reliable. However, no responsibility is assumed by Analog
Devices for its use; nor for any infringement of patents or other rights of
third parties which may result from its use. No license is granted by impli-
cation or otherwise under the patent rights of Analog Devices, Inc.

Trademark and Service Mark Notice

The Analog Devices logo, Blackfin, EZ-KIT Lite, SHARC, TigerSHARC,
and Visual DSP++ are registered trademarks of Analog Devices, Inc.

All other brand and product names are trademarks or service marks of
their respective owners.



CONTENTS

PREFACE

Purpose of This Manual .......ccoociiiiiiiiniiiiiiceee
Intended Audience .......ccceeeeviiiiiiiiiiiiiiiinice
Manual Contents ......cooeecvviiiiieeeeeeiiiiiiieee e e e
What's New in This Manual .......ccccoeeiviiiiieiiniiiiieenenn.
Technical or Customer Support ......ccoccveeveiieniiieniineennn.
Supported ProCessors .......eorveerieerieeriienieeiieceiee e
Product Information .......ccceeveviieeiiiiiiieeiiiieeeeeee e

Analog Devices Web Site ....cccooviiiiiiiiiiiiiiiiiiins

Visual DSP++ Online Documentation ..........ccveeeee...

Technical Library CD ....oooviiiiiiiiiiiiiiiiciecece,

Notation CONVENTIONS uivueeninteneeeineeeeee et ee e eeeeeeeneenes

INTRODUCTION

General Description of Processor ........ccccceevvieeiniieennneens

Portable Low-Power Architecture .........cccoeeeeeviiininnnnnn.
Peripherals .....coooiiiiiiiiiiiii
Memory Architecture .......ccocovviiviiiiniiiiniiieiiee e

Internal Memory ......ccccovviiiiiiiniiiiiciniieceeec e,

.......... -XXXV

-XXXV1
-XXXVI1
-XXXVii
-xxxvii
-XxXxVl1il

-XXXIX

ADSP-BF59x Blackfin Processor Hardware Reference



Contents

I/0 Memory SPace ....cooeeviiiiiiiiiiiiiiiiiiiiieeeeeeeeeee e 1-5
DMA SUPPOTT ittt 1-6
General-Purpose I/O (GPIO) ....ooiiiiiiiiiiiiiiiiciiiceieceee e 1-7
Two-Wire INterface .....cccvveeeeiiiiiieeiiiiiie e 1-8
Parallel Peripheral Interface ........ccooovveiiiiiiniiiiiiiiiiiicee 1-9
SPORT Controllers .......coovuuiiiemiiiiiieiiiiiiee e 1-11
Serial Peripheral Interface (SPI) Ports .....coovveervieeeniiiiniieiinieeens 1-13
TEIEES e 1-13
UART POTT wetieiiiiiiiee ettt ettt 1-14
Watchdog TImer ......cooiiiiiiiiiiiiiiiiiicicccc e 1-15
Clock Signals ....cooviiieiiiiiiiiiiiii e 1-16
Dynamic Power Management .........ccccceovvviniiiiiiiiiiiinnniiinineeenen. 1-16

Full-On Mode (Maximum Performance) .......cccoovvuevevvvunneeenn. 1-17

Active Mode (Moderate Power Savings) .........cccoceveervireennneens 1-17

Sleep Mode (High Power Savings) ......cccccocveviivieniiienniieennnen. 1-17

Deep Sleep Mode (Maximum Power Savings) .........ccccceeeene 1-18

Hibernate State .......oooocciiiiiiieeiieiiiiieee e 1-18
Instruction Set Description .........ccccevveiiiiiiiiiiiiiiiiieeeiiiiiieeee, 1-18
Development Tools ......eeiiiiiiiiiiiiiiiiiicccce 1-19

MEMORY
Memory ArchiteCture .......coccvviiiiiiiniiiiiiieeeecec e 2-1
L1 Instruction SRAM ....ooiiiiiiiiiiiiii 2-2
L1 Instruction ROM ... 2-3
L1 Data SRAM oo 2-3

i

ADSP-BF59x Blackfin Processor Hardware Reference



Contents

Boot ROM .o 2-4
External Memory .....ccooiuiiiiiiiiiiiiiiiiieeeeee e 2-4
Processor-Specific MMRS ..o..oiiiiiiiiiiiiiiiiciicccec e 2-4
DTEST_COMMAND Register ........ccccceiiiiiiiiiiiiiiiiiiiiiiinees 2-5
ITEST_COMMAND Register ........cccoevuiiiiiniiiiieiiiiiieeeeeeen. 2-6
DMEM_CONTROL RegiSter .....cccoeeureeermiiiiieeiniiiieeeniieeeenas 2-7
IMEM_CONTROL RegiSter ......cccccccovvuiiiiiiiiiiiiiiiiiiieeeienen, 2-7
DCPLB_DATAx RegiSters .......ccceeeiiviiiiiiiiiiiiiiiiiiiieeeiiieeeeeae 2-8
ICPLB_DATAX ReGIStErS ..eevvvieiiiiiiiieiniiiieeieiieee e 2-9

CHIP BUS HIERARCHY

Chip Bus Hierarchy Overview .......cocccceoviiiiniiiiiiiiiiiiceiicceieee 3-1
Interface OVErVIEW ...cceeeiiiiiiiiiiieeeeeeeiiieiee e e e e e e e e e e e e e 3-2
Internal Clocks ...ccooviviiiiiiiiiiiiii e, 3-3
Core Bus OVEIVIEW .oeeeeeieieieieieieeeee e 3-3
Peripheral Access Bus (PAB) ..ooooviiiiiiiiiiiiiiiiciec e 3-5
PAB ArDItration .....ccocoveeeeiiiiiiieeiiiiiee et 3-5

PAB Agents (Masters, Slaves) .......ccccccevviiiiniiiiiiiiiiiien. 3-5

PAB Performance ......cccuvvveieeeeeeeiiiiiiiiieeeeeeeesiireeeeee e e e 3-6
DMA Access Bus (DAB), DMA Core Bus (DCB) .....cccvvvnneeeenne. 3-6
DAB and DCB Arbitration .......cocccviivieiiieiiiiiiiiiiiiceeeeeees 3-6

DAB Bus Agents (Masters) ........ccoccvveeiiniiiieiiiiiiieeiiiieeeenae 3-7

DAB and DCB Performance .........cccceeevvviiieeiniiieienniiieeean. 3-8

ADSP-BF59x Blackfin Processor Hardware Reference

111



Contents

SYSTEM INTERRUPTS

Specific Information for the ADSP-BF59x ....ccooiiiiiiiiiiniiiiiiecne 4-1
OVEIVIEW eiiiiiiiiiiei ittt ettt e e e e e 4-1
FEATUIES .uiiiiiiiiiiiiic et 4-2
Description of OPeration .........cceeeceeernireenieeeniiieeniieeneee e 4-2
Events and Sequencing ..........cccoecueeeniiiiiniiiiniiieiiec e 4-2
System Peripheral Interrupts ......cccovvviiiniiiiniiiiiiiiicceee 4-4
Programming Model .........ccccooiiiiiiiiiiiiii 4-7
System Interrupt Initialization ......ccocceevviiiiniiiiniiiiiiicicee 4-8
System Interrupt Processing Summary ..........ccoccciiiiiiiiiniinnn, 4-8
System Interrupt Controller Registers .......c.cceevviiiiniiiiniiienineenns 4-10
System Interrupt Assignment (SIC_IAR) Register .................. 4-11
System Interrupt Mask (SIC_IMASK) Register ........c...cco..... 4-12
System Interrupt Status (SIC_ISR) Register ........cccccoeuiieeenns 4-12
System Interrupt Wakeup-Enable (SIC_IWR) Register ........... 4-12
Programming Examples ........cccccoiiiiiiiiiiiiiiiii 4-13
Clearing Interrupt ReqUests ......ceeevvuvieiiiiiiniieiniieiniieenieeene 4-13
Unique Information for the ADSP-BF59x Processor ..........cco...... 4-15
INEEITACES woovviiiiiiiiiiiiccit e 4-16
System Peripheral Interrupts ......ccccoovviiiiiiiiiniiiniiiiiiecee. 4-17
DIRECT MEMORY ACCESS
Specific Information for the ADSP-BF59x ....cooviiiiiiiiiiiniiiiiiiecnee 5-1
Overview and Features .........ccceovviiiiiiniiiiiiiiiiiicciec e 5-2

iv ADSP-BF59x Blackfin Processor Hardware Reference



Contents

DMA Controller OVerview .......ccccuuvviieieeiiiiiiiiiiiiieeee e 5-4
External Interfaces .......occeevvviiiiiiiiiiiiiiieiiiiiieeee e 5-4
Internal Interfaces ......ccoovvviiiiiiiiiiiiiiiiiiice e 5-5
Peripheral DMA ..ot 5-6
Memory DMA 5-7

Handshaked Memory DMA (HMDMA) Mode ................... 5-9

Modes of OPeration .......ceeevveeeirieeeniiiiiiiee et 5-10

Register-Based DMA Operation .........cccceveuveerciieeniieenineeennnee. 5-10
StOP MOde ..vviiiiiiiiiiiiic e 5-11
Autobuffer Mode .....ooooviiiiiiiiiiiiiiicceee e 5-12

Two-Dimensional DMA Operation .........cccecceveeviieeniiieennineen. 5-12
Examples of Two-Dimensional DMA .........ccocoiiniiiennneenn. 5-13

Descriptor-based DMA Operation ........ccccoeveuvveeenninieeennnnneee. 5-14
Descriptor List Mode ......coooviiiiiiiiiiiiiiiiiiniecnieceeec, 5-15
Descriptor Array Mode ....coccveeviiiiiiiiiiniiiiniiccniecceeee 5-16
Variable Descriptor Size .......ccoocoviiiimiiiiiinniiiiciniiieeee 5-16
Mixing Flow Modes .......cccceviiiiimiiiiniiiiiiiieiieeenieeceieeene 5-17

Functional Description ........ccccovueeeriiieeniiiieniiie e 5-18

DMA Operation FIow ....ccccciiiiiiiiiiiiiiiiiiiiiecceen 5-18
DMA Startup ....ccoooviiiiiiiiiiiiiiiiii 5-18
DMA Refresh .oocooiiiiiiiiiiii e 5-23
Work Unit Transitions ......ccceeeeeeroeveeeerniiieeeenniieeeessiiieeeennns 5-25

DMA Transmit and MDMA Source ....ccccvvveveeeeeninnnnnne. 5-26
DMA ReCEIVE oiiiiiiiiiiiiiiiiiiieeee e 5-27

ADSP-BF59x Blackfin Processor Hardware Reference v



Contents

Stopping DMA Transfers ........ccoccoevviiiniiiiiiniiieniiiicnins 5-29
DMA Errors (ADOItS) ..oiveveeneiiiiiiieeiiiiee e 5-29
DMA Control Commands ........cceovviiiieiiniiiieeiniiiieeeiiieeeens 5-32

RESTIICTIONS wevivviiiiiiiiiiiiiiiiiiiiiiiiiieteeeee ettt ee e 5-35

Transmit Restart or Finish ......ccccooiiiiiiniis 5-35
Receive Restart or Finish ..o 5-36
Handshaked Memory DMA Operation ........ccccovvuveernieennneenn. 5-37

Pipelining DMA Requests .....cccveerriiiiniiieeniiiienieeeieeene 5-39

HMDMA INEEITUPES eeeviveeeiiiiiieeeiiiiiee e 5-41
DMA Performance ......ccuueeeeeeiuieeeeeriiiieeesiiiieeeeeiiieeeeeieeee e 5-42

DMA Throughput ....c.cceeviiiiiiiiiiiiiiiceccce 5-43

Memory DMA Timing Details .....cccccceoviiiiiniiiinniiiiieennne. 5-45

Static Channel Prioritization .........ccccovvuveeeeniiiiieeenniieeeenns 5-46

Temporary DMA Urgency .....ccocceeeeviiieniiieeniiieniieeenieeens 5-46

Memory DMA Priority and Scheduling .........cccocoeeniiennn 5-48

Traffic Control ....ceeiiiiiiiiiiiiie e 5-49

Programming Model .........cccoiiiiiiiiiiiiiii 5-51
Synchronization of Software and DMA ........cccccooiiiniiiinnnenn. 5-52

Single-Buffer DMA Transfers ........ccccccoeieviiiniiieniiinnennen. 5-54

Continuous Transfers Using Autobuffering ...........cc.cccc.... 5-54

Descriptor Structures ........ooovvcuiiiiiiiiiiiiiiiiiiiiieeeeeeeee, 5-57

Descriptor Queue Management ..........ccccceeiiiiiiiiiiiiinnnnen. 5-58

Descriptor Queue Using Interrupts on Every Descriptor 5-58

Descriptor Queue Using Minimal Interrupts ................. 5-60

vi

ADSP-BF59x Blackfin Processor Hardware Reference



Contents

Software Triggered Descriptor Fetches ... 5-62

DMA REEISTELS ..veeuiiieiiiiiieiiieeiiit et 5-64

DMA Channel Registers .........ccoeeuviirniiiiniiiieniiiienieciieeeee. 5-64
DMA Peripheral Map Registers(DMAx_PERIPHERAL_MAP/

MDMA_yy PERIPHERAL_MAP) ....ccocviniiiiiiiiicnieens 5-68

DMA Configuration Registers
(DMAx_CONFIG/MDMA_yy_CONFIG) ....ccccovueeenee 5-68

DMA Interrupt Status Registers
(DMAx_IRQ_STATUS/MDMA_yy_IRQ_STATUS) ...... 5-73

DMA Start Address Registers
(DMAx_START_ADDR/MDMA_yy_START_ADDR) .. 5-76

DMA Current Address Registers
(DMAx_CURR_ADDR/MDMA_yy_CURR_ADDR) .... 5-76

DMA Inner Loop Count Registers
(DMAx_X_COUNT/MDMA_yy_X_COUNT) ............. 5-77

DMA Current Inner Loop Count Registers
(DMAx_CURR_X_COUNT

/IMDMA_yy_CURR_X_COUNT) ..ccooviiiiiiiiiiiceninnen. 5-78
DMA Inner Loop Address Increment Registers

(DMAx_X_MODIFY/MDMA_yy_X_MODIFY) ........... 5-79
DMA Outer Loop Count Registers

(DMAx_Y_COUNT/MDMA_yy_Y_COUNT) .............. 5-80

DMA Current Outer Loop Count Registers
(DMAx_CURR_Y_COUNT/

MDMA_yy_ CURR_Y_COUNT) .cocciiriiiiiiiiiieeee, 5-81
DMA Outer Loop Address Increment Registers
(DMAX_Y_MODIFY/MDMA_yy_Y_MODIFY) ............ 5-81

ADSP-BF59x Blackfin Processor Hardware Reference vil



Contents

DMA Next Descriptor Pointer Registers
(DMAx_NEXT_DESC_PTR/
MDMA_yy_NEXT_DESC_PTR) ..cccocoviiiiiiiiiiiiiins 5-82

DMA Current Descriptor Pointer Registers
(DMAx_CURR_DESC_PTR/

MDMA_yy_CURR_DESC_PTR) ................................. 5-83
HMDMA RegiSters ......c.coeiiiiiuiiiiiiiiiiiiiiiiiiie i 5-84
Handshake MDMA Control Registers (HMDMAx_CONTROL)
5-84
Handshake MDMA Initial Block Count Registers
(HMDMAX_BCINIT) .ottt 5-87
Handshake MDMA Current Block Count Registers
(HMDMAX_ BCOUNT) oo 5-87
Handshake MDMA Current Edge Count Registers
(HMDMAx_ECOUNT) oo, 5-88
Handshake MDMA Initial Edge Count Registers
(HMDMAX_ECINIT) .oiiiiiiiiiiieeeee e 5-89
Handshake MDMA Edge Count Urgent Registers
(HMDMAx_ ECURGENT) ittt 5-89
Handshake MDMA Edge Count Overflow Interrupt
Registers (HMDMAx_ ECOVERFLOW) ......ccccccevvnnneeen. 5-90
DMA Traffic Control Registers
(DMA_TC_PER and DMA_TC_CNT) eoeeeeiiiiiiiiiiiiinnnn. 5-90
DMA_TC_PER Register ......cccccuvviiiiiiiiiiiiiiiiieeeiiiiineen, 5-91
DMA_TC_CNT Register .......ccccecviiiiiiiiiiiiiiiiiiiiiiinn, 5-92
Programming Examples .......ccocoeiiiiiiiiiiiiiniiiicecee 5-93
Register-Based 2-D Memory DMA ......ccoooiiiiiiiiniiiiiiecee, 5-94
Initializing Descriptors in Memory .........cccccoeviiiiiiiiiniinennnnn. 5-97

viii ADSP-BF59x Blackfin Processor Hardware Reference



Contents

Software-Triggered Descriptor Fetch Example ...........c.......... 5-100
Handshaked Memory DMA Example ......cccccocviiniiiinnncnnnn. 5-102
Unique Information for the ADSP-BF59x Processor .................. 5-105
Static Channel Prioritization .......c.ccccovevvvieniieniiiiniieniennee. 5-105
DYNAMIC POWER MANAGEMENT

Phase Locked Loop and Clock Control .......c.ccccceviiiiniiiiniiiinnnnens 6-1
PLL OVEIVIEW eiiiiiiiiiiiiiiiiiieeeiieee ettt e 6-2
PLL Clock Multiplier Ratios ........cccoevuieiiiniiiiiiiniiiiiciiieeeene 6-3
Core Clock/System Clock Ratio Control ........ccocceeevuveennnee. 6-5
Dynamic Power Management Controller .........ccccccevniiiiniiinnne, 6-7
Operating Modes .........ooooiiiiiiiiiiiiiiiiiiiciiiccicccecc e 6-7
Dynamic Power Management Controller States ........c.cccceeeueeene 6-8
Full-On Mode  ..ooooiiiiiiiiiiicccce e 6-8
Active Mode  eiiiiiiiiiiic e 6-8

Sleep Mode .oooiiiiiiiiiiiice e 6-9

Deep Sleep Mode .eovveiiiiiiiiiiiiiiciicece e 6-9
Hibernate State ........ccccciiiiiiiiiiiiiiiii 6-10
Operating Mode Transitions .........ccceecveevviveeniieennieennieeennne. 6-10
Programming Operating Mode Transitions ........ccccceevevveennee. 6-14
Dynamic Supply Voltage Control .........ccccceiiiiiiiniiiiniinn. 6-16
Power Supply Management .........cccceecuveeriiieniiicnniieenieeenee. 6-16
Changing Voltage ......coocvvieriiiiniiiiiiiiciccceceeee 6-16
Powering Down the Core (Hibernate State) .......c.c.cccceenee. 6-18

PLL and VR Re@isSters .......coccueiriiiiiniiiiiniiieniie e 6-19

ADSP-BF59x Blackfin Processor Hardware Reference

X



Contents

PLL_DIV Register .......ccccccoiiiiiiiiiiiiiiiiiiiiiiiiiiiiicciiieees 6-21
PLL_CTL ReGISTEr ..eeiviuiiiiiiiiiiiiiiiiiiiieeeeieiee e 6-21
PLL_STAT REGISTEL eeevuviiiieiiiiiieeiniiiieeeeiiiieeeeiieeeeeeiieee e 6-22
PLL_LOCKCNT Register .......ccccoiviuiiiiiiiiiiiiiiiiiiiiciiiieeees 6-22
VR_CTL RegISter .....cuviiiiiiiiiiiiiiiiiiciiiiice e 6-23
System Control ROM Function ........ccocceeeviiiiniiiiniiiciniecenieeens 6-24
Programming Model .........cccccooiiiiiiiiii 6-26
Accessing the System Control ROM Function in C/C++ ........ 6-26
Accessing the System Control ROM Function in Assembly .... 6-27
Programming Examples ........cccccoviiiiiiiiiiiiiii 6-30
Full-on Mode to Active Mode and Back .........ccccvvvviiieinennnnn. 6-31
Transition to Sleep Mode or Deep Sleep Mode .........occeunnennee 6-33
Set Wakeup Events and Enter Hibernate State ........ccccceenuneee. 6-35
Perform a System Reset or Soft-Reset ......cccovvvieniiieniiccnnnnen. 6-36

In Full-on Mode, Change VCO Frequency, Core Clock Frequency, and
System Clock Frequency .......coooveeiiiiiiniiiiniiiiiiicciiecee, 6-37
Changing Voltage Levels ......cccoooviiniiiiiiiiiiiiiiiiniccneee 6-40

GENERAL-PURPOSE PORTS

OVEIVIEW eetiiiiiiiiiiiiiiitiieeete ettt ettt e e e e e e e e e e e e eeeeeeeeas 7-1
FEatures ..ooouuuimeiiiii i 7-1
Interface OVErVIEW ....uuviiiiiieeeiiiiiiiiiiiee e e e et e e e e e e e eiraeeeeee e 7-2
External Interface ......ccoooviiiiiiiiiiiiiiiiiiicc e 7-3
Port F Structure ........cccoeiiiiiiiiiiiiiiiii 7-3
POrt G STIUCTUTE evvviiiiiiiiiiiiiiiiiiiiieiiieeeeeeeeeeeeeeeee e 7-4

X ADSP-BF59x Blackfin Processor Hardware Reference



Contents

Additional Considerations ..........cccuuveeeeieiieiniiiiiiiiieeeeeeens 7-5
Internal INterfaces .......coceevvviviiiiiiiieeeeiiiiiiieeee e 7-6
Performance/Throughput .......ccoceiiiiiiiiiiiiice 7-7

Description of OPeration ........coccueeerieeeriieeiniieeniieenieee e 7-7
OPEration .....ccccuiiiiiiiiiiiiiiiiiiii 7-7
General-Purpose I/O Modules .......cooouiiiriiiiiiiiiiiiiiiniiceniecens 7-8
GPIO Interrupt Processing ..........cccocoiiiiiiiiiiiiiiiiiiiiniiinnn, 7-12

Programming Model ........ccccoiiiiiiiiiiiii 7-18

GPIO Schmitt Trigger Control ......cocceeiiviiiiniiiiniiiiinicenieceee, 7-20
PORTx Pad Control Registers .........cccceeviiiiiniiiiniiiiiiiiennnn. 7-20

Memory-Mapped GPIO RegiSters .......cccccvvevviieriiieiniieeenieeennnee. 7-21
Port Multiplexer Control Register (PORTx_MUX) ................ 7-22
Function Enable Registers (PORTx_FER) ........cccccciiniiiinnn. 7-23
GPIO Direction Registers (PORTXIO_DIR) .....ccccceiieininnnen. 7-24
GPIO Input Enable Registers (PORTXIO_INEN) .................. 7-25
GPIO Data Registers (PORTXIO) ...cocovviiiiiiiiiiiiiiiiiiiienen. 7-25
GPIO Set Registers (PORTXIO_SET) ....cccocoiiiiiiiiiiiiiiinen. 7-26
GPIO Clear Registers (PORTXIO_CLEAR) .....ccoocvvveriiiennnne. 7-26
GPIO Toggle Registers (PORTXIO_TOGGLE) ........ccccoccee. 7-27
GPIO Polarity Registers (PORTXIO_POLAR) .....cccovvveennnee. 7-27
Interrupt Sensitivity Registers (PORTxIO_EDGE) ................. 7-28
GPIO Set on Both Edges Registers (PORTxIO_BOTH) ......... 7-28
GPIO Mask Interrupt Registers (PORTxIO_MASKA/B) ........ 7-29

GPIO Mask Interrupt Set Registers (PORTxIO_MASKA/B_SET) 7-29

ADSP-BF59x Blackfin Processor Hardware Reference X1



Contents

GPIO Mask Interrupt Clear Registers (PORTxIO_MASKA/B_CLEAR)

7-32

GPIO Mask Interrupt Toggle Registers
(PORTXIO_MASKA/B_TOGGLE) ..ccvvvveeiiiiiieeeiiiee e, 7-34
Programming Examples .......ccoociiiiiiiiiiiiiniiiiiicec 7-35

GENERAL-PURPOSE TIMERS

Specific Information for the ADSP-BF59x ....coooiiiiiiiiiniiiiniicene 8-1
OVEIVIEW eetiiiiiiiiiiiiiiiiiit ettt e e 8-2
External Interface .......coooouviviiiiieiiieiiiiiieee e 8-3
Internal Interface .......cooovviiiiiiiiiiiiiiiiieeee e 8-4
Description of OPeration .........cceeevueeeriiieeinieeeniieeniieesieeesieeene 8-4
Interrupt Processing .........ccceeiiiiiiiiiiiiiiiiiiiiiiiii s 8-5
Illegal STates ....cocveiiriiiiiiiiiiice e 8-7
Modes of OPeration .......ceccueeerieeeriiieiiniieenee et 8-10
Pulse Width Modulation (PWM_OUT) Mode ...........ccuuuu.... 8-10
Output Pad Disable ....cooovviiiiniiiiiiiiiiiicec 8-12
Single Pulse Generation .........ccccovviiiiiiiiiiiiiiiniiniiiee, 8-12
Pulse Width Modulation Waveform Generation ................ 8-13
PULSE_HI Toggle Mode .....ccooovviiniiiiniiiiiiiiiniiccieeee 8-15
Externally Clocked PWM_OUT .....ccccoiiiiiiiiiiiiiiciieeene, 8-20
Using PWM_OUT Mode With the PPI .......ccccocuveenneennnn. 8-21
Stopping the Timer in PWM_OUT Mode .....ccccveernneennee. 8-21
Pulse Width Count and Capture (WDTH_CAP) Mode ......... 8-23
Autobaud Mode ......oeiiiiiiiiiiiiiiiiiie e 8-31

xii ADSP-BF59x Blackfin Processor Hardware Reference



Contents

External Event (EXT_CLK) Mode .....ovviveiiiiiiiiiieiiieeeiieeen, 8-32
Programming Model ........ccocoiiiiiiiiiiiiie 8-33
Timer REGISTEIS .ocoovuuiiiiiiiiiiiiiiiiiie e 8-34

Timer Enable Register (TIMER_ENABLE) ........c.cccocciiiiiiin. 8-35

Timer Disable Register (TIMER_DISABLE) .........ccccceevinen. 8-36

Timer Status Register (TIMER_STATUS) .....cccccviiiiiiiiinnnnnn. 8-37

Timer Configuration Register (TIMER_CONFIG) ................ 8-40

Timer Counter Register (TIMER_COUNTER) ..................... 8-41

Timer Period (TIMER_PERIOD) and Timer

Width (TIMER_WIDTH) Registers ......ccccccovvvenuienniennncnne 8-43

SUmMmMmary ..., 8-46
Programming Examples .......ccccoooiiiniiiiiniiiiniiiiicec e 8-48
Unique Information for the ADSP-BF59x Processor ..........ccc..... 8-57

Interface OVErVIEW ....ccevvviiiiiiiiiiiiiieeeeeeeeeeeeeeeeeee e 8-58

External Interface ........ccooeeuvviiiiiiiiiiiiiiiieeee e 8-59
CORE TIMER
Specific Information for the ADSP-BF59x ..oocuveiiiiiiiiiiiiiiiiciiees 9-1
Overview and Features .......cccccceevvuuiuvriiiiiiiiiiiiiiiiiiiieisseereeeeeseseeee, 9-1
Timer OVEIVIEW .ooeiiiiiiiiiiiiieeieiee e 9-2

External Interfaces ........ccooeveeeiiiiiiiiiiiiieiiiiieeee e 9-2

Internal Interfaces ........cccvvvviiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeee, 9-3
Description of OPeration ........coccueeercuveeriieeenieeeniieeniiee e enneeens 9-3

Interrupt Processing .........cccoovviiiiiiiiiiiiiiiiiiiiiien 9-3
Core Timer Registers ........ccoooviiiiiiiiiiiiiiiiiiiiiiiceicc e 9-4

ADSP-BF59x Blackfin Processor Hardware Reference

xiil



Contents

Core Timer Control Register (TCNTL) ......ccccccoviiiiniiiinnnnnn. 9-5
Core Timer Count Register (TCOUNT) .......cccociiiiiiiiiinnnnn. 9-5
Core Timer Period Register (TPERIOD) ....cccccevviiiiniiiiinineene 9-6
Core Timer Scale Register (TSCALE) .......ccocoiiiiiiiiniiiiinn. 9-7
Programming Examples .......ccocoeiiiiiiiiiiiiniiiciicec e 9-7
Unique Information for the ADSP-BF59x Processor .........ccccevueeeen. 9-9
WATCHDOG TIMER
Specific Information for the ADSP-BF59x ...ccovoiiiiiiiiiiiiiiiiiicns 10-1
Overview and Features .........cooccuviiiiiiieeeiiiiiiiiieeeee e 10-1
Interface OVErVIEW ..occveiiiiiiiiiiiiiiiiiiee e 10-3
External Interface .......coccveeeiiiiiiiiiiiiiiiieeiiiiee e 10-3
Internal INterface .......oooccuviiiiieiiieiiiiieee e 10-3
Description of OpPeration .........c.eeevueeerireeriieeniieeenieeenieeenieeenns 10-4
Register Definitions .......ccccuievieriiiiiiiieniiiiieeiiecieeseee e 10-5
Watchdog Count (WDOG_CNT) Register .......cccocuveervuveennnn 10-5
Watchdog Status (WDOG_STAT) Register .....ccccevcvveenueeennnn 10-6
Watchdog Control (WDOG_CTL) Register .....cccceeeuvennrenne. 10-7
Programming Examples .......ccoociiiiiiiiiiiiiniiiiiicc 10-8
Unique Information for the ADSP-BF59x Processor .................. 10-10
UART PORT CONTROLLERS
Specific Information for the ADSP-BF59x ...ccoviiiiiiiiiiiiiiiiniicns 11-1
OVEIVIEW ittt ettt ettt e e e ettt e e e e e e eetaaaa e es 11-2
FatULES wovvviiiiiiiiiiiiiiiice e 11-2

X1V ADSP-BF59x Blackfin Processor Hardware Reference



Contents

Interface OVErVIEW ....ccoecuviiiiiiiiiiieeeiiiiie et e e 11-3
External Interface ........coooveviiiiiiiiiiiiiiiieiieee e 11-3
Internal Interface .....cveeevviiiiiiiiiiiiiiiiic e 11-4

Description of Operation .......cocc.eeeriveeinieeinieeeniee e sieeeeeee 11-5
UART Transfer Protocol .....ccccvvvvivieeiiiiiiiiiieieeeeeeieeeeen 11-5
UART Transmit Operation ........cccceeeeeevveeeennuieeeennieeeeennnnen 11-6
UART Receive Operation ...........eeeeeeevviiiiiiieeeeeeinniiiieeeeeeen. 11-7
IrDA Transmit Operation .........ccccceeevviiiieeniiiieeeniiieeee s 11-9
IrDA Receive Operation .......ccccceeeeeeiiiniiiiiiiieieeiiiniiiiineeeeen. 11-9
Interrupt Processing .........cccoovvviiiiiiiiiiiiiiiiiiiii, 11-11
Bit Rate Generation ........c.euuuuiieeriiiiiiiiiiiiiieee et 11-13
Autobaud Detection ......ccueeiiiiiiiiiiiiiiiiieeeeeee e 11-14

Programming Model ..o 11-16
Non-DMA Mode ...ovviiiiiiiiiiiiiiiiiiiieee et 11-16
DMA MOde .oviiiiiiiiiiiiiiiiee e 11-18
Mixing Modes .......coociiiiiiiiiiiiiiiiiiiiiccc 11-19

UART ReEGISTEIS ..uuviviiiiiiiiiiiiiiiiieeeeiiiee e 11-20
UART Line Control (UART_LCR) Register ........ccocuvveruneenn. 11-22
UART Modem Control (UART_MCR) Register .................. 11-24
UART Line Status (UART_LSR) Register ........ccccccuveeennnnn. 11-25
UART Transmit Holding (UART_THR) Register ................ 11-26
UART Receive Buffer (UART_RBR) Register ......cccceueeneee. 11-27
UART Interrupt Enable (UART_IER) Register .........cc.c..c.... 11-27
UART Interrupt Identification (UART_IIR) Register ........... 11-29

ADSP-BF59x Blackfin Processor Hardware Reference XV



Contents

UART Divisor Latch

(UART_DLL and UART_DLH) Registers ........ccccccveeennnee. 11-30
UART Scratch (UART_SCR) Register ......ccccovcuveeriuieennueenne 11-32
UART Global Control (UART_GCTL) Register .................. 11-32

Programming Examples .......ccocceiiiiiiiiniiiiniiiiceccen 11-33
Unique Information for the ADSP-BF59x Processor .................. 11-42

TWO WIRE INTERFACE CONTROLLER

Specific Information for the ADSP-BF59x ...ccovoiiiiiiiiniiiiiniicns 12-1
OVEIVIEW ittt ettt ettt e e e ettt e e e e e e eetaaaa e es 12-2
Interface OVErVIEW ..occvviiiiiiiiiiieiiiiiiie e 12-3
External Interface .......ccoccvveiiiniiiiiiiiiiiiieeeieee e 12-4
Serial Clock Signal (SCL) ..ooiiiiiiiiiiiiiiiiciiccceece 12-4

Serial Data Signal (SDA) .cooiiiiiiiiiiccc 12-4

TWI PINS coeviiieeeiiiiiee et et 12-5
Internal INterfaces .......ccooecuvviiiiiieeieiiiiiiiee e 12-5
Description of OPeration ..........ceeeeceeeenieeeniieeniiieeniieesiee e 12-6
TWI Transfer Protocols ........ccoveviiieeiiiiiieeeniiiee e 12-6
Clock Generation and Synchronization ..........cccceeveieennne. 12-7

Bus Arbitration ......ooccveeeeeiiiiiieiiiiiiee e 12-8

Start and Stop Conditions .......ccoecveeeiiniiiiieiniiieeeiniieeeens 12-9
General Call SUppPOrt coeeeviiiiiiiiiiiics 12-10

Fast Mode ..oooiiiiiiiiiiiiiiiiceece e 12-10
Functional Description .........ccccooviiiieiniiiieiiniiieceeieecceeeee 12-10
General SEtup ..oeeiviiiiiiiiiii e 12-11

XVi ADSP-BF59x Blackfin Processor Hardware Reference



Contents

S1ave MoOde ... 12-11
Master Mode Clock Setup ...coovviiiiiiiniiiiniiiiiiiciiiceieeee 12-12
Master Mode Transmit .....cceeeeeeviiiiieeriiiiiieeiiiieeeeiieeee e 12-13
Master Mode Receive ......coovviiiiiiiiiiiiiiiiiiiiiiiceee e 12-14
Repeated Start Condition .......cocceeieviiiiniiiiniiiiiiiiceieene 12-15
Transmit/Receive Repeated Start Sequence ...........c....... 12-15
Receive/Transmit Repeated Start Sequence ................... 12-17

Clock Stretching ....c.coovcviiiiiiiiiiiiiceeee 12-18

Clock Stretching During FIFO Underflow ...................... 12-18

Clock Stretching During FIFO Overflow .........cccoceene.ne. 12-20

Clock Stretching During Repeated Start Condition .......... 12-21
Programming Model ........ccooiiiiiiiiiiniiiii 12-24
Register Descriptions ..........cccccviiiiiiiiiiiiiiiiiiiiie e, 12-26
TWI CONTROL Register (TWI_CONTROL) ................... 12-26
SCL Clock Divider Register (TWI_CLKDIV) ....ccccccevuneennn. 12-27
TWI Slave Mode Control Register (TWI_SLAVE_CTL) ...... 12-28

TWI Slave Mode Address Register (TWI_SLAVE_ADDR) ... 12-30
TWI Slave Mode Status Register (TWI_SLAVE_STAT) ....... 12-30
TWI Master Mode Control Register (TWI_MASTER_CTL) 12-32

TWI Master Mode Address Register (TWI_MASTER_ADDR) 12-34

TWI Master Mode Status Register (TWI_MASTER_STAT) . 12-35

TWI FIFO Control Register (TWI_FIFO_CTL) ................. 12-38
TWI FIFO Status Register (TWI_FIFO_STAT) ........c.......... 12-40
TWI FIFO Status ..eeeeevvieeeeiiiiieeeeeeiieeeeeeieee e 12-40

ADSP-BF59x Blackfin Processor Hardware Reference

xvii



Contents

TWI Interrupt Mask Register (TWI_INT_MASK) .............. 12-41
TWI Interrupt Status Register (TWI_INT_STAT) .............. 12-42
TWI FIFO Transmit Data Single Byte
Register (TWI_XMT_DATAS) ....ccccviiviiiiiiiiiiiiiiiiiene 12-45
TWI FIFO Transmit Data Double Byte
Register (TWI_XMT_DATAILG) ..cccvvvveeriiiieiiiiieeeee. 12-45
TWI FIFO Receive Data Single Byte
Register (TWI_RCV_DATAS) ...ccccoiviiiiiiiiiiiiiiiiiceeee. 12-46
TWI FIFO Receive Data Double Byte
Register (TWI_RCV_DATALG) ...ccccuviiviiiiiiiiiiiiiiiiiene, 12-47
Programming Examples .......ccoooiiiniiiiniiiiniiiiiec 12-48
Master Mode Setup ....coovuieiiniieiniiiiniiiceieceec e 12-48
Slave Mode Setup ...ccoooviiiiiniiiiiiiiiiiic e 12-53
Electrical Specifications ........cccceeeviiiieniiiiiniiiiinieeenieeeseceeen 12-59
Unique Information for the ADSP-BF59x Processor .................. 12-59
SPI-COMPATIBLE PORT CONTROLLER
Specific Information for the ADSP-BF59x ...ccoviiiiiiiiiiiniiiiiniicns 13-1
OVEIVIEW tettuieeiiiiieeeeetiie e e e etee e e e eate e e e eeaaaeeeeaasaeeaessanaeeeeannneeeeeees 13-2
Features ovuue i 13-2
Interface OVErVIEW ......vvveiieeeeiieiiiiiiiiieee e e et e e e eaaaeeee s 13-3
External Interface .....coooeeeeeeeieiiiiieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee 13-4
SPI Clock Signal (SCK) .oouiiiiiiiiiiieiiciececcee 13-4
Master-Out, Slave-In (MOSI) Signal ... 13-5
Master-In, Slave-Out (MISO) Signal ........coocveiniiiiniinnnn. 13-5
SPI Slave Select Input Signal (SPISS) .ccovvvviiiiiiiiiiiicene 13-6
xviii ADSP-BF59x Blackfin Processor Hardware Reference



Contents

SPI Slave Select Enable Output Signals ...........cocceeviiin 13-7

Slave Select INPuts ....coocvviiriiiiniiiiiiicic e 13-8

Use of FLS Bits in SPI_FLG for Multiple Slave SPI Systems 13-8
Internal Interfaces .....cccoevviviieieiiiiiieiiiiieeeee e 13-11
DMA Functionality ........ccoccceeiiiiiiiniiiiniiiiniieciicceieene 13-11
Description of Operation ........coccveevvveernieeenieeeniieeniiee e 13-12
SPI Transfer Protocols .......cccovvviiiieiniiiiieiiiiieeeeieee e, 13-12
SPI General Operation .......cocceeeriiieniiiieniiiieiiee e 13-15
Clock Signals ..occoeeiriiiiiiiiiiii 13-16
Interrupt OULPUL .eevviiiiiiiiiiiiiiiiee e 13-17
Functional Description .........cccocvuiiiniiiiiniiieniiieiiieeniee e 13-17
Master Mode Operation (Non-DMA) .....coccoiiviiiiiniicinnneen. 13-18
Transfer Initiation From Master (Transfer Modes) ................ 13-19
Slave Mode Operation (Non-DMA) .....ccooviiiiiiiiiniiieniieennn 13-20
Slave Ready for a Transfer ........ccocceeviiiiiniiiiniiiiniceniece 13-22
Programming Model .........cccccooiiiiiiii 13-22
Beginning and Ending an SPI Transfer ........ccccccovevieniiienne. 13-22
Master Mode DMA Operation .........coeveeeenieeeniineennieeennneenn. 13-24
Slave Mode DMA Operation ........ccoccceeeeeiniuiieeenniieeeennineeen. 13-27
SPI REGISTELS .eeiuiiiiiiiiiiiiiie et 13-34
SPI Baud Rate (SPI_BAUD) Register .......ccccovcuvieriuveenunecnnne 13-34
SPI Control (SPI_CTL) Register ......cccccceevuviiniiiiniiiininnennn. 13-35
SPI Flag (SPI_FLG) Register .....cccccceevuiirniiiiniiiiniiieniieenne 13-38
SPI Status (SPI_STAT) Register ......cccccveeeviiieeiiniiieeenninee. 13-40

ADSP-BF59x Blackfin Processor Hardware Reference

X1iX



Contents

Mode Fault Error (IMODE) ooiiiiiiiiiiiieeieeeeee e, 13-41
Transmission Error (TXE) oviiiiiiiiiiiiiiieeeeec, 13-42
Reception Error (RBSY) .ooooiiiiiiiiiiiiic 13-42
Transmit Collision Error (TXCOL) .ooovvviviiiiiiiiieiiieeinnn, 13-42

SPI Transmit Data Buffer (SPI_TDBR) Register .................. 13-42
SPI Receive Data Buffer (SPI_RDBR) Register .......c....c....... 13-43
SPI RDBR Shadow (SPI_SHADOW) Register .........ccc.cou..... 13-44
Programming Examples .......ccoooiiiniiiiniiiiniiiiiieec 13-45
Core-Generated Transfer ........ccccoovviveiiiniiiieeiiiiiiieeeiieeeee 13-45
Initialization Sequence .......cccceeivniiiiiiiniiiiciiiiecee 13-45
Starting a Transfer .........ccocciiniiiiniiiiiii e 13-46

Post Transfer and Next Transfer ......ccccoocoeeiiniiiiieinninnne.. 13-47
STOPPING evviiiiiiiiiiiiiic 13-48
DMA-Based Transfer ........uuuveeeeeeiiiiiiiiiiieeeeeeeeiiiieeee e 13-48
DMA Initialization Sequence .......c.ccceeevvveenueeenineennneenns 13-48

SPI Initialization Sequence ......ccocccceevevviiiiiinniiiicennninnee. 13-49
Starting a Transfer .........ccocciiiiiiiniiiiniiees 13-51
Stopping a Transfer .......cccocveiiiiiiiniiiiiiicic e 13-51
Unique Information for the ADSP-BF59x Processor .................. 13-53

SPORT CONTROLLER

Specific Information for the ADSP-BF59x ....coocviiniiiiiiiiiniicns 14-1
OVEIVIEW ettiiiiiiiiiiiiitt ettt e e e e e e e e eeeeeeeas 14-2
FEATUIES .uviiiiiiiiiee et 14-2
Interface OVErVIEW ....uuvviiiieeeeiiiiiiiiiiieeeeeeeeireee e e e e e e e eeeeaeeeeee s 14-4

XX ADSP-BF59x Blackfin Processor Hardware Reference



Contents

SPORT Pin/Line Terminations ...ce.eeeeeeeeeeeeeeeneeneeneenneeeennennes

Description of Operation ........cocceeeerueeeriiieeniieeinieeeniee e
SPORT Disable ..ocevveiiiiiiiiiiiiiiiieieiieeeeeee e
Setting SPORT Modes ......cccoviiiiiiiiiiiiiiiiiiiiiiicceec,
Stereo Serial Operation .......c.ccceevvviiiiiieniiiiiiiiiieiec e
Multichannel Operation .........ccccovviieniiiiiniiciniiienieceeee

Multichannel Enable .......ccccoooiiiiiiiiiiiiiii
Frame Syncs in Multichannel Mode ..........ccocoeiniiinniin.
The Multichannel Frame ........cccooeiiiiiiiiiiniiiiiiiiieee,
Multichannel Frame Delay ......ccooceeiiiiiiniiiiiiiiiiece.
WINAOW SIZE ceeeveiiiiiiiiiiiee et e e
Window OffSet ...ooeiviiiiiiiiiiiiieiiiiiec et
Other Multichannel Fields in SPORT_MCMC2 ..............
Channel Selection Register .........cccoevviiriiiiiniiciniiicinineene
Multichannel DMA Data Packing .......ccoccvviviiiiniiiennnen.
Support for H.100 Standard Protocol .........ccoccvveeniiienncennnn.
2x Clock Recovery Control ......cccceevviiiiiiiiiiniiiinieenee.

Functional Description ........ccccoveueeeriiieeniiienniicinieceniee e
Clock and Frame Sync Frequencies ......ccccceeeviiiiniiienineennnn.

Maximum Clock Rate Restrictions ........ccccceeevviivivieenennnn.
Word Length ..ooooiiiiiiiiiiiiiccccc e
Bit Order oooveiiiiiiiiiiiie e
Data Type oo
Companding .....c.eeeviuieiiiiiiiniieeieeeeee e

ADSP-BF59x Blackfin Processor Hardware Reference

XX1



Contents

Clock Signal Options .......cccoeevviieriiiiniiieniieniiiiieciecceeeeen 14-30
Frame Sync OPtions .......covcuiieriiieiniiiiniieenieeeneeeeeee e 14-31
Framed Versus Unframed ........cccooviiiiiiiniiiiiiiiiiiceee 14-31
Internal Versus External Frame Syncs .......ccccccoeviiiiinnne. 14-33
Active Low Versus Active High Frame Syncs ..o 14-34
Sampling Edge for Data and Frame Syncs ......ccocuveennneenn. 14-34
Early Versus Late Frame Syncs (Normal Versus
Alternate Timing) ......cccoceeviieniiiniieiieiieenieeneeeneeene 14-36
Data Independent Transmit Frame Sync ............ccceeie 14-38
Moving Data Between SPORTs and Memory ...........cc......... 14-39
SPORT RX, TX, and Error Interrupts ......ccecceeereveernneennnee. 14-39
Peripheral Bus Errors .......covoiiiiiiiiiniiiiiiicccecc 14-40
Timing Examples ........cccoooiiiiiiiiiiiiiiiie 14-40
SPORT ReGISTEIS .ccouiiiiiiiiiiiiiiiiiiiieceeieee e 14-46
Register Writes and Effective Latency ........cccocoveviiiinnnncnne. 14-47
SPORT Transmit Configuration
(SPORT_TCRI1 and SPORT_TCR2) Registers ................. 14-48
SPORT Receive Configuration
(SPORT_RCRI and SPORT_RCR?2) Registers ................. 14-53
Data Word FOrmats .....ccccvvvviviiieeeieiiiiiiieeeee e 14-58
SPORT Transmit Data (SPORT_TX) Register .........ccceee.... 14-59
SPORT Receive Data (SPORT_RX) Register .........ccceeeneee. 14-61
SPORT Status (SPORT_STAT) Register .......cccccceveevininecnn. 14-64

SPORT Transmit and Receive Serial Clock Divider

(SPORT_TCLKDIV and SPORT_RCLKDIV) Registers ... 14-65

xx1i

ADSP-BF59x Blackfin Processor Hardware Reference



Contents

SPORT Transmit and Receive Frame Sync Divider

(SPORT_TEFSDIV and SPORT_RESDIV) Registers .......... 14-66
SPORT Multichannel Configuration
(SPORT_MCMCI1 and SPORT_MCMC2) Registers ........ 14-67
SPORT Current Channel (SPORT_CHNL) Register ........... 14-68
SPORT Multichannel Receive Selection
(SPORT_MRCSn) Registers .......ccccveeviuiiiiiiiiiiiiiiniieenne 14-69
SPORT Multichannel Transmit Selection
(SPORT_MTCSn) RegISters ....ccccuveeermuiieeeeniiieeeniiieeeeas 14-70
Programming Examples .........cccocoiiiiiiiiiiiiiii 14-71
SPORT Initialization Sequence .......ccccceeveuvieriiienniiennnneenne. 14-72
DMA Initialization SeqUence .........cccocuveervuvieniieerniieeenneeene. 14-74
Interrupt Servicing ......ccoecviiiiiiiiiiiiiiiiie i 14-76
Starting a Transfer .......cccceeviiiiiiiiiiiiiiic e 14-77
Unique Information for the ADSP-BF59x Processor .................. 14-77
Clock Gating Functionality ........cccccovviiiniiiiiiiiiniiniiineene. 14-78
Modes of OPeration .........cceevvueeerciiieriiieeniieeiiiee e 14-79
Gated Clock Mode 0 — SPORT Gated Clocks Without Using
TIMERS ettt 14-79
Gated Clock Mode 1 — SPORT Gated Clocks Using TIMERs 14-79
Programming Model .......cocoiiiiiiiiiiiii, 14-80
PARALLEL PERIPHERAL INTERFACE
Specific Information for the ADSP-BF59x ..cccvviiiiiiiniiiiiiiiciee. 15-1
(@ S S 1 SRR 15-2
FeatUIES .o 15-2

ADSP-BF59x Blackfin Processor Hardware Reference xxiii



Contents

Interface OVEIVIEW ..ccocvviiiiiiiiiiiiieniieeeiiee e 15-3
Description of OPeration .......c.cceeeeeeeinieeeniieeeniieenieeeseee e 15-4
Functional Description .........coocuveerrieiiniieeniiceniiee s 15-5
ITU-R 656 MOdES ...ceeiviiiiiiiiiiiiiiiiiiicceeiec e 15-5
ITU-R 656 Background ........coccvveiiiiiiniiiiniiiiiiiciieeenne, 15-5
ITU-R 656 Input Modes ......cccccevuieviiiniiiiiiiiiciiiccie, 15-9
Entire Field ... 15-9

Active Video Only ....cocoiiiniiiiniiiiiiiciicecece, 15-10

Vertical Blanking Interval (VBI) only .....cccccceviiiennne. 15-10

ITU-R 656 Output Mode ......oovveeviiiiiiniiiiceiiiieceeee 15-11
Frame Synchronization in I'TU-R 656 Modes .................. 15-11
General-Purpose PPI Modes .....c.eeevviiiiniiiiniiiiiiiiciiecee, 15-12
Data Input (RX) Modes ....coccuvveiiimiiiiiiniiiiciiiiieeeee 15-14

No Frame Syncs ......coooviiiiiiiiiiiiiiiiccc 15-15

1, 2, or 3 External Frame Syncs .......ccoccveeiviiiiniincennnen. 15-16

2 or 3 Internal Frame Syncs .....cccccevviiiiiiiniiiiciininneen. 15-16

Data Output (TX) Modes .....ooovviiiniiiiniiiiniiiiiieeiieens 15-17

No Frame Syncs .......ccooovviiiiiiiiiiiiiiii 15-17

1 or 2 External Frame Syncs ......cccccoovviiiiiiniiiiiinnnnnn. 15-18

1, 2, or 3 Internal Frame Syncs .....ccccccceeivviiieiinnnneen. 15-19

Frame Synchronization in GP Modes .......ccoccueeiniiiinnneen. 15-20
Modes With Internal Frame Syncs .......ccovcveeeniieennieenns 15-20

Modes With External Frame Syncs .......ccocoeeviiiennincns 15-21
Programming Model .......cccccoiiiiiiniiiiii 15-22

XX1V ADSP-BF59x Blackfin Processor Hardware Reference



Contents

DMA OPeration .......ccoooeeeeuiiiiiieeeeiiniiiiiiiieeeeeeeenieeeeeeenn 15-23
PPI REGISTEIS ..eeiiiiiiiiiiiiiiiie e 15-26
PPI Control Register (PPI_CONTROL) .....ccovvvviniiieninens 15-26
PPI Status Register (PPI_STATUS) ....ccccocoviiiiiiiiiniiiiiiiiene 15-30
PPI Delay Count Register (PPI_DELAY) ....ccccoeeviiiienineennnn. 15-33
PPI Transfer Count Register (PPI_COUNT) ....ccccceevvrenne. 15-33
PPI Lines Per Frame Register (PPI_FRAME) ........................ 15-34
Programming Examples .......ccccoociiiiiiiiiniiiiniiiiiicic e 15-36
Unique Information for the ADSP-BF59x Processor .................. 15-38

SYSTEM RESET AND BOOTING

OVEIVIEW .ttt 16-1
Reset and POWEI-UP ..cooouviiiiiiiiiiiiiiiiiceec e 16-3
Hardware Reset .....ocvviieiiiiiiiiiiiiiiiiiiiceee e 16-4
Software RESETS ..oeevuviiieiiiiiiiee e 16-5
ReSEt VECTOT ittt 16-6
Servicing Reset Interrupts .......ccccceviviiiiiiiiiiiiiiiniiiiii, 16-7
Basic Booting Process .........ccoceiiiiiiiiiiiiii 16-8
Block Headers ........ooivieiiiiiiiiiiiiiieeeeeiieeee e 16-11
Block Code ..oooiviiiiiiiiiiiiiiiiie e 16-12

DMA Code Field ....coooiiiiiiiiiiiiiiiiiiiiieeeeeee 16-12

Block Flags Field ....c.ccooviiiiiiiiiiiiiiiiccieees 16-14

Header Checksum Field ......ccocooiiiiiiiiiiiiii, 16-15

Header Sign Field ........ccoooiiiiii 16-16

Target Address .o....ooevviieniiiiiiiieenceeecee e 16-16

ADSP-BF59x Blackfin Processor Hardware Reference XXV



Contents

Byte Count ..cccooviiiiiiiiiiiiiiiiiiiiiieceeeeeeee e 16-17
ATGUMENT ittt 16-17

Boot Host Wait (HWAIT) Feedback Strobe ........cccceevvvvnnn.... 16-18
Using HWAIT as Reset Indicator ........cccceeviiiiiiiinnnnn. 16-19

Boot Termination ......ccccuvviieeeeeeeiiiiiiiieeeeeeeeesiiiereeeeeeee e 16-19
Single Block Boot Streams ......cccceeeviiiiniiiiiniiiiiiiciieceee, 16-20
Advanced Boot Techniques .......coocuveeriiiiiiiiiiiniiiiiniicceiee e 16-21
Initialization Code .....cooveviiiiiiiiiieeeeieee e 16-21
QUICK BOOT weviiiiiiiiiiieeeeccee e 16-25
Indirect Booting .........ccoooviiiiiiiiiiiiiiiiiii 16-26
Callback ROUTINES ..eeeviiiiiiiiiiieee e 16-27
Error Handler .....ocoviiiiiiiiiiiiiie e 16-30
CRC Checksum Calculation .........ccccuveeeeniiiieeiiniiieeeenieenen 16-30
Load FUNCHONS .uvviiiieeeeiiiiiiiiiiiee et 16-31
Calling the Boot Kernel at Runtime .......cccooeviiriiiinnicnnnee. 16-32
Debugging the Boot Process .......c.ccevvivviieriiieniiieniiiiiienieens 16-33
Boot Management ......c..coovviiiniiieniieeniieeeiee e 16-35
Booting a Different Application ........cccocceeviiiiiniiiiinieeenne. 16-36
Multi-DXE Boot Streams ........cccuvvviiiieeiiiniiiiiiiieeeeeeees 16-36
Determining Boot Stream Start Addresses ..........ccccevuveees 16-38
Initialization Hook Routine .......ccccccovveiiiiiiiiiiiniiiieennnne, 16-38
Specific Boot Modes ......ooviiiiiiiiiiiiiiiiiicciicce e 16-39
NO BOOTt MOAE .vvviiiiieieiiiiiiiieee et 16-40
SPI Master Boot Modes .......occuuviiiiiiiiiiiiiiiiiiiiiieeeeieen 16-40

XXVi ADSP-BF59x Blackfin Processor Hardware Reference



SPI Device Detection Routine .......ccccccueeeneninnnnnnns

SPI Slave Boot Mode ....oeoouviiiiiiiiiiieeeeiiiieeee e,
PPI Boot Mode ..cccuvviiiiiiiiiiiiiiiiiieeeeee e
UART Slave Mode Boot ...cocuuiiiiiiiiieiiiiiiiiiiicieeeee,

L1 ROM Boot Mode ....ccoveviiiiiiiiiieeeeeeeiiiiieeeee e
Reset and Booting RegiSters ......coccveerviiiiniiiiniieeniieenee.
Software Reset (SWRST) Register .....cccceevviviiienniennne.
System Reset Configuration (SYSCR) Register ...........

Boot Code Revision Control (BK_REVISION)

Boot Code Date Code (BK_DATECODE) ................
Zero Word (BK_ZEROS) ..coeeiiiiiiiiiiiiieeeeeeeeeeen,
Ones Word (BK_ONES) ..oiiiiiieiiiiieeeeeieeeeeeeieeee
Data STructures .........eeeeeeeeiiiiiiiiiiiii
ADI_BOOT_HEADER ....cccoiiiiiiieeiieee e
ADI_BOOT_BUFFER .....coiiiiiiiiiiiiiiiieiiieeeeeen
ADI_BOOT_DATA ..ottt
dFlags Word ...c.ccoeoviiiiiniiiiiiic
Callable ROM Functions for Booting .......ccccccvvviiennncen.
BFROM_FINALINIT ..ot
BFROM_PDMA ....ooiiiiiiiiee et
BFROM_MDMA it
BFROM_SPIBOOT ..ooiiiiiiiieiiiiiieeeeieee e
BFROM_BOOTKERNEL .....cccvviieeiiiiiiiiiieieeeeee
BFROM_CRC32 oo,

Contents

ADSP-BF59x Blackfin Processor Hardware Reference

XxXvil



Contents

BFROM_CRC32POLY ....cocviiiiiiiiiiiiiiiiiceiicciceeicceeie 16-72
BFROM_CRC32CALLBACK ....ccceiriiiniieniieniceieceeeeeen 16-73
BFROM_CRC32INITCODE ...cooiiiiiiiiiiiiiiiiiieeeeeeee 16-73
Programming Examples ........ccccccooiiiiiiiiinii, 16-74
System Reset ....ccccuviiiiiiiiiiiiiiiiiiiiiccec 16-74
Exiting Reset to User Mode ......cooouiiiiiiiiiniiiiniiiiiieceieeene 16-75
Exiting Reset to Supervisor Mode .........ccccoeiviiiiiiiiiinnnnne. 16-75
Initcode (Power Management Control) .......coccveeniiienneennne. 16-76
XOR Checksum ....ceciiiiiiiniiiiniiieiiieceic e 16-78

SYSTEM DESIGN

Pin DesCrIPtions .......eveviviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeieeeeeeeeeee e 17-1
Managing Clocks ......coooiiiriiiiniiiiiiccce 17-1
Managing Core and System Clocks ......ccovvviiniiiiniiiiniiecnnne. 17-2
Configuring and Servicing Interrupts ......ccccccevvevcuieniiieniieennennee. 17-2
Data Delays, Latencies and Throughput ......c.ccoocviiiiiiniiiinnnnens 17-2
Bus Priorities ... 17-3
High-Frequency Design Considerations ..........ccccceevvuieniieneennnee. 17-3
Signal INTegrity ....ccceiiiiiiiiniiiiiiiieiiec e 17-3
Decoupling Capacitors and Ground Planes ...........ccoccueeenneene 17-4
Test POINT ACCESS .uvvvviiiiiiiiiiiiiiiiiiieee et 17-6
Oscilloscope Probes ........eeeviiiiiiiiiiiiiiiiicccccce 17-7
Recommended Reading ........ccccoviviiniiiiiiiiiiiniiiinicciiecee, 17-7
Resetting the Processor .......c.ccccociiiiiiniiiiiiiiiiiniiiiniccicecc 17-8
Recommendations for Unused Pins .......cccccoevviiiiiiiniieiinniiieeen, 17-8
xxviii ADSP-BF59x Blackfin Processor Hardware Reference



Contents

Programmable Outputs .......ccccoeiiiiiiiiiiiiiiiiiiii 17-9
Voltage Regulation Interface .......ccocoveeriiiiiiiiiiniiiiiiciiicieeee 17-9
SYSTEM MMR ASSIGNMENTS
Processor-Specific Memory Registers ........ccooueeevieiiniineeniieennneenns A-2
Core Timer Registers .........ccooooiiiiiiiiiiiiii, A-3
System Reset and Interrupt Control
ReGISTES ..vviiiiiiiiiiiiiiiiiii A-3
DMA/Memory DMA Control Registers ..........cccccceviiiiiiiiiiinnnnins A-4
Ports ReGISTErS ......oviiiiiiiiiiiiiiiicieiic e A-7
Timer REGISTEIS .oeciviiiiiiiiiiiiiiiieiiiie e A-9
Watchdog Timer Registers .......ccocveviiiiiiiiiiiniiiiniienicciceieeee. A-11
Dynamic Power Management Registers ..........cccccceeiiiiiiiiiinn. A-11
PPI REGISTELS .evviiiiiiiiiiiiiiiiiiiiieiiiiiicce e A-12
SPI Controller Registers .........ccccueiiiiiiiiiiiiiiiiiiiiiiciiiicciecce, A-12
SPORT Controller Registers .......c.covvvieriiiiiiiiiiniiieniieenieeeee. A-14
SPORT Clock Gating Register .........ccccevuiiiniieiniiiieniieeniieeeee. A-17
UART Controller Registers .........ccccoooiiiiiiiiiiiiiiiiiiiiiiiiiecee, A-18
TWI REGISTEIS .veeeiiiiiiieiiiiiiie et A-19
TEST FEATURES
JTAG Standard ........eeevveiiiiiiiiiiiiiiiiiiiiiiiiiieee e ———————— B-1
Boundary-Scan Architecture .........coooveiiiiiiiniiiiniiiiiiiciecee B-2
Instruction Register ..........ccccciiiiiiiiiiiiiiiiiiiiiccee, B-4
Public InStructions ........cccoccviiiiiiiiiiiiiiiiiiicc e B-5
EXTEST — Binary Code 00000 .......cccveeeimniiiieenniiieeennne B-6
ADSP-BF59x Blackfin Processor Hardware Reference XXix



Contents

SAMPLE/PRELOAD - Binary Code 10000 ........ccccueeeeenee B-6
BYPASS — Binary Code 11111 ..ooiiviiiiiniiiiiiiiiiiiieenieeeeee. B-6
Boundary-Scan RegiSter ........ccocviiriiiiiiiiiiniiiiniieceieeeieeene B-7

XXX ADSP-BF59x Blackfin Processor Hardware Reference



PREFACE

Thank you for purchasing and developing systems using an enhanced

Blackfin® processor from Analog Devices.

Purpose of This Manual

The ADSP-BF59x Blackfin Processor Hardware Reference provides architec-
tural information about the ADSP-BF59x processors. This hardware
reference provides the main architectural information about these proces-
sors. The architectural descriptions cover functional blocks, buses, and
ports, including all features and processes that they support. For program-
ming information, see the Blackfin Processor Programming Reference. For
timing, electrical, and package specifications, see the ADSP-BF592
Blackfin Processor Data Sheet.

Intended Audience

The primary audience for this manual is a programmer who is familiar
with Analog Devices processors. The manual assumes the audience has a
working knowledge of the appropriate processor architecture and instruc-
tion set. Programmers who are unfamiliar with Analog Devices processors
can use this manual, but should supplement it with other texts, such as
hardware reference and programming reference manuals, that describe
their target architecture.

ADSP-BF59x Blackfin Processor Hardware Reference xXX1



Manual Contents

Manual Contents

This manual consists of one volume:

Chapter 1, “Introduction”
Provides a high level overview of the processor, including peripher-
als, power management, and development tools.

Chapter 2, “Memory”
Describes processor-specific memory topics, including L1memories
and processor-specific memory MMRGs.

Chapter 3, “Chip Bus Hierarchy”
Describes on-chip buses, including how data moves through the
system.

Chapter 4, “System Interrupts”
Describes the system peripheral interrupts, including setup and
clearing of interrupt requests.

Chapter 5, “Direct Memory Access”

Describes the peripheral DMA and Memory DMA controllers.
Includes performance, software management of DMA, and DMA
errors.

Chapter 6, “Dynamic Power Management”
Describes the clocking, including the PLL, and the dynamic power
management controller.

Chapter 7, “General-Purpose Ports”

Describes the general-purpose 1/0 ports, including the structure of
each port, multiplexing, configuring the pins, and generating
interrupts.

Chapter 8, “General-Purpose Timers”
Describes the eight general-purpose timers.

XxXXii

ADSP-BF59x Blackfin Processor Hardware Reference



Preface

e Chapter 9, “Core Timer”

Describes the core timer.

e Chapter 10, “Watchdog Timer”

Describes the watchdog timer.

e Chapter 11, “General-Purpose Counter”
Describes the Rotary (up/down) Counter. This counter provides
support for manually controlled rotary controllers, such as the vol-
ume wheel on a radio device. This unit also supports industrial or
motor-control type of wheels.

e Chapter 11, “UART Port Controllers”
Describes the Universal Asynchronous Receiver/Transmitter port
that converts data between serial and parallel formats. The UART
supports the half-duplex IrDA® SIR protocol as a mode-enabled

feature.

e Chapter 12, “Two Wire Interface Controller”
Describes the Two Wire Interface (TWI) controller, which allows a
device to interface to an Inter IC bus as specified by the Philips PC
Bus Specification version 2.1 dated January 2000.

e Chapter 13, “SPI-Compatible Port Controller”
Describes the Serial Peripheral Interface (SPI) port that provides an
I/O interface to a variety of SPI compatible peripheral devices.

e Chapter 14, “SPORT Controller”
Describes the independent, synchronous Serial Port Controller
which provides an I/O interface to a variety of serial peripheral
devices.

* Chapter 15, “Parallel Peripheral Interface”
Describes the Parallel Peripheral Interface (PPI) of the processor.
The PPI is a half-duplex, bidirectional port accommodating up to
16 bits of data and is used for digital video and data converter
applications.

ADSP-BF59x Blackfin Processor Hardware Reference xxxiii



What’s New in This Manual

®

Chapter 16, “System Reset and Booting”
Describes the booting methods, booting process and specific boot
modes for the processor.

Chapter 17, “System Design”

Describes how to use the processor as part of an overall system. It
includes information about bus timing and latency numbers, sema-
phores, and a discussion of the treatment of unused pins.

Appendix A, “System MMR Assignments”
Lists the memory-mapped registers included in this manual, their
addresses, and cross-references to text.

Appendix B, “Test Features”

Describes test features for the processor, discusses the JTAG stan-
dard, boundary-scan architecture, instruction and boundary
registers, and public instructions.

This hardware reference is a companion document to the Blackfin
Processor Programming Reférence.

What’s New in This Manual

This revision (0.1) is the initial release of the ADSP-BF59x Blackfin Pro-
cessor Hardware Reference. In future revisions of this document, this
section will contain information regarding additions, modifications, and
corrections to the document.

XXXIV

ADSP-BF59x Blackfin Processor Hardware Reference



Preface

Technical or Customer Support

You can reach Analog Devices, Inc. Customer Support in the following

ways:

Visit the Embedded Processing and DSP products Web site at
http://www.analog.com/processors/technical_support

E-mail tools questions to
processor.tools.support@analog.com

E-mail processor questions to
processor.support@analog.com (World wide support)
processor.europe@analog.com (Europe support)
processor.china@analog.com (China support)

Phone questions to 1-800-ANALOGD

Contact your Analog Devices, Inc. local sales office or authorized
distributor

Send questions by mail to:
Analog Devices, Inc.
One Technology Way

P.0. Box 9106

Norwood, MA 02062-9106
USA

ADSP-BF59x Blackfin Processor Hardware Reference XXXV


http://www.analog.com/processors/technical_support
mailto:processor.tools.support@analog.com
mailto:processor.support@analog.com
mailto:processor.europe@analog.com
mailto:processor.china@analog.com

Supported Processors

Supported Processors

The following is the list of Analog Devices, Inc. processors supported in

Visual DSP++®.
Blackfin (ADSP-BFxxx) Processors

The name Blackfin refers to a family of 16-bit, embedded processors.
Visual DSP++ currently supports the following Blackfin families
ADSP-BF51x, ADSP-BF52x, ADSP-BF53x, ADSP-BF54x, ADSP-BF59x,
and ADSP-BF561 processors.

TigerSHARC® (ADSP-TSxxx) Processors

The name 7igerSHARC refers to a family of floating-point and fixed-point
[8-bit, 16-bit, and 32-bit] processors. Visual DSP++ currently supports the
following TigerSHARC families: ADSP-TS101 and ADSP-TS20x.

SHARC® (ADSP-21xxx) Processors

The name SHARC refers to a family of high-performance, 32-bit,
floating-point processors that can be used in speech, sound, graphics, and
imaging applications. VisualDSP++ currently supports the following
SHARC families: ADSP-2106x, ADSP-2116x, ADSP-2126x, and
ADSP-2136x.

Product Information

Product information can be obtained from the Analog Devices Web site,
Visual DSP++ online Help system, and a technical library CD.

XXXVI ADSP-BF59x Blackfin Processor Hardware Reference



Preface

Analog Devices Web Site

The Analog Devices Web site, www.analog.com, provides information
about a broad range of products—analog integrated circuits, amplifiers,
converters, and digital signal processors.

To access a complete technical library for each processor family, go to
http://www.analog.com/processors/technical_library. The manuals
selection opens a list of current manuals related to the product as well as a
link to the previous revisions of the manuals. When locating your manual
title, note a possible errata check mark next to the title that leads to the
current correction report against the manual.

Also note, MyAnalog.com is a free feature of the Analog Devices Web site
that allows customization of a Web page to display only the latest infor-
mation about products you are interested in. You can choose to receive
weekly e-mail notifications containing updates to the Web pages that meet
your interests, including documentation errata against all manuals. MyAn-
alog.com provides access to books, application notes, data sheets, code
examples, and more.

Visit MyAnalog.com to sign up. If you are a registered user, just log on.
Your user name is your e-mail address.

VisualDSP++ Online Documentation

Online documentation comprises the Visual DSP++ Help system, software
tools manuals, hardware tools manuals, processor manuals, Dinkum
Abridged C++ library, and FLEXnet License Tools software documenta-
tion. You can search easily across the entire Visual DSP++ documentation
set for any topic of interest.

For easy printing, supplementary Portable Documentation Format (.pdf)
files for all manuals are provided on the Visual DSP++ installation CD.

Each documentation file type is described as follows.

ADSP-BF59x Blackfin Processor Hardware Reference XXXVl


http://www.analog.com/ 
http://www.analog.com/subscriptions
http://www.analog.com/subscriptions
http://www.analog.com/subscriptions
http://www.analog.com/subscriptions
http://www.analog.com/processors/technical_library/ 

Product Information

File Description

.chm Help system files and manuals in Microsoft help format

.htmor Dinkum Abridged C++ library and FLEXnet License Tools software documenta-
Shtml tion. Viewing and printing the . htm1 files requires a browser, such as Internet

Explorer 6.0 (or higher).

.pdf VisualDSP++ and processor manuals in PDF format. Viewing and printing the
.pdf files requires a PDF reader, such as Adobe Acrobat Reader (4.0 or higher).

Technical Library CD

The technical library CD contains seminar materials, product highlights, a
selection guide, and documentation files of processor manuals, Visu-
alDSP++ software manuals, and hardware tools manuals for the following
processor families: Blackfin, SHARC, TigerSHARC, ADSP-218x, and
ADSP-219x.

To order the technical library CD, go to http://www.analog.com/proces-
sors/technical_library, navigate to the manuals page for your
processor, click the request CD check mark, and fill out the order form.

Data sheets, which can be downloaded from the Analog Devices Web site,
change rapidly, and therefore are not included on the technical library
CD. Technical manuals change periodically. Check the Web site for the

latest manual revisions and associated documentation errata.

XXXViil ADSP-BF59x Blackfin Processor Hardware Reference



http://www.analog.com/processors/technical_library/ 
http://www.analog.com/processors/technical_library/ 

Preface

Notation Conventions

Text conventions used in this manual are identified and described as fol-
lows. Additional conventions, which apply only to specific chapters, may
appear throughout this document.

Example

Description

Close command
(File menu)

Titles in reference sections indicate the location of an item within the
Visual DSP++ environment’s menu system (for example, the Close com-
mand appears on the File menu).

{this | that}

Alternative required items in syntax descriptions appear within curly
brackets and separated by vertical bars; read the example as this or that.
One or the other is required.

[this | that]

Optional items in syntax descriptions appear within brackets and sepa-
rated by vertical bars; read the example as an optional this or that.

[this,..] Optional item lists in syntax descriptions appear within brackets delim-
ited by commas and terminated with an ellipse; read the example as an
optional comma-separated list of this.

.SECTION Commands, directives, keywords, and feature names are in text with let-
ter gothic font.

filename Non-keyword placeholders appear in text with italic style format.

®

Note: For correct operation, ...
A Note provides supplementary information on a related topic. In the

online version of this book, the word Note appears instead of this symbol.

Caution: Incorrect device operation may result if ...

Caution: Device damage may result if ...

A Caution identifies conditions or inappropriate usage of the product that
could lead to undesirable results or product damage. In the online version
of this book, the word Caution appears instead of this symbol.

N

‘Warning: Injury to device users may result if ...

A Warning identifies conditions or inappropriate usage of the product
that could lead to conditions that are potentially hazardous for the devices
users. In the online version of this book, the word Warning appears
instead of this symbol.

ADSP-BF59x Blackfin Processor Hardware Reference XXXIX



Notation Conventions

x|

ADSP-BF59x Blackfin Processor Hardware Reference



1 INTRODUCTION

The ADSP-BF59x processors are members of the Blackfin processor fam-
ily that offer significant high performance and low power features while
retaining their ease-of-use benefits.

This hardware reference is a companion document to the Blackfin
Processor Programming Reference.

General Description of Processor

The ADSP-BF59x processor is a member of the Blackfin® family of prod-
ucts, incorporating the Analog Devices/Intel Micro Signal Architecture
(MSA). Blackfin processors combine a dual-MAC state-of-the-art signal
processing engine, the advantages of a clean, orthogonal RISC-like micro-
processor instruction set, and single-instruction, multiple-data (SIMD)
multimedia capabilities into a single instruction-set architecture.

The ADSP-BF59x processor is completely code compatible with other
Blackfin processors. ADSP-BF59x processors offer performance up to
400 MHz and reduced static power consumption. The processor features
are shown in Table 1-1.

By integrating a rich set of industry-leading system peripherals and mem-
ory, Blackfin processors are the platform of choice for next-generation
applications that require RISC-like programmability, multimedia support,
and leading-edge signal processing in one integrated package.

ADSP-BF59x Blackfin Processor Hardware Reference 1-1



General Description of Processor

Table 1-1. Processor Features

Feature ADSP-BF592
Timer/Counters with PWM 3
SPORTs 2

SPIs 2

UART 1

Parallel Peripheral Interface 1

TWI 1

GPIOs 32

. L1 Instruction SRAM 32K

g L1 Instruction ROM 64K

L;: L1 Data SRAM 32K

% L1 Scratchpad 4K

= L3 Boot ROM 4K
Maximum Instruction Rate! 400 MHz
Maximum System Clock Speed 100 MHz
Package Options 64-Lead

LFCSP

1  Maximum instruction rate is not available with every
possible SCLK selection.

Portable Low-Power Architecture

Blackfin processors provide world-class power management and perfor-
mance. They are produced with a low-power and low-voltage design
methodology and feature on-chip dynamic power management, which
provides the ability to vary both the voltage and frequency of operation to
significantly lower overall power consumption. This capability can result
in a substantial reduction in power consumption, compared with just

1-2 ADSP-BF59x Blackfin Processor Hardware Reference



Introduction

varying the frequency of operation. This allows longer battery life for
portable appliances.

Peripherals

The processor system peripherals include:

Two memory-to-memory DMAs

Event handler with 28 interrupt inputs

9 peripheral DMAs

32 General-Purpose I/Os (GPIOs)

Three 32-bit timer/counters with PWM support

32-bit core timer

On-chip PLL capable of 5x to 64x frequency multiplication
Debug/JTAG interface

Parallel Peripheral Interface (PPI), supporting ITU-R 656 video

data formats
Two Serial Peripheral Interface (SPI)-compatible ports
Two-Wire Interface (TWI) controller

Two dual-channel, full-duplex synchronous Serial Ports
(SPORTs), supporting eight stereo IS channels

One UART with [rDA® support

These peripherals are connected to the core via several high bandwidth
buses, as shown in Figure 1-1.

ADSP-BF59x Blackfin Processor Hardware Reference 1-3



Memory Architecture

Most of the peripherals are supported by a flexible DMA structure. There
are also two separate memory DMA channels dedicated to data transfers
between the processor’s memory spaces. Multiple on-chip buses provide
enough bandwidth to keep the processor core running even when there is
also activity on all of the on-chip and external peripherals.

WATCHDOG TIMER (<
E— PORT1 <=
; SPO

4

VOLTAGE REGULATOR INTERFACE | | JTAG TEST AND EMULATION | D > PORTF

ﬁ ﬁ ﬁ PERIPHERAL ‘ > PPI |
Jl ﬁ ll lL ACCESS BUS ' :@h

—yl UART | — GPIO
B ) INTERRUPT >
®
ML’I{/& <> CONTROLLER > s
f i Tt o srorm e
L1 INSTRUCTION| [L1INSTRUCTION L1 DATA > SPORTO PORT G
ROM SRAM SRAM DMA . —
CONTROLLER |~ DMA —) SPI o
ACCESS
DCBﬁ i BUS T™WI e
DEB
Av4
BOOT
ROM

Figure 1-1. ADSP-BF59x Processor Block Diagram

Memory Architecture

The Blackfin processor architecture structures memory as a single, unified
4G byte address space using 32-bit addresses. All resources, including
internal memory, external memory, and I/O control registers, occupy sep-
arate sections of this common address space. The memory portions of this
address space are arranged in a hierarchical structure to provide a good
cost/performance balance of some very fast, low latency on-chip memory,

1-4 ADSP-BF59x Blackfin Processor Hardware Reference



Introduction

and larger, lower cost and lower performance off-chip memory systems.

Table 1-2 shows the memory for the ADSP-BF59x processors.

Table 1-2. Memory Configurations

Type of Memory

ADSP-BF59x
Instruction SRAM 32K byte
Instruction ROM 64K byte
Data SRAM 32K byte
Data scratchpad SRAM 4K byte
L3 Boot ROM 4K byte
Total 136K byte

Internal Memory

The processor has four blocks of on-chip memory that provide high band-

width access to the core:

ories but is only accessible as data SRAM.

/O Memory Space

L1 instruction ROM memory, accessed at full processor speed.

L1 instruction SRAM memory. This memory is accessed at full
processor speed.

L1 data SRAM memory. This memory block is accessed at full pro-
cessor speed.

L1 scratchpad RAM, which runs at the same speed as the L1 mem-

Blackfin processors do not define a separate I/O space. All resources are

mapped through the flat 32-bit address space. Control registers for

on-chip I/O devices are mapped into memory-mapped registers (MMRs)
at addresses near the top of the 4G byte address space. These are separated

ADSP-BF59x Blackfin Processor Hardware Reference

1-5



DMA Support

into two smaller blocks: one contains the control MMRs for all core func-
tions and the other contains the registers needed for setup and control of
the on-chip peripherals outside of the core. The MMRs are accessible only
in supervisor mode. They appear as reserved space to on-chip peripherals.

DMA Support

The processor has a DMA controller which supports automated data
transfers with minimal overhead for the core. DMA transfers can occur
between the internal memories and any of its DMA-capable peripherals.
DMA-capable peripherals include the SPORTs, SPI ports, UART, and
PPI. Each individual DMA-capable peripheral has at least one dedicated
DMA channel.

The DMA controller supports both one-dimensional (1D) and
two-dimensional (2-D) DMA transfers. DMA transfer initialization can
be implemented from registers or from sets of parameters called descriptor

blocks.

The 2-D DMA capability supports arbitrary row and column sizes up to
64K elements by 64K elements, and arbitrary row and column step sizes
up to +/- 32K elements. Furthermore, the column step size can be less
than the row step size, allowing implementation of interleaved data-
streams. This feature is especially useful in video applications where data
can be de-interleaved on the fly.

Examples of DMA types supported include:
* Asingle, linear buffer that stops upon completion

* A circular, auto-refreshing buffer that interrupts on each full or
fractionally full buffer

1-6 ADSP-BF59x Blackfin Processor Hardware Reference



Introduction

* 1-D or 2-D DMA using a linked list of descriptors

e 2-D DMA using an array of descriptors specifying only the base
DMA address within a common page

In addition to the dedicated peripheral DMA channels, there are two sep-
arate pairs of memory DMA channels provided for transfers between the
various memories of the system. Memory DMA transfers can be controlled
by a very flexible descriptor-based methodology or by a standard regis-
ter-based autobuffer mechanism.

General-Purpose 1I/0 (GPIO)

The ADSP-BF59x processors have 32 bi-directional, general-purpose I/O
(GPIO) pins allocated across two separate GPIO modules—PORTFIO,
and PORTGIO, associated with port F and port G, respectively. Port ]
does not provide GPIO functionality. Each GPIO-capable pin shares
functionality with other ADSP-BF59x processor peripherals via a multi-
plexing scheme; however, the GPIO functionality is the default state of
the device upon powerup. Neither GPIO output or input drivers are
active by default. Each general-purpose port pin can be individually con-
trolled by manipulation of the port control, status, and interrupt registers:

e GPIO direction control register — Specifies the direction of each
individual GPIO pin as input or output.

* GPIO control and status registers — The ADSP-BF59x processors
employ a “write one to modify” mechanism that allows any combi-
nation of individual GPIO pins to be modified in a single
instruction, without affecting the level of any other GPIO pins.
Four control registers are provided. One register is written in order
to set pin values, one register is written in order to clear pin values,
one register is written in order to toggle pin values, and one register
is written in order to specify a pin value. Reading the GPIO status
register allows software to interrogate the sense of the pins.

ADSP-BF59x Blackfin Processor Hardware Reference 1-7



Two-Wire Interface

e GPIO interrupt mask registers — The two GPIO interrupt mask
registers allow each individual GPIO pin to function as an inter-
rupt to the processor. Similar to the two GPIO control registers
that are used to set and clear individual pin values, one GPIO
interrupt mask register sets bits to enable interrupt function, and
the other GPIO interrupt mask register clears bits to disable inter-
rupt function. GPIO pins defined as inputs can be configured to
generate hardware interrupts, while output pins can be triggered by
software interrupts.

* GPIO interrupt sensitivity registers — The two GPIO interrupt sen-
sitivity registers specify whether individual pins are level- or
edge-sensitive and specify—if edge-sensitive—whether just the ris-
ing edge or both the rising and falling edges of the signal are
significant. One register selects the type of sensitivity, and one reg-
ister selects which edges are significant for edge-sensitivity.

Two-Wire Interface

The Two-Wire Interface (T'WI) is compatible with the widely used I°C
bus standard. It was designed with a high level of functionality and is
compatible with multi-master, multi-slave bus configurations. To preserve
processor bandwidth, the TWI controller can be set up and a transfer ini-
tiated with interrupts only to service FIFO buffer data reads and writes.
Protocol related interrupts are optional.

The TWI externally moves 8-bit data while maintaining compliance with
the I2C bus protocol. The Philips I*C Bus Specification version 2.1 covers

many variants of I2C. The TWI controller includes these features:

e Simultaneous master and slave operation on multiple device
systems

* Support for multi-master data arbitration

1-8 ADSP-BF59x Blackfin Processor Hardware Reference



Introduction

e 7-bit addressing

* 100K bits/second and 400K bit/second data rates

* General call address support

* Master clock synchronization and support for clock low extension
* Separate multiple-byte receive and transmit FIFOs

* Low interrupt rate

¢ Individual override control of data and clock lines in the event of

bus lock-up
* Input filter for spike suppression

* Serial camera control bus support as specified in the OmniVision
Serial Camera Control Bus (SCCB) Functional Specification

version 2.1

Parallel Peripheral Interface

The processor provides a Parallel Peripheral Interface (PPI) that can con-
nect directly to parallel A/D and D/A converters, [ITU-R 601/656 video
encoders and decoders, and other general-purpose peripherals. The PPI
consists of a dedicated input clock pin and three multiplexed frame sync
pins. The input clock supports parallel data rates up to half the system
clock rate.

In ITU-R 656 modes, the PPI receives and parses a data stream of 8-bit or
10-bit data elements. On-chip decode of embedded preamble control and
synchronization information is supported.

ADSP-BF59x Blackfin Processor Hardware Reference 1-9



Parallel Peripheral Interface

Three distinct ITU-R 656 modes are supported:

* Active video only - The PPI does not read in any data between the
End of Active Video (EAV) and Start of Active Video (SAV) pre-
amble symbols, or any data present during the vertical blanking
intervals. In this mode, the control byte sequences are not stored to
memory; they are filtered by the PPI.

* Vertical blanking only - The PPI only transfers Vertical Blanking
Interval (VBI) data, as well as horizontal blanking information and
control byte sequences on VBI lines.

* Entire field - The entire incoming bitstream is read in through the
PPI. This includes active video, control preamble sequences, and
ancillary data that may be embedded in horizontal and vertical
blanking intervals.

Though not explicitly supported, ITU-R 656 output functionality can be
achieved by setting up the entire frame structure (including active video,
blanking, and control information) in memory and streaming the data out
the PPI in a frame sync-less mode. The processor’s 2-D DMA features
facilitate this transfer by allowing the static frame buffer (blanking and
control codes) to be placed in memory once, and simply updating the
active video information on a per-frame basis.

The general-purpose modes of the PPI are intended to suit a wide variety
of data capture and transmission applications. The modes are divided into
four main categories, each allowing up to 16 bits of data transfer per
PPI_CLK cycle:

* Data receive with internally generated frame syncs
* Data receive with externally generated frame syncs
* Data transmit with internally generated frame syncs

* Data transmit with externally generated frame syncs

1-10 ADSP-BF59x Blackfin Processor Hardware Reference



Introduction

These modes support ADC/DAC connections, as well as video communi-
cation with hardware signalling. Many of the modes support more than
one level of frame synchronization. If desired, a programmable delay can
be inserted between assertion of a frame sync and reception/transmission
of data.

SPORT Controllers

The processor incorporates two dual-channel synchronous serial ports
(SPORTO0 and SPORTY1) for serial and multiprocessor communications.
The SPORTSs support these features:

e Bidirectional, I*S capable operation

Each SPORT has two sets of independent transmit and receive
pins, which enable eight channels of I2S stereo audio.

* Buffered (eight-deep) transmit and receive ports

Each port has a data register for transferring data words to and
from other processor components and shift registers for shifting
data in and out of the data registers.

* Clocking

Each transmit and receive port can either use an external serial
clock or can generate its own in a wide range of frequencies.

e Word length

Each SPORT supports serial data words from 3 to 32 bits in
length, transferred in most significant bit first or least significant
bit first format.

ADSP-BF59x Blackfin Processor Hardware Reference 1-11



SPORT Controllers

Framing

Each transmit and receive port can run with or without frame sync
signals for each data word. Frame sync signals can be generated
internally or externally, active high or low, and with either of two
pulse widths and early or late frame sync.

Companding in hardware

Each SPORT can perform A-law or p-law companding according
to ITU recommendation G.711. Companding can be selected on
the transmit and/or receive channel of the SPORT without addi-
tional latencies.

DMA operations with single cycle overhead

Each SPORT can automatically receive and transmit multiple buft-
ers of memory data. The processor can link or chain sequences of
DMA transfers between a SPORT and memory.

Interrupts

Each transmit and receive port generates an interrupt upon com-
pleting the transfer of a data word or after transferring an entire
data buffer or buffers through DMA.

Multichannel capability

Each SPORT supports 128 channels out of a 1024-channel win-
dow and is compatible with the H.100, H.110, MVIP-90, and
HMVIP standards.

ADSP-BF59x Blackfin Processor Hardware Reference



Introduction

Serial Peripheral Interface (SPI) Ports

The processor has two SPI-compatible ports that enable the processor to
communicate with multiple SPI-compatible devices.

Each SPI interface uses three pins for transferring data: two data pins and
a clock pin. An SPI chip select input pin lets other SPI devices select the
processor, and several SPI chip select output pins let the processor select
other SPI devices. The SPI select pins are reconfigured general-purpose
I/O pins. Using these pins, the SPI port provides a full-duplex, synchro-
nous serial interface, which supports both master and slave modes and
multimaster environments.

Each SPI port’s baud rate and clock phase/polarities are programmable,

and it has an integrated DMA controller, configurable to support either
transmit or receive datastreams. The SPI’s DMA controller can only ser-
vice unidirectional accesses at any given time.

During transfers, the SPI port simultaneously transmits and receives by
serially shifting data in and out of its two serial data lines. The serial clock
line synchronizes the shifting and sampling of data on the two serial data
lines.

Timers

There are three general-purpose programmable timer units in the proces-
sor. Eight timers have an external pin that can be configured either as a
Pulse Width Modulator (PWM) or timer output, as an input to clock the
timer, or as a mechanism for measuring pulse widths of external events.
These timer units can be synchronized to an external clock input con-
nected to the TMRCLK/PPI_CLK pin or to the internal SCLK.

The timer units can be used in conjunction with the UARTSs to measure
the width of the pulses in the datastream to provide an autobaud detect
function for a serial channel.

ADSP-BF59x Blackfin Processor Hardware Reference 1-13



UART Port

The timers can generate interrupts to the processor core to provide peri-
odic events for synchronization, either to the processor clock or to a count
of external signals.

In addition to the eight general-purpose programmable timers, a 9th timer
is also provided. This extra timer is clocked by the internal processor clock
and is typically used as a system tick clock for generation of operating sys-
tem periodic interrupts.

UART Port

The processor provides one half-duplex Universal Asynchronous
Receiver/Transmitter (UART) port, which is fully compatible with
PC-standard UARTs. The UART port provides a simplified UART inter-
face to other peripherals or hosts, providing half-duplex, DMA-supported,
asynchronous transfers of serial data. The UART port includes support for
5 to 8 data bits; 1 or 2 stop bits; and none, even, or odd parity. The
UART port supports two modes of operation:

* Programmed I/O

The processor sends or receives data by writing or reading
I/O-mapped UART registers. The data is double buffered on both

transmit and receive.

* Direct Memory Access (DMA)

The DMA controller transfers both transmit and receive data. This
reduces the number and frequency of interrupts required to trans-
fer data to and from memory. The UART has two dedicated DMA
channels, one for transmit and one for receive. These DMA chan-
nels have lower priority than most DMA channels because of their
relatively low service rates.

1-14 ADSP-BF59x Blackfin Processor Hardware Reference



Introduction

The UART’s baud rate, serial data format, error code generation and sta-
tus, and interrupts can be programmed to support:

* Wide range of bit rates
* Data formats from 7 to 12 bits per frame

* Generation of maskable interrupts to the processor by both trans-
mit and receive operations

In conjunction with the general-purpose timer functions, autobaud detec-
tion is supported.

The capabilities of the UART port is further extended with support for

the Infrared Data Association (IrDA®) Serial Infrared Physical Layer Link
Specification (SIR) protocol.

Watchdog Timer

The processor includes a 32-bit timer that can be used to implement a
software watchdog function. A software watchdog can improve system
availability by forcing the processor to a known state through generation
of a hardware reset, nonmaskable interrupt (NMI), or general-purpose
interrupt, if the timer expires before being reset by software. The pro-
grammer initializes the count value of the timer, enables the appropriate
interrupt, then enables the timer. Thereafter, the software must reload the
counter before it counts to zero from the programmed value. This protects
the system from remaining in an unknown state where software that
would normally reset the timer has stopped running due to an external
noise condition or software error.

If configured to generate a hardware reset, the watchdog timer resets both
the CPU and the peripherals. After a reset, software can determine if the
watchdog was the source of the hardware reset by interrogating a status bit
in the watchdog control register.

ADSP-BF59x Blackfin Processor Hardware Reference 1-15



Clock Signals

The timer is clocked by the system clock (SCLK), at a maximum frequency
of fSCLK'

Clock Signals

The processor can be clocked by an external crystal, a sine wave input, or a
buffered, shaped clock derived from an external clock oscillator.

This external clock connects to the processor’s CLKIN pin. The CLKIN input
cannot be halted, changed, or operated below the specified frequency dur-
ing normal operation. This clock signal should be a TTL-compatible
signal.

The core clock (CCLK) and system peripheral clock (SCLK) are derived from
the input clock (CLKIN) signal. An on-chip Phase Locked Loop (PLL) is
capable of multiplying the CLKIN signal by a user-programmable (5x to
64x) multiplication factor (bounded by specified minimum and maxi-
mum VCO frequencies). The default multiplier is 6x, but it can be modified
by a software instruction sequence. On-the-fly frequency changes can be
made by simply writing to the PLL_DIV register.

All on-chip peripherals are clocked by the system clock (SCLK). The system
clock frequency is programmable by means of the SSEL[3:0] bits of the
PLL_DIV register.

Dynamic Power Management

The processor provides four operating modes, each with a different perfor-
mance/power profile. In addition, dynamic power management provides
the control functions to dynamically alter the processor core supply volt-
age to further reduce power dissipation. Control of clocking to each of the
peripherals also reduces power consumption.

1-16 ADSP-BF59x Blackfin Processor Hardware Reference



Introduction

Full-On Mode (Maximum Performance)

In the full-on mode, the PLL is enabled, not bypassed, providing the max-
imum operational frequency. This is the normal execution state in which
maximum performance can be achieved. The processor core and all

enabled peripherals run at full speed.

Active Mode (Moderate Power Savings)

In the active mode, the PLL is enabled, but bypassed. Because the PLL is
bypassed, the processor’s core clock (CCLK) and system clock (SCLK) run at
the input clock (CLKIN) frequency. In this mode, the CLKIN to VCO multi-

plier ratio can be changed, although the changes are not realized until the
full on mode is entered. DMA access is available to appropriately config-

ured L1 memories.

In the active mode, it is possible to disable the PLL through the PLL con-
trol register (PLL_CTL). If disabled, the PLL must be re-enabled before
transitioning to the full on or sleep modes.

Sleep Mode (High Power Savings)

The sleep mode reduces power dissipation by disabling the clock to the
processor core (CCLK). The PLL and system clock (SCLK), however, con-
tinue to operate in this mode. Typically an external event will wake up the
processor. When in the sleep mode, assertion of any interrupt causes the
processor to sense the value of the bypass bit (BYPASS) in the PLL control
register (PLL_CTL). If bypass is disabled, the processor transitions to the
full on mode. If bypass is enabled, the processor transitions to the active
mode.

When in the sleep mode, system DMA access to L1 memory is not
supported.

ADSP-BF59x Blackfin Processor Hardware Reference 1-17



Instruction Set Description

Deep Sleep Mode (Maximum Power Savings)

The deep sleep mode maximizes dynamic power savings by disabling the
processor core and synchronous system clocks (CCLK and SCLK). Asynchro-
nous systems may still be running, but cannot access internal resources or
external memory. This powered-down mode can only be exited by asser-
tion of the reset interrupt or by an wakeup input. When in deep sleep
mode, a wakeup input interrupt causes the processor to transition to the
active mode. Assertion of RESET while in deep sleep mode causes the pro-
cessor to transition to the full on mode.

Hibernate State

For lowest possible power dissipation, this state allows the internal supply
(VbpINT) to be powered down, while keeping the 1/0 supply (VppgxT)

running. Although not strictly an operating mode like the four modes
detailed above, it is illustrative to view it as such.

Instruction Set Description

The Blackfin processor family assembly language instruction set employs
an algebraic syntax designed for ease of coding and readability. Refer to
the Blackfin Processor Programming Reference for detailed information. The
instructions have been specifically tuned to provide a flexible, densely
encoded instruction set that compiles to a very small final memory size.
The instruction set also provides fully featured multifunction instructions
that allow the programmer to use many of the processor core resources in
a single instruction. Coupled with many features more often seen on
microcontrollers, this instruction set is very efficient when compiling C
and C++ source code. In addition, the architecture supports both user
(algorithm/application code) and supervisor (O/S kernel, device drivers,
debuggers, ISRs) modes of operation, allowing multiple levels of access to
core resources.

1-18 ADSP-BF59x Blackfin Processor Hardware Reference



Introduction

The assembly language, which takes advantage of the processor’s unique
architecture, offers these advantages:

* Embedded 16/32-bit microcontroller features, such as arbitrary bit
and bit field manipulation, insertion, and extraction; integer opera-
tions on 8-, 16-, and 32-bit data types; and separate user and
supervisor stack pointers

* Seamlessly integrated DSP/CPU features optimized for both 8-bit
and 16-bit operations

* A multi-issue load/store modified Harvard architecture, which sup-
ports two 16-bit MAC or four 8-bit ALU + two load/store + two
pointer updates per cycle

e All registers, I/O, and memory mapped into a unified 4G byte
memory space, providing a simplified programming model

Code density enhancements include intermixing of 16- and 32-bit
instructions with no mode switching or code segregation. Frequently used
instructions are encoded in 16 bits.

Development Tools

The processor is supported with a complete set of CROSSCORE® soft-

ware and hardware development tools, including Analog Devices

emulators and the VisualDSP++® development environment. The same
emulator hardware that supports other Analog Devices products also fully
emulates the Blackfin processor family.

The Visual DSP++ project management environment lets programmers
develop and debug an application. This environment includes an
easy-to-use assembler that is based on an algebraic syntax, an archiver
(librarian/library builder), a linker, a loader, a cycle-accurate instruc-
tion-level simulator, a C/C++ compiler, and a C/C++ runtime library that

ADSP-BF59x Blackfin Processor Hardware Reference 1-19



Development Tools

includes DSP and mathematical functions. A key point for these tools is
C/C++ code efficiency. The compiler has been developed for efficient
translation of C/C++ code to Blackfin processor assembly. The Blackfin
processor has architectural features that improve the efficiency of com-

piled C/C++ code.

Debugging both C/C++ and assembly programs with the Visual DSP++

debugger, programmers can:

* View mixed C/C++ and assembly code (interleaved source and
object information)

* Insert breakpoints

* Set conditional breakpoints on registers, memory, and stacks
e Trace instruction execution

* DPerform linear or statistical profiling of program execution
 Fill, dump, and graphically plot the contents of memory

e DPerform source level debugging

* Create custom debugger windows

The Visual DSP++ Integrated Development and Debugging Environment
(IDDE) lets programmers define and manage software development. Its
dialog boxes and property pages let programmers configure and manage all
development tools, including color syntax highlighting in the Visu-
alDSP++ editor. These capabilities permit programmers to:

* Control how the development tools process inputs and generate
outputs

* Maintain a one-to-one correspondence with the tool’s com-
mand-line switches

1-20 ADSP-BF59x Blackfin Processor Hardware Reference



Introduction

The Visual DSP++ Kernel (VDK) incorporates scheduling and resource
management tailored specifically to address the memory and timing con-
straints of DSP programming. These capabilities enable engineers to
develop code more effectively, eliminating the need to start from the very
beginning, when developing new application code. The VDK features
include threads, critical and unscheduled regions, semaphores, events, and
device flags. The VDK also supports priority-based, pre-emptive, coopera-
tive and time-sliced scheduling approaches. In addition, the VDK was
designed to be scalable. If the application does not use a specific feature,
the support code for that feature is excluded from the target system.

Because the VDK is a library, a developer can decide whether to use it or
not. The VDK is integrated into the VisualDSP++ development environ-
ment but can also be used with standard command-line tools. The VDK
development environment assists in managing system resources, automat-
ing the generation of various VDK-based objects, and visualizing the
system state during application debug.

Analog Devices emulators use the IEEE 1149.1 JTAG test access port of
the processor to monitor and control the target board processor during
emulation. The emulator provides full speed emulation, allowing inspec-
tion and modification of memory, registers, and processor stacks.
Nonintrusive in-circuit emulation is assured by the use of the processor’s
JTAG interface—the emulator does not affect target system loading or
timing.

In addition to the software and hardware development tools available
from Analog Devices, third parties provide a wide range of tools support-
ing the Blackfin processor family. Hardware tools include the
ADSP-BF59x EZ-KIT Lite standalone evaluation/development cards.
Third party software tools include DSP libraries, real-time operating sys-
tems, and block diagram design tools.

ADSP-BF59x Blackfin Processor Hardware Reference 1-21



Development Tools

1-22 ADSP-BF59x Blackfin Processor Hardware Reference



2 MEMORY

This chapter discusses memory population specific to the ADSP-BF59x
processors. Functional memory architecture is described in the Blackfin
Processor Programming Reference.

Note that the ADSP-BF59x processors do not have L1 instruction
cache or data cache. For ADSP-BF59x processors, disregard those
portions of the Blackfin Processor Programming Reference that per-

tain to cache.

Memory Architecture

Figure 2-1 on page 2-2 provides an overview of the ADSP-BF59x proces-
sor system memory map. For a detailed discussion of how to use them, see

the Blackfin Processor Programming Reference.

Note the architecture does not define a separate I/O space. All resources
are mapped through the flat 32-bit address space. The memory is
byte-addressable.

The upper portion of internal memory space is allocated to the core and
system MMRs. Accesses to this area are allowed only when the processor is
in supervisor or emulation mode (see the Operating Modes and States
chapter of the Blackfin Processor Programming Reference).

ADSP-BF59x Blackfin Processor Hardware Reference 2-1



L1 Instruction SRAM

OXFFFF FFFF 3>
| CORE MEMORY MAPPED REGISTERS (2M BYTES)

0xFFEO0 0000

SYSTEM MEMORY MAPPED REGISTERS (2M BYTES)

0xFFCO 0000

0xFFB0 1000

INTERNAL SCRATCHPAD RAM (4K BYTES)
0xFFB0 0000

0xFFA2 0000

L1 ROM (64K BYTES)
0xFFA1 0000

0xFFAO 8000

INSTRUCTION BANK B SRAM (16K BYTES)

0xFFAO 4000

INSTRUCTION BANK A SRAM (16K BYTES)
0xFFA0 0000

0xFF80 8000

DATA BANK SRAM (32K BYTES)
0xFF80 0000

0xEF00 1000

BOOT ROM (4K BYTES)
0XEF00 0000

0x0000 0000

Figure 2-1. ADSP-BF59x Memory Map

L1 Instruction SRAM

The processor core reads the instruction memory through the 64-bit wide
instruction fetch bus. All addresses from this bus are 64-bit aligned. Each
instruction fetch can return any combination of 16-, 32-, or 64-bit
instructions (for example, four 16-bit instructions, two 16-bit instructions
and one 32-bit instruction, or one 64-bit instruction).

Table 2-1 lists the memory start locations of the L1 instruction SRAM
subbanks.

Table 2-1. L1 Instruction Memory Subbanks

Memory Bbank Memory Subbank Memory Start Location for
ADSP-BF59x Processors

Instruction Bank A 0 0xFFAO0 0000

Instruction Bank A 1 0xFFAO0 1000

2-2 ADSP-BF59x Blackfin Processor Hardware Reference




Memory

Table 2-1. L1 Instruction Memory Subbanks (Continued)

Memory Bbank Memory Subbank Memory Start Location for
ADSP-BF59x Processors
Instruction Bank A 2 0xFFAO0 2000
Instruction Bank A 3 0xFFAO0 3000
Instruction Bank B 0 0xFFAO0 4000
Instruction Bank B 1 0xFFAO0 5000
Instruction Bank B 2 0xFFAO 6000
Instruction Bank B 3 0xFFAO0 7000

L1 Instruction ROM

The 64K byte L1 instruction ROM consists of a single 64K byte bank of
read-only memory. The instruction ROM is typically read by the proces-
sor to acquire instructions for execution, but contents of instruction ROM
may also be read using the DTEST_COMMAND and DTEST_DATA registers.
Attempts to write ROM using the DTEST_COMMAND and DTEST_DATA regis-
ters fail withour any errors or exceptions signaled by hardware. DMA
access of instruction ROM is not possible.

L1 Data SRAM

Table 2-2 shows how the subbank organization is mapped into memory.

Table 2-2. L1 Data Memory SRAM Subbank Start Addresses

Memory Bank and Subbank

ADSP-BF59x Processors

Data Bank A, Subbank 0

0xFF80 0000

Data Bank A, Subbank 1

0xFF80 1000

Data Bank A, Subbank 2

0xFF80 2000

ADSP-BF59x Blackfin Processor Hardware Reference

2-3



Boot ROM

Table 2-2. L1 Data Memory SRAM Subbank Start Addresses (Continued)

Memory Bank and Subbank |ADSP-BF59x Processors

Data Bank A, Subbank 3 0xFF80 3000

Data Bank A, Subbank 4 0xFF80 4000

Data Bank A, Subbank 5 0xFF80 5000

Data Bank A, Subbank 6 0xFF80 6000

Data Bank A, Subbank 7 0xFF80 7000

Boot ROM

A 4K byte area of internal memory space is occupied by the boot ROM,
starting from address 0xEF00 0000. This 16-bit boot ROM is not part of
the L1 memory module. Read accesses take one SCLK cycle and no wait
states are required. The read-only memory can be read by the core as well
as by DMA. The boot ROM not only contains boot-strap loader code, it
also provides some subfunctions that are user-callable at runtime. For

more information, see “System Reset and Booting” in Chapter 16, System
Reset and Booting.

External Memory

Aside from the Boot ROM, which sits in External Memory space, there is
no additional external memory address space on the processor.

Processor-Specific MMRs

The complete set of memory-related MMRs is described in the Blackfin
Processor Programming Reference. Several MMRs have bit definitions spe-
cific to the processors described in this manual. These registers are
described in the following sections.

2-4 ADSP-BF59x Blackfin Processor Hardware Reference



Memory

DTEST_COMMAND Register

When the data test command register (DTEST_COMMAND) is written to, L1
memory is accessed, and the data is transferred through the data test data
registers (DTEST DATA[1:01). This register is shown in Figure 2-2.

The data/instruction access bit allows direct access via the
DTEST_COMMAND MMR to L1 instruction SRAM.

Data Test Command Register (DTEST_COMMAND)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

OXFFEO 0300 PP T Ix I Ix I Ix I B Tx T [x | Reset = undefined

ADR[11] L I—l:l

Address bit [11] ADR[13:12]
Address bits [13:12]

REGION[2:0]

000 - L1 Data SRAM from OxFF80 0000 to OxFF80 7FFF
100 - L1 Inst SRAM from 0xFFAO 0000 to OxFFAO 3FFF
101 - L1 Inst ROM from 0xFFA1 000 to OxFFA1 FFFF

Note that the ITEST COMMAND register must be used to
access to L1 Inst SRAM from 0xFAO 4000 to OxFFAQ 7FFF

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[ D PP P P o [ fx [ x x|

| |_
ADR[15:14] ReaF:iNVc;'ite Access
Address bits [15:14] ? : We;ft'e :ggg::
ADRI[10:3]
Address bits [10:3] Reserved - Write 1

Figure 2-2. Data Test Command Register

ADSP-BF59x Blackfin Processor Hardware Reference 2-5



Processor-Specific MMRs

IT

EST COMMAND Register

The instruction test command register (ITEST_COMMAND), shown in
Figure 2-3, contains control bits for the L1 data memory.

Instruction Test Command Register (ITEST_COMMAND)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
oxFFE0 1300 I T I o P ox e e P T X Tx [x [x | Reset = undefined
ADR[11:10] —I_I_I I—Ii
ADR[13:12]

Address bits [11:10]

Address bits [13:12]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

D Dx P e P e fx e x x|

| | |
ADR[9:3] | Read/Write Access
Address bits [9:3] 0 - Read access
1 - Write access

Reserved - Write 1

Figure 2-3. Instruction Test Command Register

This register may be used to gain access to the 16K bytese of L1 instruc-
tion SRAM from address 0xFFA04000 to address 0OxFFAO7FFF. All other

regions of L1 memory—both data and instruction—are accessed using the

DTEST_COMMAND register.

2-6

ADSP-BF59x Blackfin Processor Hardware Reference



Memory

DMEM_CONTROL Register

The data memory control register (DMEM_CONTROL), shown in Figure 2-4,
contains control bits for the L1 data memory.

Data Memory Control Register (DMEM_CONTROL)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
oxFFE0 0004 fo oo Jo JoJoJo JoJo oo o oo oo ] Reset-=oxo0000001

15 14 13 12 11 10

0N N R E N Y EN EN N R

ENDCPLB (Data Cacheability

Protection Lookaside Buffer

Enable)

0 - CPLBs disabled. Minimal
address checking only

1 - CPLBs enabled

Figure 2-4. Data Memory Control Register

IMEM_CONTROL Register

The instruction memory control register (IMEM_CONTROL), shown in
Figure 2-5, contains control bits for the L1 instruction memory.

Instruction Memory Control Register (IMEM_CONTROL)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
oxFFE01004  JoJoJoJoJoJoJo JoJo Jo o Jo JoJo o Jo ] Reset=oxo0000001

15 14 13 12 11 10

[N O N R E N N EN N R

|— ENICPLB (Instruction Cache-
ability Protection Lookaside
Buffer Enable)
0 - CPLBs disabled. Minimal
address checking only
1 - CPLBs enabled

Figure 2-5. Instruction Memory Control Register

ADSP-BF59x Blackfin Processor Hardware Reference 2-7



Processor-Specific MMRs

DCPLB_DATAX Registers

The data CPLB data registers (DCPLB_DATAx), shown in Figure 2-6,
contain CPLB control bits for the L1 data memory.

Data CPLB Data Registers (DCPLB_DATAX)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

OxFFEQ 023C [eToToToJoofoJo JoJo]o o Jo oo o] Reset=oxoo000000

O0xFFEO 0214
0xFFEO 0200 PAGE_SIZE1-0

00 - 1K byte page
01 - 4K byte page
10 - 1M byte page
11 - 4M byte page

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
fofofofofofofofofofofofofofofo]o]

CPLB_SUPV_WR gPILBi\IIcI.i“(-cIiD bled) CPLB ent
W . - Invalid (disable entry
0 - Write access prohibited 1- Valid (enabled) CPLB entry
in Supervisor Mode (writes generate

protection violation exceptions) CPLB_LOCK
1 - Write access permitted 0 - Unlocked, CPLB entry replaceable
in Supervisor Mode 1 - Locked, CPLB entry not replaceable
CPLB_USER_WR CPLB_USER_RD
0 - Write access prohibited 0 - Read access prohibited
in User Mode (writes generate in User Mode (reads generate
protection violation exceptions) protection violation exceptionss)
1 - Write access permitted 1 - Read access permitted
in User Mode in User Mode

Figure 2-6. Data CPLB Data Register

2-8 ADSP-BF59x Blackfin Processor Hardware Reference



Memory

ICPLB_DATAX Registers

The instruction CPLB data registers (ICPLB_DATAx), shown in Figure 2-7,
contain CPLB control bits for the L1 instruction memory.

Instruction CPLB Data Registers (ICPLB_DATAX)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

OxFFEQ 123 [eToToToJofofoJo JoJo]o o JoJoo]o] Reset=oxoo000000

O0xFFEO 1214
0xFFEO 1200 PAGE_SIZE1-0

00 - 1K byte page
01 - 4K byte page
10 - 1M byte page
11 - 4M byte page

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
fofofofofeofofofofofofofofofofo]o]

CPLB_VALID

0 - Invalid (disabled) CPLB entry
1 - Valid (enabled) CPLB entry

CPLB_LOCK

0 - Unlocked, CPLB entry replaceable
1 - Locked, CPLB entry not replaceable
———CPLB_USER_RD

0 - Read access prohibited
in User Mode (reads generate
protection violation exceptionss)
1 - Read access permitted
in User Mode

Figure 2-7. Instruction CPLB Data Register

ADSP-BF59x Blackfin Processor Hardware Reference 2-9



Processor-Specific MMRs

2-10

ADSP-BF59x Blackfin Processor Hardware Reference



3 CHIP BUS HIERARCHY

This chapter discusses on-chip buses, how data moves through the system,
and other factors that determine the system organization. Following an
overview and a list of key features is a block diagram of the chip bus hier-
archy and a description of its operation. The chapter concludes with
details about the system interconnects and associated system buses.

This chapter provides
e  “Chip Bus Hierarchy Overview” on page 3-1

e “Interface Overview” on page 3-2

Chip Bus Hierarchy Overview

ADSP-BF59x Blackfin processors feature a powerful chip bus hierarchy on
which all data movement between the processor core, internal memory,
and its rich set of peripherals occurs. The chip bus hierarchy includes the
controllers for system interrupts, test/emulation, and clock and power
management. Synchronous clock domain conversion is provided to sup-
port clock domain transactions between the core and the system.

The processor system includes:

* The peripheral set including timers, TWI, UART, SPORTs, SPIs,
PPI, and watchdog timer

* The Direct Memory Access (DMA) controller

* The interfaces between these and the system

ADSP-BF59x Blackfin Processor Hardware Reference 3-1



Interface Overview

The following sections describe the on-chip interfaces between the system
and the peripherals via the:

* Peripheral Access Bus (PAB)
e DMA Access Bus (DAB)
e DMA Core Bus (DCB)

Interface Overview

Figure 3-1 shows the core processor and system boundaries as well as the
interfaces between them.

core [ 7 L1
PROCESSOR |, 32 INSTRUCTION ot
N ’ LOAD DATA &
L /32 L1
CORE CLOCK /32 LOADDATA ROM
(CCLK) DOMAIN A 7
AN STORE DATA N
SYSTEM CLOCK
(SCLK) DOMAIN
N DMA
E | CONTROLLER|, , 16
w3
23
gy T
3
>3 PERIPHERAL
- 1 ACCESS
AT BUS (PAB)
BOOT
u u u ROM
©
o _ 2
2E| 5| |E||% DMA
O = < 5
eF S||g ACCESS
= BUS
(DAB)
18]

Figure 3-1. Processor Bus Hierarchy

3-2 ADSP-BF59x Blackfin Processor Hardware Reference



Chip Bus Hierarchy

Internal Clocks

The core processor clock (CCLK) rate is highly programmable with respect
to CLKIN. The cCLK rate is divided down from the Phase Locked Loop

(PLL) output rate. This divider ratio is set using the CSEL parameter of the
PLL divide register.

The PAB, the DAB, and the DCB run at system clock frequency (SCLK
domain). This divider ratio is set using the SSEL parameter of the PLL
divide (PLL_DIV) register and must be set so that these buses run as speci-
fied in the processor data sheet, and slower than or equal to the core clock
frequency.

These buses can also be cycled at a programmable frequency to reduce
power consumption, or to allow the core processor to run at an optimal
frequency. Note all synchronous peripherals derive their timing from the
scLk. For example, the UART clock rate is determined by further divid-
ing this clock frequency.

Core Bus Overview

For the purposes of this discussion, level 1 memories (L1) are included in
the description of the core; they have full bandwidth access from the pro-
cessor core with a 64-bit instruction bus and two 32-bit data buses.

ADSP-BF59x Blackfin Processor Hardware Reference 3-3



Interface Overview

Figure 3-2 shows the core processor and its interfaces to the peripherals
and external memory resources.

JTAG DSP ID SYSTEM CLOCK
(8 BITS) AND POWER
MANAGEMENT

O
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
|
I
I
I

|
|
|
INT _/_:, DEBUG AND JTAG INTERFACE |
|
ACK <——| CORE |
I EVENT
| | CONTROLLER :
RESET POWER AND
VECTOR £"| — <> CLOCK I
CONTROLLER | |
|
| PROCESSOR I
|
| | coreTIMER S PERFORMANCE
| <> " MoNITOR :
' |
o - (=] =) - om [11]
: 8| 3l e &|| s§|| = 8 '
|
I 32| 32 32|| s2|| 32|| 32 64 CORE |
I \\\ \~\ \\\ \\\ ~ \\\ I
| - |
| |
| 4 3 |
| |
| MEMORY :
I L1 DATA MANAGEMENT L1 INSTRUCTION
I UNIT I
| |
L A M ________ ____
DMA CORE BUS EAB PAB
(DCB)

Figure 3-2. Core Block Diagram

The core can generate up to three simultaneous off-core accesses per cycle.

The core bus structure between the processor and L1 memory runs at the
full core frequency and has data paths up to 64 bits.

3-4 ADSP-BF59x Blackfin Processor Hardware Reference



Chip Bus Hierarchy

When the instruction request is filled, the 64-bit read can contain a single
64-bit instruction or any combination of 16-, 32-, or 64-bit (partial)
instructions.

Peripheral Access Bus (PAB)

The processor has a dedicated low latency peripheral bus that keeps core
stalls to a minimum and allows for manageable interrupt latencies to
time-critical peripherals. All peripheral resources accessed through the
PAB are mapped into the system MMR space of the processor memory
map. The core accesses system MMR space through the PAB bus.

The core processor has byte addressability, but the programming model is
restricted to only 32-bit (aligned) access to the system MMRs. Byte
accesses to this region are not supported.

PAB Arbitration

The core is the only master on this bus. No arbitration is necessary.

PAB Agents (Masters, Slaves)

The processor core can master bus operations on the PAB. All peripherals
have a peripheral bus slave interface which allows the core to access con-
trol and status state. These registers are mapped into the system MMR
space of the memory map. Appendix B lists system MMR addresses.

The slaves on the PAB bus are:
* System event controller
* Clock and power management controller
*  Watchdog timer
* Timer 0-2

ADSP-BF59x Blackfin Processor Hardware Reference 3-5



Interface Overview

 SPORTO-1
e SPIO-1

* General-purpose ports

« UART
 PPI
e TWI

e DMA controller

PAB Performance

For the PAB, the primary performance criteria is latency, not throughput.
Transfer latencies for both read and write transfers on the PAB are two
SCLK cycles.

For example, the core can transfer up to 32 bits per access to the PAB
slaves. With the core clock running at 2x the frequency of the system
clock, the first and subsequent system MMR read or write accesses take
four core clocks (CCLK) of latency.

The PAB has a maximum frequency of SCLK.

DMA Access Bus (DAB), DMA Core Bus (DCB)

The DAB and DCB buses provide a means for DMA-capable peripherals
to gain access to on-chip memory with little or no degradation in core
bandwidth to memory.

DAB and DCB Arbitration

Thirteen DMA channels and bus masters support the DMA-capable
peripherals in the processor system. The nine peripheral DMA channel
controllers can transfer data between peripherals and internal memory.

3-6 ADSP-BF59x Blackfin Processor Hardware Reference



Chip Bus Hierarchy

Both the read and write channels of the dual-stream memory DMA con-
troller access their descriptor lists through the DAB.

The DCB has priority over the core processor on arbitration into L1
SRAM. The processor has a programmable priority arbitration policy on
the DAB. Table 3-1 shows the default arbitration priority.

Table 3-1. DAB and DCB Arbitration Priority

DAB, DCB Master Default Arbitration Priority
PPI receive or transmit 0 - highest
SPORTO receive 1
SPORTO transmit 2
SPORT1 receive 3
SPORT1 transmit 4

SPIO transmit/receive 5

SPI1 transmit/receive 6

UARTO receive 7

UARTO transmit 8

Not available on this product 9

Not available on this product 10

Not available on this product 11

Mem DMA has no peripheral mapping. 12

Mem DMA has no peripheral mapping. 13

Mem DMA has no peripheral mapping. 14

Mem DMA has no peripheral mapping. 15 - lowest

DAB Bus Agents (Masters)

All peripherals capable of sourcing a DMA access are masters on this bus,
as shown in Table 3-1. A single arbiter supports a programmable priority
arbitration policy for access to the DAB.

ADSP-BF59x Blackfin Processor Hardware Reference 3-7



Interface Overview

When two or more DMA master channels are actively requesting the
DAB, bus utilization is considerably higher due to the DAB’s pipelined
design. Bus arbitration cycles are concurrent with the previous DMA
access’s data cycles.

DAB and DCB Performance

The processor DAB supports data transfers of 16 bits or 32 bits. The data
bus has a 16-bit width with a maximum frequency as specified in the pro-
cessor data sheet.

The DAB has a dedicated port into L1 memory. No stalls occur as long as
the core access and the DMA access are not to the same memory bank (4K
byte size for L1). If there is a conflict, DMA is the highest priority
requester, followed by the core.

Note that a locked transfer by the core processor effectively disables arbi-
tration for the addressed memory bank or resource until the memory lock
is deasserted. DMA controllers cannot perform locked transfers.

DMA access to L1 memory can only be stalled by an access already in
progress from another DMA channel. Latencies caused by these stalls are
in addition to any arbitration latencies.

3-8 ADSP-BF59x Blackfin Processor Hardware Reference



4 SYSTEM INTERRUPTS

This chapter discusses the system interrupt controller (SIC). While this
chapter does refer to features of the core event controller (CEC), it does
not cover all aspects of it. Please refer to the Blackfin Processor Program-
ming Reference for more information on the CEC.

Specific Information for the ADSP-BF59x

For details regarding the number of system interrupts for the
ADSP-BF59x product, please refer to the ADSP-BF592 Blackfin Processor
Data Sheet.

To determine how each of the system interrupts is multiplexed with other
functional pins, refer to Table 7-1 on page 7-3 through Table 7-2 on
page 7-4 in Chapter 7, “General-Purpose Ports”.

For a list of MMR addresses for each DMA, refer to Chapter A, “System
MMR Assignments”.

System interrupt behavior for the ADSP-BF59x that differs from the gen-
eral information in this chapter can be found at the end of this chapter in
the section “Unique Information for the ADSP-BF59x Processor” on
page 4-15.

Overview

The processor system has numerous peripherals, which therefore require
many supporting interrupts.

ADSP-BF59x Blackfin Processor Hardware Reference 4-1



Description of Operation

Features

The Blackfin architecture provides a two-level interrupt processing
scheme:

* The core event controller (CEC) runs in the CCLK clock domain. It
interacts closely with the program sequencer and manages the event
vector table (EVT). The CEC processes not only core-related inter-
rupts such as exceptions, core errors, and emulation events; it also
supports software interrupts.

e The system interrupt controller (SIC) runs in the SCLK clock
domain. It masks, groups, and prioritizes interrupt requests sig-
nalled by on-chip or off-chip peripherals and forwards them to the
CEC.

Description of Operation

The following sections describe the operation of the system interrupts.

Events and Sequencing

The processor employs a two-level event control mechanism. The proces-
sor SIC works with the CEC to prioritize and control all system
interrupts. The SIC provides mapping between the many peripheral inter-
rupt sources and the prioritized general-purpose interrupt inputs of the
core. This mapping is programmable, and individual interrupt sources can

be masked in the SIC.

The CEC of the processor manages five types of activities or events:
e Emulation
* Reset

* Nonmaskable interrupts (NMI)

4-2 ADSP-BF59x Blackfin Processor Hardware Reference



System Interrupts

* Exceptions
* Interrupts

Note the word event describes all five types of activities. The CEC man-
ages fifteen different events in all: emulation, reset, NMI, exception, and
eleven interrupts.

An interrupt is an event that changes the normal processor instruction
flow and is asynchronous to program flow. In contrast, an exception is a
software initiated event whose effects are synchronous to program flow.

The event system is nested and prioritized. Consequently, several service
routines may be active at any time, and a low priority event may be
pre-empted by one of higher priority.

The CEC supports nine general-purpose interrupts (IVG7 — IVG15) in
addition to the dedicated interrupt and exception events that are described
in Table 4-1. It is common for applications to reserve the lowest or the
two lowest priority interrupts (IVG14 and 1VG15) for software interrupts,
leaving eight or seven prioritized interrupt inputs (IVG7 — 1VG13) for
peripheral purposes. Refer to Table 4-1.

Table 4-1. System and Core Event Mapping

Event Source Core Event

Name
Core events

Emulation (highest priority) EMU

Reset RST

NMI NMI

Exception EVX

Reserved -

Hardware error IVHW

Core timer IVITMR

ADSP-BF59x Blackfin Processor Hardware Reference 4-3



Description of Operation

Table 4-1. System and Core Event Mapping (Continued)

Event Source Core Event
Name
System interrupts IVG7-1VG13
Software interrupt 1 IVG14
Software interrupt 2 (lowest priority) IVG15

System Peripheral Interrupts

To service the rich set of peripherals, the SIC has multiple interrupt
request inputs and outputs that go to the CEC. The primary function of
the SIC is to mask, group, and prioritize interrupt requests and to forward
them to the nine general-purpose interrupt inputs of the CEC (1VG7—
1VG15). Additionally, the SIC controller can enable individual peripheral
interrupts to wake up the processor from Idle or power-down state.

The nine general-purpose interrupt inputs (IVG7—IVG15) of the core event
controller have fixed priority. Of this group, the 1VG7 channel has the
highest priority and 1VG15 has the lowest priority. Therefore, the interrupt
assignment in the SIC_IAR registers not only groups peripheral interrupts;
it also programs their priority by assigning them to individual IVG chan-
nels. However, the relative priority of peripheral interrupts can be set by
mapping the peripheral interrupt to the appropriate general-purpose inter-
rupt level in the core. The mapping is controlled by the SIC_IAR register
settings shown in Figure 4-2 on page 4-11 and the tables in Chapter A,
“System MMR Assignments”. If more than one interrupt source is
mapped to the same interrupt, they are logically OR’ed, with no hardware
prioritization. Software can prioritize the interrupt processing as required
for a particular system application.

For general-purpose interrupts with multiple peripheral interrupts
assigned to them, take special care to ensure that software correctly
processes all pending interrupts sharing that input. Software is
responsible for prioritizing the shared interrupts.

4-4

ADSP-BF59x Blackfin Processor Hardware Reference



System Interrupts

The core timer has a dedicated input to the CEC controller. Its interrupt
is not routed through the SIC controller and always has higher priority
than requests from all peripherals.

The SIC_IMASK register allows software to mask any peripheral interrupt
source at the SIC level. This functionality is independent of whether the
particular interrupt is enabled at the peripheral itself. At reset, the con-
tents of the STC_IMASK register are all Os to mask off all peripheral
interrupts. Turning off a system interrupt mask and enabling the particu-
lar interrupt is performed by writing a 1 to a bit location in the SIC_IMASK
register.

The SIC includes one or more read-only SIC_ISR registers with individual
bits which correspond to the interrupt status of one of the peripheral
interrupt sources. When the SIC detects the interrupt, the bit is asserted.
When the SIC detects that the peripheral interrupt input has been deas-
serted, the respective bit in the system interrupt status register is cleared.
Note for some peripherals, such as general-purpose I/0O asynchronous
input interrupts, many cycles of latency may pass from the time an inter-
rupt service routine initiates the clearing of the interrupt (usually by
writing a system MMR) to the time the SIC senses that the interrupt has
been deasserted.

Depending on how interrupt sources map to the general-purpose interrupt
inputs of the core, the interrupt service routine may have to interrogate
multiple interrupt status bits to determine the source of the interrupt.
One of the first instructions executed in an interrupt service routine
should read the SIC_ISR register to determine whether more than one of
the peripherals sharing the input has asserted its interrupt output. The ser-
vice routine should fully process all pending, shared interrupts before

ADSP-BF59x Blackfin Processor Hardware Reference 4-5



Description of Operation

executing the RTT, which enables further interrupt generation on that
interrupt input.

@ When an interrupt’s service routine is finished, the RTT instruction

clears the appropriate bit in the IPEND register. However, the rele-
vant SIC_ISR bit is not cleared unless the service routine clears the
mechanism that generated the interrupt.

Many systems need relatively few interrupt-enabled peripherals, allowing
each peripheral to map to a unique core priority level. In these designs, the
SIC_ISR register will seldom, if ever, need to be interrogated.

The SIC_ISR register is not affected by the state of the SIC_IMASK register
and can be read at any time. Writes to the SIC_ISR register have no effect
on its contents.

Peripheral DMA channels are mapped in a fixed manner to the peripheral
interrupt IDs. However, the assignment between peripherals and DMA
channels is freely programmable with the DMA_PERIPHERAL_MAP registers.
Table 4-1 on page 4-3 and Table 4-2 on page 4-11 show the default DMA
assignment. Once a peripheral has been assigned to any other DMA chan-
nel it uses the new DMA channel’s interrupt ID regardless of whether
DMA is enabled or not. Therefore, clean DMA_PERIPHERAL_MAP manage-
ment is required even if the DMA is not used. The default setup should be
the best choice for all non-DMA applications.

For dynamic power management, any of the peripherals can be configured
to wake up the core from its idled state to process the interrupt, simply by
enabling the appropriate bit in the SIC_IWR register (refer to Table 4-1 on
page 4-3 and Table 4-2 on page 4-11). If a peripheral interrupt source is
enabled in SIC_IWR and the core is idled, the interrupt causes the DPMC
to initiate the core wakeup sequence in order to process the interrupt.
Note this mode of operation may add latency to interrupt processing,
depending on the power control state. For further discussion of power
modes and the idled state of the core, see the Dynamic Power Manage-
ment chapter.

4-6 ADSP-BF59x Blackfin Processor Hardware Reference



System Interrupts

The SIC_IWR register has no effect unless the core is idled. By default, all
interrupts generate a wakeup request to the core. However, for some
applications it may be desirable to disable this function for some peripher-
als, such as for a SPORT transmit interrupt. The SIC_IWR register can be
read from or written to at any time. To prevent spurious or lost interrupt
activity, this register should be written to only when all peripheral inter-
rupts are disabled.

The wakeup function is independent of the interrupt mask func-
tion. If an interrupt source is enabled in the SIC_IWR but masked
off in the SIC_IMASK register, the core wakes up if it is idled, but it
does not generate an interrupt.

The peripheral interrupt structure of the processor is flexible. Upon reset,
multiple peripheral interrupts share a single, general-purpose interrupt in
the core by default, as shown in Table 4-2 on page 4-11.

An interrupt service routine that supports multiple interrupt sources must
interrogate the appropriate system memory mapped registers (MMRs) to
determine which peripheral generated the interrupt.

Programming Model

The programming model for the system interrupts is described in the fol-
lowing sections.

ADSP-BF59x Blackfin Processor Hardware Reference 4-7



Programming Model

System Interrupt Initialization

If the default peripheral-to-IVG assignments shown in Table 4-1 on
page 4-3 and Table 4-2 on page 4-11 are acceptable, then interrupt initial-
ization involves only:

Initialization of the core event vector table (EVT) vector address
entries

Initialization of the IMASK register

Unmasking the specific peripheral interrupts that the system
requires in the SIC_IMASK register

System Interrupt Processing Summary

Referring to Figure 4-1 on page 4-10, note when an interrupt (interrupt
A) is generated by an interrupt-enabled peripheral:

1.

SIC_ISR logs the request and keeps track of system interrupts that
are asserted but not yet serviced (that is, an interrupt service rou-
tine hasn’t yet cleared the interrupt).

SIC_IWR checks to see if it should wake up the core from an idled
state based on this interrupt request.

SIC_IMASK masks off or enables interrupts from peripherals at the
system level. If interrupt A is not masked, the request proceeds to

Step 4.

The SIC_IAR registers, which map the peripheral interrupts to a
smaller set of general-purpose core interrupts (IVG7 - IVG15),
determine the core priority of interrupt A.

ILAT adds interrupt A to its log of interrupts latched by the core
but not yet actively being serviced.

4-8

ADSP-BF59x Blackfin Processor Hardware Reference



System Interrupts

6. IMASK masks off or enables events of different core priorities. If the
IVGx event corresponding to interrupt A is not masked, the process

proceeds to Step 7.

7. The event vector table (EVT) is accessed to look up the appropriate
vector for interrupt A’s interrupt service routine (ISR).

8. When the event vector for interrupt A has entered the core pipe-
line, the appropriate IPEND bit is set, which clears the respective
ILAT bit. Thus, IPEND tracks all pending interrupts, as well as those
being presently serviced.

9. When the interrupt service routine (ISR) for interrupt A has been
executed, the RTI instruction clears the appropriate IPEND bit.
However, the relevant SIC_ISR bit is not cleared unless the inter-
rupt service routine clears the mechanism that generated interrupt
A, or if the process of servicing the interrupt clears this bit.

It should be noted that emulation, reset, NMI, and exception events, as
well as hardware error (1VHW) and core timer (IVTMR) interrupt requests,
enter the interrupt processing chain at the ILAT level and are not affected
by the system-level interrupt registers (SIC_IWR, SIC_ISR, SIC_IMASK,
SIC_IAR).

If multiple interrupt sources share a single core interrupt, then the inter-
rupt service routine (ISR) must identify the peripheral that generated the

ADSP-BF59x Blackfin Processor Hardware Reference 4-9



System Interrupt Controller Registers

interrupt. The ISR may then need to interrogate the peripheral to deter-
mine the appropriate action to take.

EMU
RESET
| NMI
| EVX
"INTERRUPT IVTMR
A" | IVHW
() PERIPHERAL : CORE
INTERRUPT
> REQUESTS SYSTEM ASSIGN CORE INT?E%FI;ILEJPT EVENT
INTERRUPT |=—>| SYSTEM ‘l:;> status = "NTERRY VECTOR
MASK PRIORITY (ILAT) TABLE
(SIC_IMASK) (SIC_IAR) (IMASK) (EVT[15:0])
A
SYSTEM SYSTEM CORE
WAKEUP STATUS PENDING
(SIC_IWR) | | (SIC_ISR) (IPEND)

TO DYNAMIC POWER
—> MANAGEMENT
CONTROLLER

SYSTEM INTERRUPT CONTROLLER CORE EVENT CONTROLLER

NOTE: NAMES IN PARENTHESES ARE MEMORY-MAPPED REGISTERS.

Figure 4-1. Interrupt Processing Block Diagram

System Interrupt Controller Registers

The SIC registers are described in the following sections.

These registers can be read from or written to at any time in supervisor
mode. It is advisable, however, to configure them in the reset interrupt
service routine before enabling interrupts. To prevent spurious or lost
interrupt activity, these registers should be written to only when all
peripheral interrupts are disabled.

4-10 ADSP-BF59x Blackfin Processor Hardware Reference



System Interrupts

System Interrupt Assignment (SIC_IAR) Register

The SIC_IAR register maps each peripheral interrupt ID to a correspond-
ing IVG priority level. This is accomplished with 4-bit groupings that
translate to IVG levels as shown in Table 4-2 and Figure 4-2 on

page 4-11. In other words, Table 4-2 defines the value to write in a 4-bit
field within SIC_IAR in order to configure a peripheral interrupt ID for a
particular IVG priority. Refer to Table 4-1 on page 4-3 for information
on SIC_IAR mappings for this specific processor.

System Interrupt Assignment Register (SIC_IAR)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
[ofofolofofofoofofoofodofo]e]o]
L Il I

|
|— ID Grouping 4

ID Grouping 7
ID Grouping 6 — D Grouping5

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

|o|o|o|o|0|o|o|o|o|o|o|o o|o|o|o|

[ |

ID Grouping 3 ! _ | ! l I—llDGroupingo

ID Grouping 2

ID Grouping 1

Figure 4-2. System Interrupt Assignment Register

Table 4-2. IVG Select Definitions

General-purpose Interrupt |Value in SIC_IAR
IVG7 0
IVGS8 1
IVGY 2
IVG10 3
IVG11 4
IVG12 5

ADSP-BF59x Blackfin Processor Hardware Reference 4-11



System Interrupt Controller Registers

Table 4-2. IVG Select Definitions (Continued)

General-purpose Interrupt |Value in SIC_IAR

IVG13 6
IVG14 7
IVG15 8

System Interrupt Mask (SIC_IMASK) Register

The SIC_IMASK register masks or enables peripheral interrupts at the sys-
tem level. A "0" in a bit position masks off (disables) interrupts for that
particular peripheral interrupt ID. A "1" enables interrupts for that inter-
rupt ID. Refer to Table 4-1 on page 4-3 and Table 4-2 on page 4-11 for
information on how peripheral interrupt IDs are mapped to the
SIC_IMASK register(s) for this particular processor.

System Interrupt Status (SIC_ISR) Register

The SIC_ISR register keeps track of system interrupts that are asserted but
not yet serviced. A "0" in a bit position indicates that a particular inter-
rupt is deasserted. A "1" indicates that it is asserted. Refer to Table 4-1 on
page 4-3 and Table 4-2 on page 4-11 for information on how peripheral

interrupt IDs are mapped to the SIC_ISR register(s) for this particular
processor.

System Interrupt Wakeup-Enable (SIC_IWR)
Register

The SIC_IWR register allows an interrupt request to wake up the processor
core from an idled state. A "0" in a bit position indicates that a particular
peripheral interrupt ID is not configured to wake the core (upon assertion
of the interrupt request). A "1" indicates that it is configured to do so.
Refer to Table 4-1 on page 4-3 and Table 4-2 on page 4-11 for informa-

4-12 ADSP-BF59x Blackfin Processor Hardware Reference



System Interrupts

tion on how peripheral interrupt IDs are mapped to the SIC_IWR
register(s) for this particular processor.

Programming Examples

The following section provides an example for servicing interrupt
requests.

Clearing Interrupt Requests

When the processor services a core event it automatically clears the
requesting bit in the ILAT register and no further action is required by the
interrupt service routine. It is important to understand that the SIC con-
troller does not provide any interrupt acknowledgment feedback
mechanism from the CEC controller back to the peripherals. Although
the ILAT bits clear in the same way when a peripheral interrupt is serviced,
the signalling peripheral does not release its level-sensitive request until it
is explicitly instructed by software. If however, the peripheral keeps
requesting, the respective ILAT bit is set again immediately and the service
routine is invoked again as soon as its first run terminates by an RTI
instruction.

Every software routine that services peripheral interrupts must clear the
signalling interrupt request in the respective peripheral. The individual
peripherals provide customized mechanisms for how to clear interrupt
requests. Receive interrupts, for example, are cleared when received data is
read from the respective buffers. Transmit requests typically clear when
software (or DMA) writes new data into the transmit buffers. These
implicit acknowledge mechanisms avoid the need for cycle-consuming
software handshakes in streaming interfaces. Other peripherals such as
timers, GPIOs, and error requests require explicit acknowledge instruc-
tions, which are typically performed by efficient W1C (write-1-to-clear)
operations.

ADSP-BF59x Blackfin Processor Hardware Reference 4-13



Programming Examples

Listing 4-1 shows a representative example of how a GPIO interrupt
request might be serviced.

Listing 4-1. Servicing GPIO Interrupt Request

#include <defBF527.h>
/*ADSP-BF527 product is used as an example*/
.section program;
_portg_a_isr:
/* push used registers */
[--sp]l = (r7:7, p5:5);
/* clear interrupt request on GPIO pin PGZ2 */
/* no matter whether used A or B channel */
p5.1 = To(PORTGIO_CLEAR);
p5.h = hi(PORTGIO_CLEAR);
r7 = PG2;
wlp5] = r7;

/* place user code here */

/* sync system, pop registers and exit */
ssync;
(r7:7, p5:5) = [sp++];
rti;
_portg_a_isr.end:

The W1C instruction shown in this example may require several SCLK
cycles to complete, depending on system load and instruction history. The
program sequencer does not wait until the instruction completes and con-
tinues program execution immediately. The SSYNC instruction ensures that
the W1C command indeed cleared the request in the GPIO peripheral
before the RTT instruction executes. However, the SSYNC instruction does
not guarantee that the release of interrupt request has also been recognized
by the CEC controller, which may require a few more CCLK cycles depend-
ing on the CCLK-to-SCLK ratio. In service routines consisting of a few

4-14 ADSP-BF59x Blackfin Processor Hardware Reference



System Interrupts

instructions only, two SSYNC instructions are recommended between the
clear command and the RTT instruction. However, one SSYNC instruction
is typically sufficient if the clear command performs in the very beginning
of the service routine, or the SSYNC instruction is followed by another set
of instructions before the service routine returns. Commonly, a pop-mul-
tiple instruction is used for this purpose as shown in Listing 4-1.

The level-sensitive nature of peripheral interrupts enables more than one
of them to share the same IVG channel and therefore the same interrupt
priority. This is programmable using the assignment registers. Then a
common service routine typically interrogates the SIC_ISR register to
determine the signalling interrupt source. If multiple peripherals are
requesting interrupts at the same time, it is up to the service routine to
either service all requests in a single pass or to service them one by one. If
only one request is serviced and the respective request is cleared by soft-
ware before the RTT instruction executes, the same service routine is
invoked another time because the second request is still pending. While
the first approach may require fewer cycles to service both requests, the
second approach enables higher priority requests to be serviced more
quickly in a non-nested interrupt system setup.

Unique Information for the ADSP-BF59x
Processor

This section describes Interfaces and System Peripheral Interrupts that are

unique to the ADSP-BF59x processor.

ADSP-BF59x Blackfin Processor Hardware Reference 4-15



Unique Information for the ADSP-BF59x Processor

Interfaces

Figure 4-3 provides an overview of how the individual peripheral inter-
rupt request lines connect to the SIC.

- IVG6
> IVG5
> IVG3
> IVG2
> IVG1
> IVGO

o
2
w
$
=
I | ILAT |
PLL WAKEUP
DMA ERROR (GENERIC) 1
PPISTATUS —2& H H
spoRrTosTATUS —3{ H H
sporTisTaTus —3  H  H
— s 4 4
SPI0 STATUS
sPi1 sTATUS —& H H
UARTO STATUS

NMI —]
RESET —
EMULATION —

EXCEPTIONS —

CORETIMER —

HARDWARE ERROR —

SIC_IARO

8

DMAO (PPI)
DMA1 (SPORTO RX)
DMA2 (SPORTOTXY) —1& H H
DMA3 (SPORT1 RX) —L1 H H
DMA4 (SPORTITX) —2 _ H _ H
DMAS5 (SPI0 RX/TX)
DMAG (SPI1 RX/TX)

DMA7 (UARTO RX)

SIC_IAR1

SIC_IWRO

SIC_ISRO

15

SIC_IMASKO

DMAS (UARTOTX) —16

PORT F INTERRUPT A
PORT F INTERRUPT B

18|

GPTIMER 0 —1

GPTIMER1 —22f H L
21|
22|

I
I
SIC_IAR2

GPTIMER 2
PORT G INTERRUPT A HooH
PORT G INTERRUPT B —22 H H

TWI —=—

24
RESERVED —23
RESERVED ——26]
RESERVED ——27
RESERVED —=28 H H
29/
—30{
31

0-¢

I
I
&
SIC_IAR3

DMA 12/13 (MEM DMA STREAM 0)
DMA 14/15 (MEM DMA STREAM 1)
WATCHDOG TIMER

Figure 4-3. Interrupt Routing Overview

4-16 ADSP-BF59x Blackfin Processor Hardware Reference



System Interrupts

Figure 4-3 shows how the eight SIC_IAR registers control the assignment
to the nine available peripheral request inputs of the CEC.

The memory-mapped ILAT, IMASK, and IPEND registers are part of
the CEC controller.

System Peripheral Interrupts

Table 4-3 shows the peripheral interrupt events, the default mapping of
each event, the peripheral interrupt ID used in the system interrupt
assignment registers (SIC_IAR), and the core interrupt ID.

Note that the system interrupt to core event mappings shown are the
default values at reset and can be changed by software.

The peripheral interrupt structure of the processor is flexible. Upon reset,
multiple peripheral interrupts share a single, general-purpose interrupt in

the core by default, as shown in Table 4-3.

An interrupt service routine that supports multiple interrupt sources must
interrogate the appropriate system memory mapped registers (MMRs) to
determine which peripheral generated the interrupt.

Table 4-3. Peripheral Interrupt Events

Peripheral |Bit Position for |SIC_IAR3-0 Interrupt Source Default
ID Number |SIC_ISRO, Mapping
SIC_IMASKO,
SIC_IWRO
31 Bit 31 SIC_IAR3[31:28] | Watchdog Timer IVG13
30 Bit 30 SIC_IAR3[27:24] | DMA 14/15 (Mem DMA Stream 1) IVG13
29 Bit 29 SIC_IAR3[23:20] | DMA 12/13 (Mem DMA Stream 0) IVG13
28 Bit 28 SIC_IAR3[19:16] | Reserved IVG7
27 Bit 27 SIC_IAR3[15:12] | Reserved IVG7
26 Bit 26 SIC_IAR3[11:8] Reserved IVG7

ADSP-BF59x Blackfin Processor Hardware Reference

4-17



Unique Information for the ADSP-BF59x Processor

Table 4-3. Peripheral Interrupt Events (Continued)

Peripheral |Bit Position for |SIC_IAR3-0 Interrupt Source Default

ID Number |SIC_ISRO, Mapping
SIC_IMASKO,
SIC_IWRO

25 Bit 25 SIC_IAR3[7:4] Reserved IVG7
24 Bit 24 SIC_IAR3[3:0] TWI IVG12
23 Bit 23 SIC_IAR2[31:28] | Port G Interupt B IVG12
22 Bit 22 SIC_IAR2[27:24] | Port G Interrupt A IVG12
21 Bit 21 SIC_IAR2[23:20] | GP Timer 2 IVG11
20 Bit 20 SIC_IAR2[19:16] | GP Timer 1 IVG11
19 Bit 19 SIC_IAR2[15:12] | GP Timer 0 IVG11
18 Bit 18 SIC_IAR2[11:8] Port F Interrupt B IVGI11
17 Bit 17 SIC_IAR2[7:4] Port F Interrupt A IVGI11
16 Bit 16 SIC_IAR2[3:0] DMAS8 (UARTO0 TX) IVG10
15 Bit 15 SIC_IAR1[31:28] | DMA7 (UARTO0 RX) IVG10
14 Bit 14 SIC_IAR1[27:24] | DMAG (SPI1 RX/TX) IVG10
13 Bit 13 SIC_IAR1[23:20] | DMAS5 (SPI0 RX/TX) IVG10
12 Bit 12 SIC_IARI1[19:16] | DMA4 (SPORT1 TX) IVG9
11 Bit 11 SIC_IAR1[15:12] | DMA3 (SPORT1 RX) IVG9
10 Bit 10 SIC_IARI1[11:8] DMA2 (SPORTO0 TX) IVG9
9 Bit 9 SIC_IAR1[7:4] DMA1 (SPORTO0 RX) IVG9
8 Bit 8 SIC_IAR1[3:0] DMAO (PPI) IVG8
7 Bit 7 SIC_IARO[31:28] | UARTO Status IVG7
6 Bit 6 SIC_IARO[27:24] | SPII Status IVG7

5 Bit 5 SIC_IAR0[23:20] | SPIO Status IVG7
4 Bit 4 SIC_IARO[19:16] | SPORT1 Status IVG7

3 Bit 3 SIC_IARO[15:12] | SPORTO Status IVG7

4-18 ADSP-BF59x Blackfin Processor Hardware Reference




Table 4-3. Peripheral Interrupt Events (Continued)

System Interrupts

Peripheral |Bit Position for |SIC_IAR3-0 Interrupt Source Default
ID Number |SIC_ISRO, Mapping
SIC_IMASKO,
SIC_IWRO
2 Bit 2 SIC_IARO[11:8] PPI Status IVG7
1 Bit 1 SIC_IARO[7:4] DMA Error (generic) IVG7
0 Bit 0 SIC_IARO([3:0] PLL Wakeup IVG7

ADSP-BF59x Blackfin Processor Hardware Reference

4-19



Unique Information for the ADSP-BF59x Processor

4-20 ADSP-BF59x Blackfin Processor Hardware Reference



5 DIRECT MEMORY ACCESS

This chapter describes the direct memory access (DMA) controller. Fol-
lowing an overview and list of key features is a description of operation
and functional modes of operation. The chapter concludes with a pro-
gramming model, consolidated register definitions, and programming
examples.

This chapter describes the features common to all the DMA channels, as
well as how DMA operations are set up. For specific peripheral features,

see the appropriate peripheral chapter for additional information. Perfor-
mance and bus arbitration for DMA operations can be found in

Chapter 3, “Chip Bus Hierarchy”.

Specific Information for the ADSP-BF59x

For details regarding the number of DMA controllers for the
ADSP-BF59x product, please refer to the ADSP-BF592 Blackfin Processor
Data Sheet.

For DMA interrupt vector assignments, refer to Table 4-3 on page 4-17 in
Chapter 4, “System Interrupts”.

To determine how each of the DMAs is multiplexed with other functional
pins, refer to Table 7-1 on page 7-3 through Table 7-2 on page 7-4 in
Chapter 7, “General-Purpose Ports”.

For a list of MMR addresses for each DMA, refer to Chapter A, “System
MMR Assignments”.

ADSP-BF59x Blackfin Processor Hardware Reference 5-1



Overview and Features

DMA controller behavior for the ADSP-BF59x that differs from the gen-
eral information in this chapter can be found in the section “Unique
Information for the ADSP-BF59x Processor” on page 5-105

Overview and Features

The processor uses DMA to transfer data between memory spaces or
between a memory space and a peripheral. The processor can specify data
transfer operations and return to normal processing while the fully inte-
grated DMA controller carries out the data transfers independent of
processor activity.

The DMA controller can perform several types of data transfers:

Peripheral DMA transfers data between memory and on-chip
peripherals.

Memory DMA (MDMA) transfers data between memory and
memory. The processor has two MDMA modules, each consisting
of independent memory read and memory write channels.

Handshaking memory DMA (HMDMA) transfers data between
off-chip peripherals and memory. This enhancement of the
MDMA channels enables external hardware to control the timing
of individual data transfers or block transfers.

The HMDMA feature is not available for all products. Refer to
“Unique Information for the ADSP-BF59x Processor” on
page 5-105 to determine whether it applies to this product.

5-2

ADSP-BF59x Blackfin Processor Hardware Reference



Direct Memory Access

All DMAs can transport data to and from on-chip and off-chip memories,
including L1 and SDRAM. The L1 scratchpad memory cannot be
accessed by DMA.

SDRAM and SRAM are not available on all products. Refer to
“Unique Information for the ADSP-BF59x Processor” on
page 5-105 to determine whether it applies to this product.

DMA transfers on the processor can be descriptor-based or register-based.

Register-based DMA allows the processor to directly program DMA con-
trol registers to initiate a DMA transfer. On completion, the control
registers may be automatically updated with their original setup values for
continuous transfer, if needed.

Descriptor-based DMA transfers require a set of parameters stored within
memory to initiate a DMA sequence. This sort of transfer allows the
chaining together of multiple DMA sequences. In descriptor-based DMA
operations, a DMA channel can be programmed to automatically set up
and start another DMA transfer after the current sequence completes.

Examples of DMA styles supported by flex descriptors include:
* Asingle linear buffer that stops on completion (FLOW = stop mode)

* A linear buffer with byte strides of any integer value, including
negative values (DMAX_X_MODIFY register)

* A circular, auto-refreshing buffer that interrupts on each full buffer

* A similar buffer that interrupts on fractional buffers (for example,

V5, 4) (2-D DMA)

* 1-D DMA, using a set of identical ping-pong buffers defined by a
linked ring of 3-word descriptors, each containing a link pointer
and a 32-bit address

ADSP-BF59x Blackfin Processor Hardware Reference 5-3



DMA Controller Overview

e 1-D DMA, using a linked list of 5-word descriptors containing a
link pointer, a 32-bit address, the buffer length, and a

configuration

e 2-D DMA, using an array of 1-word descriptors, specifying only
the base DMA address within a common data page

e 2-D DMA, using a linked list of 9-word descriptors specifying
everything

DMA Controller Overview

A block diagram of the DMA controller can be found in the “Unique
Information for the ADSP-BF59x Processor” on page 5-105.

External Interfaces

The DMA does not connect external memories and devices directly.
Rather, data is passed through the EBIU port. Any kind of device that is
supported by the EBIU can also be accessed by peripheral DMA or mem-
ory DMA operation. This is typically flash memory, SRAM, SDRAM,
FIFOs, or memory-mapped peripheral devices.

For products with handshaking MDMA (HMDMA), the operation is sup-
ported by two MDMA request input pins, DMARO and DMARL. The DMARO
pin controls transfer timing on the MDMAO destination channel. The DMARI
pin controls the destination channel of MDMAL. With these pins, external
FIFO devices, ADC or DAC converters, or other streaming or block-pro-
cessing devices can use the MDMA channels to exchange their data or
data buffers with the Blackfin processor memory.

5-4 ADSP-BF59x Blackfin Processor Hardware Reference



Direct Memory Access

Internal Interfaces

Figure 3-1 on page 3-2 shows the dedicated DMA buses used by the DMA
controller to interconnect L1 memory, the on-chip peripherals, and the

EBIU port.

The 16-bit DMA core bus (DCB) connects the DMA controller to a dedi-
cated port of L1 memory. L1 memory has dedicated DMA ports featuring
special DMA buffers to decouple DMA operation. See the Blackfin Proces-
sor Programming Reference for a description of the L1 memory
architecture. The DCB bus operates at core clock (CCLK) frequency. It is
the DMA controller’s responsibility to translate DCB transfers to the sys-
tem clock (SCLK) domain.

The 16-bit DMA access bus (DAB) connects the DMA controller to the
on-chip peripherals. This bus operates at SCLK frequency.

The 16-bit DMA external bus (DEB) connects the DMA controller to the
EBIU port. This bus is used for all peripheral and memory DMA transfers

to and from external memories and devices. It operates at SCLK frequency.

Transferred data can be 8-, 16-, or 32-bits wide. The DMA controller,

however, connects only to 16-bit buses.

Memory DMA can pass data every SCLK cycle between L1 memory and
the EBIU. Transfers from L1 memory to L1 memory require two cycles, as
the DCB bus is used for both source and destination transfers. Similarly,
transfers between two off-chip devices require EBIU and DEB resources
twice. Peripheral DMA transfers can be performed every other SCLK
cycle.

For more details on DMA performance see “DMA Performance” on

page 5-42.

ADSP-BF59x Blackfin Processor Hardware Reference 5-5



DMA Controller Overview

Peripheral DMA

The DMA controller features 12 channels that perform transfers between
peripherals and on-chip or off-chip memories. The user has full control
over the mapping of DMA channels and peripherals. The default DMA
channel priority and mapping, shown in Table 5-7 on page 5-107, can be
changed by altering the 4-bit PMAP field in the DMAX_PERIPHERAL_MAP regis-
ters for the peripheral DMA channels.

The default configuration should suffice in most cases, but there are some
cases where remapping the assignment can be helpful because of the DMA
channel priorities. When competing for any of the system buses, DMAO
has higher priority than DMA1, and so on. DMAI1 has the lowest prior-
ity of the peripheral DMA channels.

A 1:1 mapping should exist between DMA channels and peripher-
als. The user is responsible for ensuring that multiple DMA
channels are not mapped to the same peripheral and that multiple
peripherals are not mapped to the same DMA port. If multiple
channels are mapped to the same peripheral, only one channel is
connected (the lowest priority channel). If a nonexistent peripheral
(for example, OxF in the PMAP field) is mapped to a channel, that
channel is disabled—DMA requests are ignored, and no DMA
grants are issued. The DMA requests are also not forwarded from
the peripheral to the interrupt controller.

All peripheral DMA channels work completely independently from each
other. The transfer timing is controlled by the mapped peripheral.

Every DMA channel features its own 4-deep FIFO that decouples DAB
activity from DCB and DEB availability. DMA interrupt and descriptor
fetch timing is aligned with the memory side (DCB/DEB side) of the
FIFO. The user does, however, have an option to align interrupts with the
peripheral side (DAB side) of the FIFO for transmit operations. Refer to
the SYNC bit in the DMAx_CONFIG register for details.

5-6 ADSP-BF59x Blackfin Processor Hardware Reference



Direct Memory Access

Memory DMA

This section describes the two pairs of MDMA channels, which provide
memory-to-memory DMA transfers among the various memory spaces.
These include L1 memory and external synchronous/asynchronous
memories.

Each MDMA channel contains a DMA FIFO, an 8-word by 16-bit FIFO
block used to transfer data to and from either L1 or the DCB and DEB
buses. Typically, it is used to transfer data between external memory and
internal memory. It will also support DMA from the boot ROM on the
DEB bus. The FIFO can be used to hold DMA data transferred between

two L1 memory locations or between two external memory locations.
Each page of MDMA channels consists of:

* A source channel (for reading from memory)

* A destination channel (for writing to memory)

A memory-to-memory transfer always requires both the source and the
destination channel to be enabled. Each source/destination channel forms
a “stream,” and these two streams are hardwired for DMA priorities 12

through 15.
* Priority 12: MDMADO destination
* Priority 13: MDMAO source
e Priority 14: MDMALI destination
* Priority 15: MDMATI source

ADSP-BF59x Blackfin Processor Hardware Reference 5-7



DMA Controller Overview

MDMAO takes precedence over MDMAT1, unless round-robin scheduling
is used or priorities become urgent, as programmed by the DRQ bit field in
the HMDMA_CONTROL register.

It is illegal to program a source channel for memory write or a des-
tination channel for memory read.

The channels support 8-, 16-, and 32-bit memory DMA transfers, but
both ends of the MDMA connect to 16-bit buses. Source and destination
channels must be programmed to the same word size. In other words, the
MDMA transfer does not perform packing or unpacking of data; each
read results in one write. Both ends of the MDMA FIFO for a given
stream are granted priority at the same time. Each pair shares an 8-word
deep 16-bit FIFO. The source DMA engine fills the FIFO, while the des-
tination DMA engine empties it. The FIFO depth allows the burst
transfers of the external access bus (EAB) and DMA access bus (DAB) to
overlap, significantly improving throughput on block transfers between
internal and external memory. Two separate descriptor blocks are required
to supply the operating parameters for each MDMA pair, one for the
source channel and one for the destination channel.

Because the source and destination DMA engines share a single FIFO
buffer, the descriptor blocks must be configured to have the same data
size. It is possible to have a different mix of descriptors on both ends as
long as the total transfer count is the same.

To start a MDMA transfer operation, the MMRs for the source and desti-
nation channels are written, each in a manner similar to peripheral DMA.

The DMAX_CONFIG register for the source channel must be written
before the DMAXx_CONFIG register for the destination channel.

5-8 ADSP-BF59x Blackfin Processor Hardware Reference



Direct Memory Access

Handshaked Memory DMA (HMDMA) Mode

This feature is not available for all products. Refer to the “Unique Infor-
mation for the ADSP-BF59x Processor” on page 5-105 to determine
whether it applies to this product.

Handshaked operation applies only to memory DMA channels.

Normally, memory DMA transfers are performed at maximum speed.
Once started, data is transferred in a continuous manner until either the
data count expires or the MDMA is stopped. In handshake mode, the
MDMA does not transfer data automatically when enabled; it waits for an
external trigger on the MDMA request input signals. The DMARO input is
associated with MDMAGO and the DMART input with MDMAL. Once a trig-
ger event is detected, a programmable portion of data is transferred and
then the MDMA stalls again and waits for the next trigger.

Handshake operation is not only useful for controlling the timing of
memory-to-memory transfers, it also enables the MDMA to operate with
asynchronous FIFO-style devices connected to the EBIU port. The
Blackfin processor acknowledges a DMA request by a proper number of
read or write operations. It is up to the device connected to any of the
AMSx strobes to deassert or pulse the request signal and to decrement the
number of pending requests accordingly.

Depending on HMDMA operating mode, an external DMA request may
trigger individual data word transfers or block transfers. A block can con-
sist of up to 65535 data words. For best throughput, DMA requests can
be pipelined. The HMDMA controllers feature a request counter to
decouple request timing from the data transfers.

See “Handshaked Memory DMA Operation” on page 5-37 for a func-
tional description.

ADSP-BF59x Blackfin Processor Hardware Reference 5-9



Modes of Operation

Modes of Operation

The following sections describe the DMA operation.

Register-Based DMA Operation

Register-based DMA is the traditional kind of DMA operation. Software
configures the source or destination address and the length of the data to
be transferred to memory-mapped registers and then starts DMA
operation.

For basic operation, the software performs these steps:

Write the source or destination address to the 32-bit
DMAX_START_ADDR register.

Write the number of data words to be transferred to the 16-bit
DMAX_X_COUNT register.

Werite the address modifier to the 16-bit DMAXx_X_MODIFY register.
This is the two’s-complement value added to the address pointer
after every transfer. This value must always be initialized as there is
no default value. Typically, this register is set to 0x0004 for 32-bit
DMA transfers, to 0x0002 for 16-bit transfers, and to 0x0001 for
byte transfers.

Werite the operation mode to the DMAx_CONFIG register. These bits
in particular need to be changed as needed:

¢ The DMAEN bit enables the DMA channel.

e The WNR bit controls the DMA direction. DMAs that read
from memory (peripheral transmit DMAs and source chan-
nel MDMAG) keep this bit cleared. Peripheral receive
DMAs and destination channel MDMAs set this bit because
they write to memory.

5-10

ADSP-BF59x Blackfin Processor Hardware Reference



Direct Memory Access

¢ The WDSIZE bit controls the data word width for the trans-
fer. It can be 8-, 16-, or 32-bits wide.

* The DI_EN bit enables an interrupt when the DMA opera-
tion has finished.

* Set the FLOW field to 0x0 for stop mode or 0x1 for autobuffer
mode.

Once the DMAEN bit is set, the DMA channel starts its operation. While
running, the DMAx_CURR_ADDR and the DMAx_CURR_X_COUNT registers can be
monitored to determine the current progress of the DMA operation.
However they should not be used to synchronize software and hardware.

The DMAX_IRQ_STATUS register signals whether the DMA has finished
(DMA_DONE bit), whether a DMA error has occurred (DMA_ERR bit), and
whether the DMA is currently running (DMA_RUN bit). The DMA_DONE and
the DMA_ERR bits also function as interrupt latch bits. They must be cleared
by write-one-to-clear (W1C) operations by the interrupt service routine.

Stop Mode

In stop mode, the DMA operation is executed only once. When started,
the DMA channel transfers the desired number of data words and stops
itself when the transfer is complete. If the DMA channel is no longer used,
software should clear the DMAEN enable bit to disable the otherwise paused
channel. Stop mode is entered if the FLOW bit field in the DMA channel’s
DMAX_CONFIG register is 0. The NDSIZE field must always be 0 in this mode.

For receive (memory write) operation, the DMA_RUN bit functions almost
the same as the inverted DMA_DONE bit. For transmit (memory read) opera-
tion, however, the two bits have different timing. Refer to the description
of the SYNC bit in the DMAx_CONFIG register for details.

ADSP-BF59x Blackfin Processor Hardware Reference 5-11



Modes of Operation

Autobuffer Mode

In autobuffer mode, the DMA operates repeatedly in a circular manner. If
all data words have been transferred, the address pointer DMAx_CURR_ADDR

is reloaded automatically by the DMAXx_START_ADDR value. An interrupt may
also be generated.

Autobuffer mode is entered if the FLOW field in the DMAX_CONFIG register
is 1. The NDSIZE bit must be 0 in autobuffer mode.

Two-Dimensional DMA Operation

Register-based and descriptor-based DMA can operate in one-dimensional
mode or two-dimensional mode.

In two-dimensional (2-D) mode, the DMAx_X_COUNT register is accompa-
nied by the DMAX_Y_COUNT register, supporting arbitrary row and column
sizes up to 64K x 64K elements, as well as arbitrary DMAx_X_MODIFY and
DMAX_Y_MODIFY values up to +32K bytes. Furthermore, DMAx_Y_MODIFY can
be negative, allowing implementation of interleaved datastreams. The
DMAX_X_COUNT and DMAx_Y_COUNT values specify the row and column sizes,
where DMAXx_X_COUNT must be 2 or greater.

The start address and modify values are in bytes, and they must be aligned
to a multiple of the DMA transfer word size (WDSIZE[1:0] in
DMAX_CONFIG). Misalignment causes a DMA error.

The DMAX_X_MODIFY value is the byte-address increment that is applied
after each transfer that decrements the DMAx_CURR_X_COUNT register. The
DMAx_X_MODIFY value is not applied when the inner loop count is ended by
decrementing DMAx_CURR_X_COUNT from 1 to 0, except that it is applied on
the final transfer when DMAx_CURR_Y_COUNT is 1 and DMAx_CURR_X_COUNT
decrements from 1 to 0.

The DMAx_Y_MODIFY value is the byte-address increment that is applied
after each decrement of the DMAx_CURR_Y_COUNT register. However, the

5-12 ADSP-BF59x Blackfin Processor Hardware Reference



Direct Memory Access

DMAX_Y_MODIFY value is not applied to the last item in the array on which
the outer loop count (DMAx_CURR_Y_COUNT) also expires by decrementing
from 1 to 0.

After the last transfer completes, DMAx_CURR_Y_COUNT = 1,
DMAX_CURR_X_COUNT = 0, and DMAx_CURR_ADDR is equal to the last item’s
address plus DMAX_X_MODIFY.

If the DMA channel is programmed to refresh automatically (auto-
buffer mode), then these registers will be loaded from
DMAX_X_COUNT, DMAX_Y_COUNT, and DMAx_START_ADDR upon the first
data transfer.

The DI_SEL configuration bit enables DMA interrupt requests every time
the inner loop rolls over. If DI_SEL is cleared, but DI_EN is still set, only
one interrupt is generated after the outer loop completes.

Examples of Two-Dimensional DMA

Example 1: Retrieve a 16 x 8 block of bytes from a video frame buffer of
size (N x M) pixels:

DMAX_X_MODIFY =1

DMAX_X_COUNT = 16

DMAX_Y_MODIFY = N-15 (offset from the end of one row to the start of
another)

DMAX_Y_COUNT = 8

This produces the following address offsets from the start address:

0,1,2,...15,

NN+ 1, o000 N+ I5,
2N, 2N + 1,... 2N + 15,
IN, 7N+ 1,... 7N + 15,

ADSP-BF59x Blackfin Processor Hardware Reference 5-13



Modes of Operation

Example 2: Receive a video datastream of bytes,

(R,G,B pixels) x (N x M image size):

DMAX_X_MODIFY = (N * M)

DMAX_X_COUNT = 3

DMAX_Y_MODIFY =1 - 2(N * M) (negative)
DMAX_Y_COUNT = (N * M)

This produces the following address offsets from the start address:

0, (N* M), 2(N * M),
I, (N*M) + 1, 2(N*M) +1,
2, (N* M)+ 2, 2(N * M) + 2,

(N*M) -1, 2(N*M) -1, 3(N*M) -1,

Descriptor-based DMA Operation

In descriptor-based DMA operation, software does not set up DMA
sequences by writing directly into DMA controller registers. Rather, soft-
ware keeps DMA configurations, called descriptors, in memory. On
demand, the DMA controller loads the descriptor from memory and over-
writes the affected DMA registers by its own control. Descriptors can be
fetched from L1 memory using the DCB bus or from external memory

using the DEB bus.

A descriptor describes what kind of operation should be performed next
by the DMA channel. This includes the DMA configuration word as well
as data source/destination address, transfer count, and address modify val-
ues. A DMA sequence controlled by one descriptor is called a work unit.

Optionally, an interrupt can be requested at the end of any work unit by
setting the DI_EN bit in the configuration word of the respective
descriptor.

5-14 ADSP-BF59x Blackfin Processor Hardware Reference



Direct Memory Access

A DMA channel is started in descriptor-based mode by first writing the
32-bit address of the first descriptor into the DMAX_NEXT_DESC_PTR register
(or the DMAX_CURR_DESC_PTR in case of descriptor array mode) and then
performing a write to the DMAXx_CONFIG register that sets the FLOW field to
either 0x4, 0x6, or 0x7 and enables the DMAEN bit. This causes the DMA
controller to immediately fetch the descriptor from the address pointed to
by the DMAX_NEXT_DESC_PTR register. The fetch overwrites the DMAx_CONFIG
register again. If the DMAEN bit is still set, the channel starts DMA
processing.

The DFETCH bit in the DMAX_IRQ_STATUS register tells whether a descriptor
fetch is ongoing on the respective DMA channel. The
DMAX_CURR_DESC_PTR points to the descriptor value that is to be fetched
next.

Descriptor List Mode

Descriptor list mode is selected by setting the FLOW bit field in the DMA
channel’s DMAx_CONFIG register to either 0x6 (small descriptor mode)
or 0x7 (large descriptor mode). In either of these modes multiple descrip-
tors form a chained list. Every descriptor contains a pointer to the next
descriptor. When the descriptor is fetched, this pointer value is loaded
into the DMAx_NEXT_DESC_PTR register of the DMA channel. In
large descriptor mode this pointer is 32 bits wide. Therefore, the next
descriptor may reside in any address space accessible through the DCB
and DEB buses. In small descriptor mode this pointer is just 16 bits wide.
For this reason, the next descriptor must reside in the same 64K byte

address space as the first one because the upper 16 bits of the
DMAx_NEXT_DESC_PTR register are not updated.

Descriptor list modes are started by writing first to the
DMAX_NEXT_DESC_PTR register and then to the DMAx_CONFIG register.

ADSP-BF59x Blackfin Processor Hardware Reference 5-15



Modes of Operation

Descriptor Array Mode

Descriptor array mode is selected by setting the FLOW bit field in the
DMA channel’s DMAx_CONFIG register to 0x4. In this mode, the
descriptors do not contain further descriptor pointers. The initial
DMAx_CURR_DESC_PTR value is written by software. It points to an
array of descriptors. The individual descriptors are assumed to reside next
to each other and, therefore, their addresses are known.

Variable Descriptor Size

In any descriptor-based mode the NDSIZE field in the configuration word
specifies how many 16-bit words of the next descriptor need to be loaded
on the next fetch. In descriptor-based operation, NDSIZE must be
non-zero. The descriptor size can be any value from one entry (the lower
16 bits of DMAXx_START_ADDR only) to nine entries (all the DMA parame-
ters). Table 5-1 illustrates how a descriptor must be structured in
memory. The values have the same order as the corresponding MMR
addresses.

If, for example, a descriptor is fetched in array mode with NDSIZE = 0x5,
the DMA controller fetches the 32-bit start address, the DMA configura-
tion word, and the XCNT and xM0D values. However, it does not load YCNT
and YMOD. This might be the case if the DMA operates in one-dimensional
mode or if the DMA is in two-dimensional mode, but the YCNT and YMOD
values do not need to change.

All the other registers not loaded from the descriptor retain their prior val-
ues, although the DMAX_CURR_ADDR, DMAX_CURR_X_COUNT, and
DMAX_CURR_Y_COUNT registers are reloaded between the descriptor fetch and
the start of DMA operation.

Table 5-1 shows the offsets for descriptor elements in the three modes
described above. Note the names in the table describe the descriptor ele-
ments in memory, not the actual MMRs into which they are eventually

5-16 ADSP-BF59x Blackfin Processor Hardware Reference



Direct Memory Access

loaded. For more information regarding descriptor element acronyms, see

Table 5-4 on page 5-65.

Table 5-1. Parameter Registers and Descriptor Offsets

Descriptor Offset | Descriptor Array Mode |Small Descriptor List Mode |Large Descriptor List Mode
0x0 SAL NDPL NDPL

0x2 SAH SAL NDPH

0x4 DMACFG SAH SAL

0x6 XCNT DMACFG SAH

0x8 XMOD XCNT DMACEFG

0xA YCNT XMOD XCNT

0xC YMOD YCNT XMOD

0xE YMOD YCNT

0x10 YMOD

Note that every descriptor fetch consumes bandwidth from either the
DCB bus or the DEB bus and the external memory interface, so it is best
to keep the size of descriptors as small as possible.

Mixing Flow Modes

The FLOW mode of a DMA is not a global setting. If the DMA configura-
tion word is reloaded with a descriptor fetch, the FLOW and NDSIZE bit
fields can also be altered. A small descriptor might be used to loop back to
the first descriptor if a descriptor array is used in an endless manner. If the
descriptor chain is not endless and the DMA is required to stop after a cer-
tain descriptor has been processed, the last descriptor is typically processed

in stop mode. That is, its FLOW and NDSIZE fields are 0, but its DMAEN bit is
still set.

ADSP-BF59x Blackfin Processor Hardware Reference 5-17




Functional Description

Functional Description

The following sections provide a functional description of DMA.

DMA Operation Flow

Figure 5-1 and Figure 5-2 describe the DMA flow.

DMA Startup

This section discusses starting DMA “from scratch.” This is similar to
starting it after it has been paused by the FLOW = 0 mode.

Before initiating DMA for the first time on a given channel, all parameter
registers must be initialized . Be sure to initialize the upper 16 bits of the
DMAX_NEXT_DESC_PTR (or DMAX_CURR_DESC_PTR register in FLOW = 4 mode)
and DMAx_START_ADDR registers, because they might not otherwise be
accessed, depending upon the flow mode. Also note that the
DMAx_X_MODIFY and DMAx_Y_MODIFY registers are not preset to a default
value at reset.

The user may wish to write other DMA registers that might be static dur-
ing DMA activity (for example, DMAX_X_MODIFY, DMAx_Y_MODIFY). The
contents of NDSIZE and FLOW in DMAx_CONFIG indicate which registers, if
any, are fetched from descriptor elements in memory. After the descriptor

5-18 ADSP-BF59x Blackfin Processor Hardware Reference



Direct Memory Access

fetch, if any, is completed, DMA operation begins, initiated by writing

DMAX_CONFIG with DMAEN = 1.

USER WRITES SOME OR ALL DMA PARAMETER
REGISTERS, AND THEN WRITES DMA_CONFIG

'

BAD DMA_CONFIG?

DMA ERROR

DMAEN= 0
TEST DMAEN DI_EN =0 OR
(DI_LEN =1 AND
DMAEN =1 DMA_DONE_IRQ =1)
- c
Y
SET DMA_RUN IN IRQ_STATUS
A v
DMA STOPPED. FLOW =0 OR 1
CLEAR DMA_RUN IN TEST FLOW > A
IRQ_STATUS

FLOW =4,6,0R 7
SET DFETCH IN IRQ_STATUS w—@

'

COPY FLOW, NDSIZE FROM DMA_CONFIG
INTO TEMPORARY DESCRIPTOR FETCH COUNTERS

{

FLOW =6 OR 7

COPY NEXT DESCRIPTOR POINTER
TO CURRENT DESCRIPTOR POINTER

Figure 5-1. DMA Flow, From DMA Controller’s Point of View (1 of 2)

ADSP-BF59x Blackfin Processor Hardware Reference 5-19



Functional Description

o)
¥

NDSIZE = 0 OR
NDSIZE > MAX_SIZE* DMA
TEST NDSIZE |  ABORT
OCCURS
NDSIZE > 0 AND
NDSIZE <= MAX_SIZE*
READ NDSIZE ELEMENTS
OF DESCRIPTOR INTO
PARAMETER REGISTERS
VIA CURRENT
DESCRIPTOR POINTER
FLOW=00R 1 —
A Vv
CLEAR DFETCH IN
IRQ_STATUS
DMA TRANSFER
BEGINS AND
CONTINUES UNTIL
COUNTS EXPIRE
».| DATA FROM
TEST SYNC, WNR FIFOTO
sYNe =0 O ONTIL EWPTY
MEMORY WRITE
SIGNAL AN
INTERRUPT
TO THE CORE

!

SET DMA_DONE
IN IRQ_STATUS

SYNC=0& TRANSFER
MEMORY READ DATA FROM
FIFOTO
PERIPHERAL
UNTIL EMPTY

__ MEMORY WRITE (DESTINATION)

FLOW =1
FLOW =4,6,7
B —
TEST SYNC, WNR
SYNC =10R
MEMORY WRITE
Y
DMA STOPPED.
CLEAR DMA_RUN IN
IRQ_STATUS.

*MAX SIZE DEPENDS ON FLOW
IF FLOW = 4, MAX_SIZE =7
IF FLOW = 6, MAX_SIZE = 8
IF FLOW = 7, MAX_SIZE = 9

Figure 5-2. DMA Flow, From DMA Controller’s Point of View (2 of 2)

5-20

ADSP-BF59x Blackfin Processor Hardware Reference



Direct Memory Access

When DMAX_CONFIG is written directly by software, the DMA controller
recognizes this as the special startup condition that occurs when starting
DMA for the first time on this channel or after the engine has been
stopped (FLOW = 0).

When the descriptor fetch is complete and DMAEN = 1, the DMACFG descrip-
tor element that was read into DMAx_CONFIG assumes control. Before this
point, the direct write to DMAx_CONFIG had control. In other words, the
WDSTZE, DI_EN, DI_SEL, SYNC, and DMA2D fields will be taken from the
DMACFG value in the descriptor read from memory, while these field values
initially written to the DMAx_CONFIG register are ignored.

As Figure 5-1 on page 5-19 and Figure 5-2 on page 5-20 show, at startup
the FLOW and NDSIZE bits in DMAx_CONFIG determine the course of the
DMA setup process. The FLOW value determines whether to load more cur-
rent registers from descriptor elements in memory, while the NDSIZE bits
detail how many descriptor elements to fetch before starting DMA. DMA
registers not included in the descriptor are not modified from their prior
values.

If the FLOW value specifies small or large descriptor list modes, the
DMAX_NEXT_DESC_PTR is copied into DMAx_CURR_DESC_PTR. Then, fetches of
new descriptor elements from memory are performed, indexed by
DMAX_CURR_DESC_PTR, which is incremented after each fetch. If NDPL
and/or NDPH is part of the descriptor, then these values are loaded into
DMAX_NEXT_DESC_PTR, but the fetch of the current descriptor continues
using DMAX_CURR_DESC_PTR. After completion of the descriptor fetch,
DMAX_CURR_DESC_PTR points to the next 16-bit word in memory past the
end of the descriptor.

If neither NDPH nor NDPL are part of the descriptor (that is, in descriptor
array mode, FLOW = 4), then the transfer from NDPH/NDPL into
DMAX_CURR_DESC_PTR does not occur. Instead, descriptor fetch indexing
begins with the value in DMAXx_CURR_DESC_PTR.

ADSP-BF59x Blackfin Processor Hardware Reference 5-21



Functional Description

If DMACFG is not part of the descriptor, the previous DMAx_CONFIG settings
(as written by MMR access at startup) control the work unit operation. If
DMACFG is part of the descriptor, then the DMAx_CONFIG value programmed
by the MMR access controls only the loading of the first descriptor from
memory. The subsequent DMA work operation is controlled by the low
byte of the descriptor’s DMACFG and by the parameter registers loaded from
the descriptor. The bits DI_EN, DI_SEL, DMA2D, WDSIZE, and WNR in the value
programmed by the MMR access are disregarded.

The DMA_RUN and DFETCH status bits in the DMAXx_IRQ_STATUS register indi-
cate the state of the DMA channel. After a write to DMAx_CONFIG, the
DMA_RUN and DFETCH bits can be automatically set to 1. No data interrupts
are signaled as a result of loading the first descriptor from memory.

After the above steps, DMA data transfer operation begins. The DMA
channel immediately attempts to fill its FIFO, subject to channel prior-
ity—a memory write (RX) DMA channel begins accepting data from its
peripheral, and a memory read (TX) DMA channel begins memory reads,

provided the channel wins the grant for bus access.

When the DMA channel performs its first data memory access, its address
and count computations take their input operands from the start registers
(DMAX_START_ADDR, DMAX_X_COUNT, DMAX_Y_COUNT), and write results back
to the current registers (DMAx_CURR_ADDR, DMAX_CURR_X_COUNT,
DMAX_CURR_Y_COUNT). Note also that the current registers are not valid
until the first memory access is performed, which may be some time after
the channel is started by the write to the DMA_CONFIG register. The current
registers are loaded automatically from the appropriate descriptor ele-
ments, overwriting their previous contents, as follows.

* DMAx_START_ADDR is Copied to DMAx_CURR_ADDR
* DMAX_X_COUNT is Copied to DMAx_CURR_X_COUNT

* DMAX_Y_COUNT is Copied to DMAx_CURR_Y_COUNT

5-22 ADSP-BF59x Blackfin Processor Hardware Reference



Direct Memory Access

Then DMA data transfer operation begins, as shown in Figure 5-2 on
page 5-20.

DMA Refresh

On completion of a work unit:

The DMA controller completes the transfer of all data between
memory and the DMA unit.

If SYNC = 1 and WNR = 0 (memory read), the DMA controller selects
a synchronized transition and transfers all data to the peripheral
before continuing.

If enabled by DI_EN, the DMA controller signals an interrupt to the
core and sets the DMA_DONE bit in the channel’s DMAX_IRQ_STATUS
register.

If FLOW = 0 the DMA controller stops operation by clearing the
DMA_RUN bit in DMAx_IRQ_STATUS register after all data in the chan-
nel’s DMA FIFO has been transferred to the peripheral.

During the fetch in FLOW modes 4, 6, and 7, the DMA controller
sets the DFETCH bit in DMAx_IRQ_STATUS register to 1. At this point,
the DMA operation depends on whether FLOW = 4, 6, or 7, as fol-
lows:

If FLOW = 4 (descriptor array) the DMA controller loads a new
descriptor from memory into the DMA registers using the contents
of DMAX_CURR_DESC_PTR, and increments DMAx_CURR_DESC_PTR. The
descriptor size comes from the NDSIZE field of the DMAX_CONFIG reg-
ister prior to the beginning of the fetch.

If FLOW = 6 (small descriptor list) the DMA controller copies the
32-bit DMAX_NEXT_DESC_PTR into DMAx_CURR_DESC_PTR. Next, the
DMA controller fetches a descriptor from memory into the DMA

ADSP-BF59x Blackfin Processor Hardware Reference 5-23



Functional Description

registers using the new contents of DMAx_CURR_DESC_PTR, and incre-
ments DMAx_CURR_DESC_PTR. The first descriptor element that is
loaded is a new 16-bit value for the lower 16 bits of
DMAX_NEXT_DESC_PTR, followed by the rest of the descriptor ele-
ments. The high 16 bits of DMAx_NEXT_DESC_PTR will retain their
former value. This supports a shorter, more efficient descriptor
than the large descriptor list model, which is suitable whenever the
application can place the channel’s descriptors in the same 64K
byte range of memory.

If FLow = 7 (large descriptor list) the DMA controller copies the
32-bit DMAX_NEXT_DESC_PTR into DMAx_CURR_DESC_PTR. Next, the
DMA controller fetches a descriptor from memory into the DMA
registers using the new contents of DMAx_CURR_DESC_PTR, and incre-
ments DMAx_CURR_DESC_PTR. The first descriptor element that is
loaded is a new 32-bit value for the full DMAX_NEXT_DESC_PTR, fol-
lowed by the rest of the descriptor elements. The high 16 bits of
DMAX_NEXT_DESC_PTR may differ from their former value. This sup-
ports a fully flexible descriptor list which can be located anywhere
in internal memory or external memory.

If it is necessary to link from a descriptor chain whose descriptors
are in one 64K byte area to another chain whose descriptors are
outside that area, only the descriptor containing the link to the new
64K byte range needs to use FLOW = 7. All descriptors that reference
the same 64K byte area may use FLOW = 0.

If FLOW = 4, 6, or 7 (descriptor array, small descriptor list, or large
descriptor list, respectively), the DMA controller clears the DFETCH
bit in the DMAX_IRQ_STATUS register.

If FLOW = any value but 0 (Stop), the DMA controller begins the
next work unit for that channel, which must contend with other
channels for priority on the memory buses. On the first memory
transfer of the new work unit, the DMA controller updates the cur-

5-24

ADSP-BF59x Blackfin Processor Hardware Reference



Direct Memory Access

rent registers from the start registers:

DMAX_CURR_ADDR loaded from DMAx_START_ADDR
DMAX_CURR_X_COUNT loaded from DMAx_X_COUNT
DMAX_CURR_Y_COUNT loaded from DMAx_Y_COUNT
The DFETCH bit in the DMAX_IRQ_STATUS register is then cleared,
after which the DMA transfer begins again, as shown in Figure 5-2
on page 5-20.

Work Unit Transitions

Transitions from one work unit to the next are controlled by the SYNC bit
in the DMAX_CONFIG register of the work units. In general, continuous tran-
sitions have lower latency at the cost of restrictions on changes of data
format or addressed memory space in the two work units. These latency
gains and data restrictions arise from the way the DMA FIFO pipeline is
handled while the next descriptor is fetched. In continuous transitions
(SYNC = 0), the DMA FIFO pipeline continues to transfer data to and
from the peripheral or destination memory during the descriptor fetch
and/or when the DMA channel is paused between descriptor chains.

Synchronized transitions (SYNC = 1), on the other hand, provide better
real-time synchronization of interrupts with peripheral state and greater
flexibility in the data formats and memory spaces of the two work units, at
the cost of higher latency in the transition. In synchronized transitions,
the DMA FIFO pipeline is drained to the destination or flushed (RX data

discarded) between work units.

@ Work unit transitions for MDMA streams are controlled by the
SYNC bit of the MDMA source channel’s DMAx_CONFIG register. The
SYNC bit of the MDMA destination channel is reserved and must be
0. In transmit (memory read) channels, the SYNC bit of the last
descriptor prior to the transition controls the transition behavior.
In contrast, in receive channels, the SYNC bit of the first descriptor
of the next descriptor chain controls the transition.

ADSP-BF59x Blackfin Processor Hardware Reference 5-25



Functional Description

DMA Transmit and MDMA Source

In DMA transmit (memory read) and MDMA source channels, the SYNC
bit controls the interrupt timing at the end of the work unit and the han-

dling of the DMA FIFO between the current and next work units.

If SYNC = 0, a continuous transition is selected. In a continuous transition,
just after the last data item is read from memory, the following operations
start in parallel:

* The interrupt (if any) is signalled.
e The DMA_DONE bit in the DMAX_IRQ_STATUS register is set.

* The next descriptor begins to be fetched.

e The final data items are delivered from the DMA FIFO to the des-

tination memory or peripheral.

This allows the DMA to provide data from the FIFO to the peripheral

“continuously” during the descriptor fetch latency period.

When SYNC = 0, the final interrupt (if enabled) occurs when the last data is
read from memory. This interrupt is at the earliest time that the output
memory buffer may safely be modified without affecting the previous data
transmission. Up to four data items may still be in the DMA FIFO,
however, and not yet at the peripheral, so the DMA interrupt should not
be used as the sole means of synchronizing the shutdown or reconfigura-
tion of the peripheral following a transmission.

If SYNC = O (continuous transition) on a transmit (memory read)
descriptor, the next descriptor must have the same data word size,
read/write direction, and source memory (internal vs. external) as
the current descriptor.

SYNC = 0 selects continuous transition on a work unit in FLOW = 0 mode
with interrupt enabled. The interrupt service routine may begin execution

while the final data is still draining from the FIFO to the peripheral. This

5-26 ADSP-BF59x Blackfin Processor Hardware Reference



Direct Memory Access

is indicated by the DMA_RUN bit in the DMAXx_IRQ_STATUS register; if it is 1,
the FIFO is not empty yet. Do not start a new work unit with different
word size or direction while DMA_RUN = 1. Further, if the channel is dis-
abled (by writing DMAEN = 0), the data in the FIFO is lost.

SYNC = 1 selects a synchronized transition in which the DMA FIFO is first
drained to the destination memory or peripheral before any interrupt is
signalled and before any subsequent descriptor or data is fetched. This
incurs greater latency, but provides direct synchronization between the

DMA interrupt and the state of the data at the peripheral.

For example, if SYNC = 1 and DI_EN = 1 on the last descriptor in a work
unit, the interrupt occurs when the final data has been transferred to the
peripheral, allowing the service routine to properly switch to non-DMA
transmit operation. When the interrupt service routine is invoked, the
DMA_DONE bit is set and the DMA_RUN bit is cleared.

A synchronized transition also allows greater flexibility in the format of
the DMA descriptor chain. If SYNC = 1, the next descriptor may have any
word size or read/write direction supported by the peripheral and may
come from either memory space (internal or external). This can be useful
in managing MDMA work unit queues, since it is no longer necessary to
interrupt the queue between dissimilar work units.

DMA Receive

In DMA receive (memory write) channels, the SYNC bit controls the han-
dling of the DMA FIFO between descriptor chains (not individual
descriptors), when the DMA channel is paused. The DMA channel pauses
after descriptors with FLOW = 0 mode, and may be restarted (for example,
after an interrupt) by writing the channel’s DMAx_CONFIG register with
DMAEN = 1.

If the SYNC bit is O in the new work unit’s DMAx_CONFIG value, a continuous
transition is selected. In this mode, any data items received into the DMA
FIFO while the channel was paused are retained, and they are the first

ADSP-BF59x Blackfin Processor Hardware Reference 5-27



Functional Description

items written to memory in the new work unit. This mode of operation
provides lower latency at work unit transitions and ensures that no data
items are dropped during a DMA pause, at the cost of certain restrictions

on the DMA descriptors.

If the SYNC bit is 0 on the first descriptor of a descriptor chain after
a DMA pause, the DMA word size of the new chain must not
change from the word size of the previous descriptor chain active
before the pause, unless the DMA channel is reset between chains
by writing the DMAEN bit to 0 and then to 1 again.

If the SYNC bit is 1 in the new work unit’s DMAx_CONFIG value, a synchro-
nized transition is selected. In this mode, only the data received from the
peripheral by the DMA channel after the write to the DMAX_CONFIG register
are delivered to memory. Any prior data items transferred from the
peripheral to the DMA FIFO before this register write are discarded. This
provides direct synchronization between the data stream received from the
peripheral and the timing of the channel restart (when the DMAx_CONFIG
register is written).

For receive DMAs, the SYNC bit has no effect in transitions between work
units in the same descriptor chain (that is, when the previous descriptor’s
FLOW mode was not 0, so that DMA channel did not pause.)

If a descriptor chain begins with a SYNC bit of 1, there is no restriction on
DMA word size of the new chain in comparison to the previous chain.

@ The DMA word size must not change between one descriptor and

the next in any DMA receive (memory write) channel within a sin-
gle descriptor chain, regardless of the SYNC bit setting. In other
words, if a descriptor has WNR = 1 and FLOW = 4, 6, or 7, then the
next descriptor must have the same word size. For any DMA
receive (memory write) channel, there is no restriction on changes
of memory space (internal vs. external) between descriptors or

5-28 ADSP-BF59x Blackfin Processor Hardware Reference



Direct Memory Access

descriptor chains. DMA transmit (memory read) channels may
have such restrictions (see “DMA Transmit and MDMA Source”
on page 5-20).

Stopping DMA Transfers

In FLOW = 0 mode, DMA stops automatically after the work unit is
complete.

If a list or array of descriptors is used to control DMA, and if every
descriptor contains a DMACFG element, then the final DMACFG element
should have a FLOW = 0 setting to gracefully stop the channel.

In autobuffer (FLOW = 1) mode, or if a list or array of descriptors without
DMACFG elements is used, then the DMA transfer process must be termi-
nated by an MMR write to the DMAx_CONFIG register with a value whose
DMAEN bit is 0. A write of O to the entire register will always terminate
DMA gracefully (without DMA abort).

If a channel has been stopped abruptly by writing DMAx_CONFIG to O
(or any value with DMAEN = 0), the user must ensure that any mem-
ory read or write accesses in the pipelines have completed before
enabling the channel again. If the channel is enabled again before
an “orphan” access from a previous work unit completes, the state
of the DMA interrupt and FIFO is unspecified. This can generally
be handled by ensuring that the core allocates several consecutive
idle cycles in its usage of the relevant memory space to allow up to
three pending DMA accesses to issue, plus allowing enough mem-
ory access time for the accesses themselves to complete.

DMA Errors (Aborts)

The DMA controller flags conditions that cause the DMA process to end
abnormally (abort). This functionality is provided as a tool for system
development and debug to detect DMA-related programming errors.

DMA errors (aborts) are detected by the DMA channel module in the

ADSP-BF59x Blackfin Processor Hardware Reference 5-29



Functional Description

cases listed below. When a DMA error occurs, the channel is immediately
stopped (DMA_RUN goes to 0) and any prefetched data is discarded. In addi-
tion, a DMA_ERROR interrupt is asserted.

There is only one DMA_ERROR interrupt for the whole DMA controller,
which is asserted whenever any of the channels has detected an error
condition.

The DMA_ERROR interrupt handler must:

* Read each channel’s DMAx_IRQ_STATUS register to look for a channel
with the DMA_ERR bit set (bit 1).

* Clear the problem with that channel (for example, fix register
values).

e Clear the DMA_ERR bit (write DMAx_IRQ_STATUS with bit 1 set).

The following error conditions are detected by the DMA hardware and
result in a DMA abort interrupt.

e The configuration register contains invalid values:
e Incorrect WDSIZE value (WDSIZE = b#11)
e Bit 15 notsetto 0
e Incorrect FLOW value (FLOW = 2, 3, or 5)

* NDSIZE value does not agree with FLOW. See Table 5-2 on
page 5-32.

* A disallowed register write occurred while the channel was run-
ning. Only the DMAx_CONFIG and DMAX_IRQ_STATUS registers can be
written when DMA_RUN = 1.

5-30 ADSP-BF59x Blackfin Processor Hardware Reference



Direct Memory Access

* An address alignment error occurred during any memory access.
For example, when DMAx_CONFIG register WDSIZE = 1 (16-bit) but
the least significant bit (LSB) of the address is not equal to b#0, or
when WDSIZE = 2 (32-bit) but the two LSBs of the address are not
equal to b#00.

* A memory space transition was attempted (internal-to-external or
vice versa). For example, the value in the DMAX_CURR_ADDR register
or DMAx_CURR_DESC_PTR register crossed a memory boundary.

* A memory access error occurred. Either an access attempt was
made to an internal address not populated or defined as cache, or
an external access caused an error (signaled by the external memory
interface).

Some prohibited situations are not detected by the DMA hardware. No
DMA abort is signaled for these situations:

* DMAx_CONFIG direction bit (WNR) does not agree with the direction
of the mapped peripheral.

* DMAX_CONFIG direction bit does not agree with the direction of the
MDMA channel.

* DMAx_CONFIG word size (WDSIZE) is not supported by the mapped
peripheral. See Table 5-2 on page 5-32.

e DMAX_CONFIG word size in source and destination of the MDMA
stream are not equal.

ADSP-BF59x Blackfin Processor Hardware Reference 5-31



Functional Description

* Descriptor chain indicates data buffers that are not in the same
internal/external memory space.

e In2-D DMA, X_COUNT =1

Table 5-2. Legal NDSIZE Values

FLOW NDSIZE Note

0 0

1 0

4 0 < NDSIZEL 7 Descriptor array, no descriptor pointer fetched
6 0 < NDSIZE < 8 Descriptor list, small descriptor pointer fetched
7 0 < NDSIZE <9 Descriptor list, large descriptor pointer fetched

DMA Control Commands

Advanced peripherals, such as an Ethernet MAC module, are capable of
managing some of their own DMA operations, thus dramatically improv-
ing real-time performance and relieving control and interrupt demands on
the Blackfin processor core. These peripherals may communicate to the
DMA controller using DMA control commands, which are transmitted
from the peripheral to the associated DMA channel over internal DMA
request buses. Refer to “Unique Information for the ADSP-BF59x Proces-
sor” on page 5-105 to determine if DMA control commands are
applicable to a particular product.

The request buses consist of three wires per DMA-management-capable
peripheral. The DMA control commands extend the set of operations
available to the peripheral beyond the simple “request data” command
used by peripherals in general.

While these DMA control commands are not visible to or controllable by
the user, their use by a peripheral has implications for the structure of the
DMA transfers which that peripheral can support. It is important that

5-32 ADSP-BF59x Blackfin Processor Hardware Reference




Direct Memory Access

application software be written to comply with certain restrictions regard-
ing work units and descriptor chains (described later in this section) so
that the peripheral operates properly whenever it issues DMA control
commands.

MDMA channels do not service peripherals and therefore do not support
DMA control commands. The DMA control commands are shown in

Table 5-3.

Table 5-3. DMA Control Commands

Code |Name Description
000 | NOP No operation
001 | Restart Restarts the current work unit from the beginning
010 | Finish Finishes the current work unit and starts the next
011 |- Reserved
100 | Req Data Typical DMA data request
101 | Req Data Urgent DMA data request
Urgent
110 |- Reserved
111 |- Reserved

Additional information for the control commands includes:
e Restart

The Restart command causes the current work unit to interrupt
processing and start over, using the addresses and counts from
DMAx_START_ADDR, DMAx_X_COUNT, and
DMAx_Y_COUNT. No interrupt is signalled.

ADSP-BF59x Blackfin Processor Hardware Reference 5-33



Functional Description

If a channel programmed for transmit (memory read) receives a
Restart command, the channel momentarily pauses while any
pending memory reads initiated prior to the Restart command are
completed.

During this period of time, the channel does not grant DMA
requests. Once all pending reads have been flushed from the chan-
nel’s pipelines, the channel resets its counters and FIFO and starts
prefetch reads from memory. DMA data requests from the periph-
eral are granted as soon as new prefetched data is available in the
DMA FIFO. The peripheral can thus use the Restart command to

re-attempt a failed transmission of a work unit.

If a channel programmed for receive (memory write) receives a
Restart command, the channel stops writing to memory, discards
any data held in its DMA FIFO, and resets its counters and FIFO.
As soon as this initialization is complete, the channel again grants
DMA write requests from the peripheral. The peripheral can thus
use the Restart command to abort transfer of received data into a
work unit and re-use the memory buffer for a later data transfer.

Finish

The Finish command causes the current work unit to terminate
and move on to the next work unit. An interrupt is signalled as
usual, if selected by the DI_EN bit. The peripheral can thus use the
Finish command to partition the DMA stream into work units on
its own, perhaps as a result of parsing the data currently passing
though its supported communication channel, without direct
real-time control by the processor.

If a channel programmed for transmit (memory read) receives a
Finish command, the channel momentarily pauses while any pend-
ing memory reads initiated prior to the Finish command are
completed. During this period of time, the channel does not grant
DMA requests. Once all pending reads have been flushed from the

5-34

ADSP-BF59x Blackfin Processor Hardware Reference



Direct Memory Access

channel’s pipelines, the channel signals an interrupt (if enabled),
and begins fetching the next descriptor (if any). DMA data requests
from the peripheral are granted as soon as new prefetched data is

available in the DMA FIFO.

If a channel programmed for receive (memory write) receives a Fin-
ish command, the channel stops granting new DMA requests while
it drains its FIFO. Any DMA data received by the DMA controller
prior to the Finish command is written to memory. When the
FIFO reaches an empty state, the channel signals an interrupt (if
enabled) and begins fetching the next descriptor (if any). Once the
next descriptor has been fetched, the channel initializes its FIFO
and then resumes granting DMA requests from the peripheral.

* Request Data

The Request Data command is identical to the DMA request oper-
ation of peripherals that are not DMA-management-capable.

* Request Data Urgent

The Request Data Urgent command behaves identically to the
DMA Request command, except that the DMA channel performs
its memory accesses with urgent priority while it is asserted. This
includes both data and descriptor-fetch memory accesses. A
DMA-management-capable peripheral might use this command if
an internal FIFO is approaching a critical condition.

Restrictions

The proper operation of the 4-location DMA channel FIFO leads to cer-
tain restrictions in the sequence of DMA control commands.

Transmit Restart or Finish

No Restart or Finish command may be issued by a peripheral to a channel
configured for memory read unless the peripheral has already performed at

ADSP-BF59x Blackfin Processor Hardware Reference 5-35



Functional Description

least one DMA transfer in the current work unit and the current work
unit has more than four items remaining in DMAx_CURR_X_COUNT/
DMAx_CURR_Y_COUNT (thus not yet read from memory). Otherwise,
the current work unit may already have completed memory operations
and can no longer be restarted or finished properly.

If the DMAx_CURR_X_COUNT/ DMAx_CURR_Y_COUNT value of
the current work unit is sufficiently large that it is always at least five more
than the maximum data count prior to any Restart or Finish command,
the above restriction is satisfied. This implies that any work unit which
might be managed by Restart or Finish commands must have
DMAx_CURR_X_COUNT/ DMAx_CURR_Y_COUNT values repre-

senting at least five data items.

Particularly if the DMAx_CURR_X_COUNT/ DMAx_CURR_Y_COUNT registers are
programmed to 0 (representing 65,536 transfers, the maximum value) the

channel will operate properly for 1-D work units up to 65,531 data items
or 2-D work units up to 4,294,967,291 data items.

Receive Restart or Finish

No Restart or Finish command may be issued by a peripheral to a channel
configured for memory write unless either the peripheral has already per-
formed at least five DMA transfers in the current work unit or the
previous work unit was terminated by a Finish command and the periph-
eral has performed at least one DMA transfer in the current work unit. If
five data transfers have been performed, then at least one data item has
been written to memory in the current work unit, which implies that the
current work unit’s descriptor fetch completed before the data grant of the
fifth item. Otherwise, if less than five data items have been transferred, it
is possible that all of them are still in the DMA FIFO and the previous
work unit is still in the process of completion and transition between work
units.

Similarly, if a Finish command ended the previous work unit and at least
one subsequent DMA data transfer has occurred, then the fact that the

5-36 ADSP-BF59x Blackfin Processor Hardware Reference



Direct Memory Access

DMA channel issued the grant guarantees that the previous work unit has
already completed the process of draining its data to memory and transi-
tioning to the new work unit.

If a peripheral terminates all work units with the Finish opcode (effec-
tively assuming responsibility for all work unit boundaries for the DMA
channel), then the peripheral need only ensure that it performs a single
transfer in each work unit before any restart or finish. This requires, how-
ever, that the user programs the descriptors for all work units managed by
the channel with DMAX_CURR_X_COUNT/ DMAx_CURR_Y_COUNT values repre-
senting more data items than the maximum work unit size that the
peripheral will encounter. For example, DMAx_CURR_X_COUNT/
DMAX_CURR_Y_COUNT values of 0 allow the channel to operate properly on
1-D work units up to 65,535 data items and 2-D work units up to
4,294,967,295 data items.

Handshaked Memory DMA Operation

Handshaked memory DMA operation is not available for all products.
Refer to the “Unique Information for the ADSP-BF59x Processor” on
page 5-105 to determine whether this feature applies to this product.

Each DMARx input has its own set of control and status registers. Hand-
shake operation for MDMAQO is enabled by the HMDMAEN bit in the
HMDMAO_CONTROL register. Similarly, the HMDMAEN bit in the HMDMAL_CONTROL
register enables handshake mode for MDMAL.

It is important to understand that the handshake hardware works com-
pletely independently from the descriptor and autobuffer capabilities of
the MDMA, allowing most flexible combinations of logical data organiza-
tion vs. data portioning as required by FIFO depths, for example. If,

ADSP-BF59x Blackfin Processor Hardware Reference 5-37



Functional Description

however, the connected device requires certain behavior of the address
lines, these must be controlled by traditional DMA setup.

@ The HMDMA unit controls only the destination (memory write)
channel of the memory DMA. The source channel (memory-read
side) fills the 8-deep DMA buffers immediately after the receive

side is enabled and issues eight read commands.

The HMDMAX_BCINIT registers control how many data transfers are per-
formed upon every DMA request. If set to one, the peripheral can time
every individual data transfer. If greater than one, the peripheral must
have sufficient buffer size to provide or consume the number of words
programmed. Once the transfer has been requested, no further handshake
can hold off the DMA from transferring the entire block, except by stall-
ing the EBIU accesses by the ARDY signal. Nevertheless, the peripheral may
request a block transfer before the entire buffer is available by simply tak-
ing the minimum transfer time based on wait-state settings into
consideration.

The block count defines how many data transfers are performed by
the MDMA engine. A single DMA transfer can cause two read or
write operations on the EBIU port if the transfer word size is set to
32-bit in the MDMA_yy_CONFIG register (WDSIZE = b#10).

Since the block count registers are 16 bits wide, blocks can group up to

65,535 transfers.

Once a block transfer has been started, the HMDMAX_BCOUNT registers return
the remaining number of transfers to complete the current block. When
the complete block has been processed, the HMDMAX_BCOUNT register returns
zero. Software can force a reload of the HMDMAX_BCOUNT from the
HMDMAX_BCINIT register even during normal operation by setting the RBC
bit in the HMDMAX_CONTROL register. Set RBC when the HMDMA module is
already active, but only when the MDMA is not enabled.

5-38 ADSP-BF59x Blackfin Processor Hardware Reference



Direct Memory Access

Pipelining DMA Requests

The device mastering the DMA request lines is allowed to request addi-
tional transfers even before the former transfer has completed. As long as
the device can provide or consume sufficient data it is permitted to pulse
the DMARx inputs multiple times.

The HMDMAX_ECOUNT registers are incremented every time a significant edge
is detected on the respective DMARx input, and they are decremented when
the MDMA completes the block transfer. These read-only registers use a
16-bit twos-complement data representation: if they return zero, all
requested block transfers have been performed. A positive value signals up
to 32767 requests that haven’t been served yet and indicates that the
MDMA is currently processing. Negative values indicate the number of
DMA requests that will be ignored by the engine. This feature restrains
initial pulses on the DMARX inputs at startup.

The HMDMAX_ECINIT registers reload the HMDMAX_ECOUNT registers every time
the handshake mode is enabled (when the HMDMAEN bit changes from

0 to 1). If the initial edge count value is 0, the handshake operation starts
with a settled request budget. If positive, the engine starts immediately
transferring the programmed number (up to 32767) of blocks once
enabled, even without detecting any activity on the DMARX pins. If nega-
tive, the engine will disregard the programmed number (up to 32768)
significant edges on the DMARx inputs before starting normal operation.

Figure 5-3 illustrates how an asynchronous FIFO could be connected. In
such a scenario the REP bit should be cleared to let the DMARX request pin
listen to falling edges. The Blackfin processor does not evaluate the full
flag such FIFOs usually provide because asynchronous polling of that sig-
nal would reduce the system throughput drastically. Moreover, the
processor first fills the FIFO by initializing the HMDMAXx_ECINIT register to
1024, which equals the depth of the FIFO. Once enabled, the MDMA

automatically transmits 1024 data words. Afterward it continues to trans-

ADSP-BF59x Blackfin Processor Hardware Reference 5-39



Functional Description

mit only if the FIFO is emptied by its read strobe again. Most likely, the
HMDMAX_BCINIT register is programmed to 1 in this case.

BLACKFIN 1024K x 16 FIFO

DO ..D15 10 ..115 00..015 >
<«—| FF
AMSx J—
WR RD |=
AWE

DMARXx |<

Figure 5-3. Transmit DMA Example Connection

In the receive example shown in Figure 5-4, the Blackfin processor again
does not use the FIFO’s internal control mechanism. Rather than testing
the empty flag, the processor counts the number of data words available in
the FIFO in its own HMDMAX_ECOUNT register. Theoretically, the MDMA
could immediately process data as soon as it is written into the FIFO by
the write strobe, but the fast MDMA engine would read out the FIFO
quickly and stall soon if the FIFO was not promptly filled with new data .
Streaming applications can balance the FIFO so that the producer is never
held off by a full FIFO and the consumer is never held by an empty FIFO.
This is accomplished by filling the FIFO halfway and then letting both
consumer and producer run at the same speed. In this case the
HMDMAX_ECINIT register can be written with a negative value, which corre-

5-40 ADSP-BF59x Blackfin Processor Hardware Reference



Direct Memory Access

sponds to half the FIFO depth. Then, the MDMA does not start
consuming data as long as the FIFO is not half-filled.

BLACKFIN 1024K x 16 FIFO

DO ..D15 J[10..115 00..015 >
<«—| FF
AMSx _
WR RD |
AW

DMARXx |

m

Figure 5-4. Receive DMA Example Connection

On internal system buses, memory DMA channels have lower priority
than other DMAs. In busy systems, the memory DMAs may tend to
starve. As this is not acceptable when transferring data through high-speed
FIFOs, the handshake mode provides a high-water functionality to
increase the MDMA’s priority. With the UTE bit in the HMDMAX_CONTROL
register set, the MDMA gets higher priority as soon as a (positive) value in
the HMDMAX_ECOUNT register becomes higher than the threshold held by the
HMDMAX_ECURGENT register.

HMDMA Interrupts

In addition to the normal MDMA interrupt channels, the handshake
hardware provides two new interrupt sources for each DMARx input. The
HMDMAX_CONTROL registers provide interrupt enable and status bits. The
interrupt status bits require a write-1-to-clear operation to cancel the
interrupt request.

The block done interrupt signals that a complete MDMA block, as
defined by the HMDMAX_BCINIT register, has been transferred (when the
HMDMAX_BCOUNT register decrements to zero). While the BDIE bit enables
this interrupt, the MBDI bit can gate it until the edge count also becomes
zero, meaning that all requested MDMA transfers have been completed.

ADSP-BF59x Blackfin Processor Hardware Reference 5-41



Functional Description

The overflow interrupt is generated when the HMDMA_ECOUNT regis-
ter overflows. Since it can count up to 32767, which is much more than
most peripheral devices can support, the Blackfin processor has another
threshold register called HMDMA_ECOVERFLOW. It resets to OxFFFF
and should be written with any positive value by the user before enabling
the function by the OIE bit. Then, the overflow interrupt is issued when
the value of the HMDMA_ECOUNT register exceeds the threshold in
the HMDMA_ECOVERFLOW register.

DMA Performance

The DMA system is designed to provide maximum throughput per chan-
nel and maximum utilization of the internal buses, while accommodating
the inherent latencies of memory accesses.

The Blackfin architecture features several mechanisms to customize system
behavior for best performance. This includes DMA channel prioritization,
traffic control, and priority treatment of bursted transfers. Nevertheless,
the resulting performance of a DMA transfer often depends on applica-
tion-level circumstances. For best performance consider the following
system software architecture questions.

* What is the required DMA bandwidth?

e Which DMA transfers have real-time requirements and which do
not?

* How heavily is the DMA controller competing with the core for
on-chip and off-chip resources?

* How often do competing DMA channels require the bus systems to
alter direction?

* How often do competing DMA or core accesses cause the SDRAM
to open different pages?

* Is there a way to distribute DMA requests nicely over time?

5-42 ADSP-BF59x Blackfin Processor Hardware Reference



Direct Memory Access

A key feature of the DMA architecture is the separation of the activity on
the DMA access bus (DAB) used by the peripherals from the activity on
the buses between the DMA and memory. For DMA to/from on-chip
memory the DMA core bus (DCB) is used, and the DMA external bus
(DEB) is used for DMA transfers with off-chip memory. The “Chip Bus

Hierarchy” chapter explains the bus architecture.

Each peripheral DMA channel has its own data FIFO which lies between
the DAB bus and the memory buses. These FIFOs automatically prefetch
data from memory for transmission and buffer received data for later
memory writes. This allows the peripheral to be granted a DMA transfer
with very low latency compared to the total latency of a pipelined memory
access, permitting the repeat rate (bandwidth) of each DMA channel to be
as fast as possible.

DMA Throughput

Each peripheral DMA channel has a maximum transfer rate of one 16-bit
word per two system clocks in either direction. Like the DAB and DEB

buses, the DMA controller resides in the SCLK domain. The controller syn-
chronizes accesses to and from the DCB bus, which runs at the CCLK rate.

Each memory DMA channel has a maximum transfer rate of one 16-bit
word per system clock (SCLK) cycle.

When the traffic on all DMA channels is taken in the aggregate:

* Transfers between the peripherals and the DMA unit have a maxi-
mum rate of one 16-bit transfer per system clock.

* Transfers between the DMA unit and internal memory (L1) have a
maximum rate of one 16-bit transfer per system clock.

* Transfers between the DMA unit and external memory have a
maximum rate of one 16-bit transfer per system clock.

ADSP-BF59x Blackfin Processor Hardware Reference 5-43



Functional Description

Some considerations which limit the actual performance include:

Accesses to internal or external memory which conflict with core
accesses to the same memory. This can cause delays, for example
when both the core and the DMA access the same L1 bank, when
SDRAM pages need to be opened/closed, or when cache lines are
filled.

Direction changes from RX to TX on the DAB bus impose a one
SCLK cycle delay.

Direction changes on the DCB bus (for example, write followed by
read) to the same bank of internal memory can impose delays.

Direction changes (for example, read followed by write) on the
DEB bus to external memory can each impose a several-cycle delay.

MMR accesses to DMA registers other than DMAX_CONFIG,
DMAX_IRQ_STATUS, or DMAx_PERIPHERAL_MAP stall all DMA activity
for one cycle per 16-bit word transferred. In contrast, MMR
accesses to the control/status registers do not cause stalls or wait
states.

Reads from DMA registers other than control/status registers use
one PAB bus wait state, delaying the core for several core clocks.

Descriptor fetches consume one DMA memory cycle per 16-bit
word read from memory, but do not delay transfers on the DAB
bus.

Initialization of a DMA channel stalls DMA activity for one cycle.
This occurs when DMAEN changes from 0 to 1 or when the SYNC bit
is set in the DMAX_CONFIG register.

Several of these factors may be minimized by proper design of the applica-
tion software. It is often possible to structure the software to avoid
internal and external memory conflicts by careful allocation of data buffers
within banks and pages, and by planning for low cache activity during

5-44

ADSP-BF59x Blackfin Processor Hardware Reference



Direct Memory Access

critical DMA operations. Furthermore, unnecessary MMR accesses can be
minimized, especially by using descriptors or autobuffering.

Efficiency loss caused by excessive direction changes (thrashing) can be
minimized by the processor’s traffic control features, described in the next
section.

The MDMA channels are clocked by ScLK. If the source and destination
are in different memory spaces (one internal and one external), the inter-
nal and external memory transfers are typically simultaneous and
continuous, maintaining 100% bus utilization of the internal and external
memory interfaces. This performance is affected by core-to-system clock
frequency ratios. At ratios below about 2.5:1, synchronization and pipe-
line latencies result in lower bus utilization in the system clock domain.
For example DMA typically runs at 2/3 of the system clock rate when the
core-to-system clock ratio is 2:1. At higher clock ratios, full bandwidth is
maintained.

If the source and destination are in the same memory space (both internal
or both external), the MDMA stream typically prefetches a burst of source
data into the FIFO, and then automatically turns around and delivers all
available data from the FIFO to the destination buffer. The burst length is
dependent on traffic, and is equal to three plus the memory latency at the
DMA in SCLKs (which is typically seven for internal transfers and six for
external transfers).

Memory DMA Timing Details

When the destination DMAx_CONFIG register is written, MDMA operation
starts after a latency of three SCLK cycles.

If either MDMA channel has been selected to use descriptors, the descrip-
tors are fetched from memory. The destination channel descriptors are
fetched first. Then the source MDMA channel begins fetching data from
the source buffer, after a latency of four SCLK cycles after the last descrip-
tor word is returned from memory. Due to memory pipelining, this is

ADSP-BF59x Blackfin Processor Hardware Reference 5-45



Functional Description

typically eight SCLK cycles after the fetch of the last descriptor word. The
resulting data is deposited in the MDMA channel’s 8-location FIFO.
After a latency of two SCLK cycles, the destination MDMA channel begins
writing data to the destination memory buffer.

Static Channel Prioritization

DMA channels are ordinarily granted service strictly according to their
priority. The priority of a channel is simply its channel number, where
lower priority numbers are granted first. Thus, peripherals with high data
rates or low latency requirements should be assigned to lower numbered
(higher priority) channels using the PMAP field in the
DMAX_PERIPHERAL_MAP registers. The memory DMA streams are always
lower static priority than the peripherals, but as they request service con-
tinuously, they ensure that any time slots unused by peripheral DMA are
applied to MDMA transfers.

Temporary DMA Urgency

Typically, DMA transfers for a given peripheral occur at regular intervals.
Generally, the shorter the interval, the higher the priority that should be

assigned to the peripheral. If the average bandwidth of all the peripherals
is not too large a fraction of the total, then all peripherals’ requests should
be granted as required.

Occasionally, instantaneous DMA traffic might exceed the available band-
width, causing congestion. This may occur if L1 or external memory is
temporarily stalled, perhaps for an SDRAM page swap or a cache line fill.
Congestion might also occur if one or more DMA channels initiates a
flurry of requests, perhaps for descriptor fetches or to fill a FIFO in the
DMA or in the peripheral.

If congestion persists, lower priority DMA peripherals may become
starved for data. Even though the peripheral’s priority is low, if the neces-
sary data transfer does not take place before the end of the peripheral’s
regular interval, system failure may result. To minimize this possibility,

5-46 ADSP-BF59x Blackfin Processor Hardware Reference



Direct Memory Access

the DMA unit detects peripherals whose need for data has become urgent,
and preferentially grants them service at the highest priority.

A DMA channel’s request for memory service is defined as urgent if both:

* The channel’s FIFO is not ready for a DAB bus transfer (that is, a
transmit FIFO is empty or a receive FIFO is full), and

* The peripheral is asserting its DMA request line.

Descriptor fetches may be urgent if they are necessary to initiate or con-
tinue a DMA work unit chain for a starving peripheral.

DMA requests from an MDMA channel become urgent when handshaked
operation is enabled and the DMARX edge count exceeds the value stored in
the HMDMAX_ECURGENT register. If handshaked operation is disabled, soft-
ware can control urgency of requests directly by altering the DRQ bit field
in the HMDMAX_CONTROL register.

When one or more DMA channels express an urgent memory request, two
events occur:

e All non-urgent memory requests are decreased in priority by 32,
guaranteeing that only an urgent request will be granted. The
urgent requests compete with each other, if there is more than one,
and directional preference among urgent requests is observed.

e The resulting memory transfer is marked for expedited processing
in the targeted memory system (L1 or external). All prior incom-
plete memory transfers ahead of it in that memory system are also
marked for expedited processing. This may cause a series of exter-
nal memory core accesses to be delayed for a few cycles so that a
peripheral’s urgent request may be accommodated.

The preferential handling of urgent DMA transfers is completely auto-
matic. No user controls are required for this function to operate.

ADSP-BF59x Blackfin Processor Hardware Reference 5-47



Functional Description

Memory DMA Priority and Scheduling

All MDMA operations have lower precedence than any peripheral DMA
operations. MDMA thus makes effective use of any memory bandwidth
unused by peripheral DMA traffic.

By default, when more than one MDMA stream is enabled and ready,
only the highest priority MDMA stream is granted. If it is desirable for the
MDMA streams to share the available bandwidth, the
MDMA_ROUND_ROBIN_PERIOD may be programmed to select each stream in
turn for a fixed number of transfers.

If two MDMA streams are used (S0-D0 and S1-D1), the user may choose
to allocate bandwidth either by fixed stream priority or by a round-robin
scheme. This is selected by programming the MDMA_ROUND_ROBIN_PERIOD
field in the DMA_TC_PER register (see “Static Channel Prioritization” on

page 5-40).

If this field is set to 0, then MDMA is scheduled by fixed priority.
MDMA stream 0 takes precedence over MDMA stream 1 whenever
stream 0 is ready to perform transfers. Since an MDMA stream is typically
capable of transferring data on every available cycle, this could cause
MDMA stream 1 traffic to be delayed for an indefinite time until any and
all MDMA stream 0 operations are completed. This scheme could be
appropriate in systems where low duration but latency-sensitive data buff-
ers need to be moved immediately, interrupting long duration, low
priority background transfers.

If the MDMA_ROUND_ROBIN_PERIOD field is set to some nonzero value in the
range 1 < P <31, then a round-robin scheduling method is used. The two
MDMA streams are granted bus access in alternation in bursts of up to P
data transfers. This could be used in systems where two transfer processes
need to coexist, each with a guaranteed fraction of the available band-
width. For example, one stream might be programmed for
internal-to-external moves while the other is programmed for exter-

5-48 ADSP-BF59x Blackfin Processor Hardware Reference



Direct Memory Access

nal-to-internal moves, and each would be allocated approximately equal

data bandwidth.

In round-robin operation, the MDMA stream selection at any time is
either “free” or “locked.” Initially, the selection is free. On any free cycle
available to MDMA (when no peripheral DMA accesses take precedence),
if either or both MDMA streams request access, the higher precedence
stream will be granted (stream 0 in case of conflict), and that stream’s
selection is then “locked.” The MDMA_ROUND_ROBIN_COUNT counter field in
the DMA_TC_CNT register is loaded with the period P from
MDMA_ROUND_ROBIN_PERIOD, and MDMA transfers begin. The counter is
decremented on every data transfer (as each data word is written to mem-
ory). After the transfer corresponding to a count of one, the MDMA
stream selection is passed automatically to the other stream with zero over-
head, and the MDMA_ROUND_ROBIN_COUNT counter is reloaded with the
period value P from MDMA_ROUND_ROBIN_PERIOD. In this cycle, if the other
MDMA stream is ready to perform a transfer, the stream selection is
locked on the new MDMA stream. If the other MDMA stream is not
ready to perform a transfer, then no transfer is performed, and the stream
selection unlocks and becomes free again on the next cycle.

If round-robin operation is used when only one MDMA stream is active,
one idle cycle will occur for each P MDMA data cycles, slightly lowering
the bandwidth by a factor of 1/(P+1). However if both MDMA streams
are used, memory DMA can operate continuously with zero additional
overhead for alternation of streams . (Other than overhead cycles normally
associated with reversal of read/write direction to memory). By selection
of various round-robin period values P, which limit how often the
MDMA streams alternate, maximal transfer efficiency can be maintained.

Traffic Control

In the Blackfin DMA architecture, there are two completely separate but
simultaneous prioritization processes—the DAB bus prioritization and the
memory bus (DCB and DEB) prioritization. Peripherals that are request-

ADSP-BF59x Blackfin Processor Hardware Reference 5-49



Functional Description

ing DMA via the DAB bus, and whose data FIFOs are ready to handle the
transfer, compete with each other for DAB bus cycles. Similarly but sepa-
rately, channels whose FIFOs need memory service (prefetch or
post-write) compete together for access to the memory buses. MDMA
streams compete for memory access as a unit, and source and destination
may be granted together if their memory transfers do not conflict. In this
way, internal-to-external or external-to-internal memory transfers may
occur at the full system clock rate (SCLK). Examples of memory conflict
include simultaneous access to the same memory space and simultaneous
attempts to fetch descriptors. Special processing may occur if a peripheral
is requesting DMA but its FIFO is not ready (for example, an empty
transmit FIFO or full receive FIFO). For more information, see “Tempo-

rary DMA Urgency” on page 5-46.

Traffic control is an important consideration in optimizing use of DMA
resources. Traffic control is a way to influence how often the transfer
direction on the data buses may change, by automatically grouping same
direction transfers together. The DMA block provides a traffic control
mechanism controlled by the DMA_TC_PER and DMA_TC_CNT registers. This
mechanism performs the optimization without real-time processor inter-
vention and without the need to program transfer bursts into the DMA
work unit streams. Traffic can be independently controlled for each of the
three buses (DAB, DCB, and DEB) with simple counters. In addition,
alternation of transfers among MDMA streams can be controlled with the
MDMA_ROUND_ROBIN_COUNT field of the DMA_TC_CNT register. See “Memory
DMA Priority and Scheduling” on page 5-48.

Using the traffic control features, the DMA system preferentially grants
data transfers on the DAB or memory buses which are going in the same
read/write direction as the previous transfer, until either the traffic control
counter times out or traffic stops or changes direction on its own. When
the traffic counter reaches zero, the preference is changed to the opposite
flow direction. These directional preferences work as if the priority of the
opposite direction channels were decreased by 16.

5-50 ADSP-BF59x Blackfin Processor Hardware Reference



Direct Memory Access

For example, if channels 3 and 5 were requesting DAB access, but lower
priority channel 5 is going with traffic and higher priority channel 3 is
going against traffic, then channel 3’s effective priority becomes 19, and
channel 5 would be granted instead. If, on the next cycle, only channels 3
and 6 were requesting DAB transfers, and these transfer requests were
both against traffic, then their effective priorities would become 19 and
22, respectively. One of the channels (channel 3) is granted, even though
its direction is opposite to the current flow. No bus cycles are wasted,
other than any necessary delay required for the bus turnaround.

This type of traffic control represents a trade-off of latency to improve uti-
lization (efficiency). Higher traffic timeouts might increase the length of
time each request waits for its grant, but it often dramatically improves the
maximum attainable bandwidth in congested systems, often to above

90%.

To disable preferential DMA prioritization, program the DMA_TC_PER reg-
ister to 0x0000.

Programming Model

Several synchronization and control methods are available for use in devel-
opment of software tasks which manage peripheral DMA and memory
DMA (see also “Memory DMA” on page 5-7). Such software needs to be
able to accept requests for new DMA transfers from other software tasks,
integrate these transfers into existing transfer queues, and reliably notify
other tasks when the transfers are complete.

In the processor, it is possible for each peripheral DMA and memory
DMA stream to be managed by a separate task or to be managed together
with any other stream. Each DMA channel has independent, orthogonal
control registers, resources, and interrupts, so that the selection of the
control scheme for one channel does not affect the choice of control
scheme on other channels. For example, one peripheral can use a
linked-descriptor-list, interrupt-driven scheme while another peripheral

ADSP-BF59x Blackfin Processor Hardware Reference 5-51



Programming Model

can simultaneously use a demand-driven, buffer-at-a-time scheme syn-
chronized by polling of the DMAx_IRQ_STATUS register.

Synchronization of Software and DMA

A critical element of software DMA management is synchronization of
DMA buffer completion with the software. This can best be done using
interrupts, polling of DMAXx_IRQ_STATUS, or a combination of both. Polling
for address or count can only provide synchronization within loose toler-
ances comparable to pipeline lengths.

Interrupt-based synchronization methods must avoid interrupt overrun,
or the failure to invoke a DMA channel’s interrupt handler for every inter-
rupt event due to excessive latency in processing of interrupts. Generally,
the system design must either ensure that only one interrupt per channel is
scheduled (for example, at the end of a descriptor list), or that interrupts
are spaced sufficiently far apart in time that system processing budgets can
guarantee every interrupt is serviced. Note, since every interrupt channel
has its own distinct interrupt, interaction among the interrupts of differ-
ent peripherals is much simpler to manage.

Due to DMA FIFOs and DMA/memory pipelining, polling of the
DMAx_CURR_ADDR, DMAX_CURR_DESC_PTR, or DMAx_CURR_X_COUNT/
DMAX_CURR_Y_COUNT registers is not recommended for precisely synchroniz-
ing DMA with data processing. The current address, pointer, and count
registers change several cycles in advance of the completion of the corre-
sponding memory operation, as measured by the time at which the results
of the operation would first be visible to the core by memory read or write
instructions. For example, in a DMA memory write operation to external
memory, assume a DMA write by channel A is initiated that causes the
SDRAM to perform a page open operation which takes many system clock
cycles. The DMA engine may then move on to another DMA operation
by channel B which does not in itself incur latency, but will be stalled
behind the slow operation of channel A. Software monitoring of

channel B, based on examination of the DMAx_CURR_ADDR register contents,

5-52 ADSP-BF59x Blackfin Processor Hardware Reference



Direct Memory Access

would not safely conclude whether the memory location pointed to by
channel B’s DMAx_CURR_ADDR register has or has not been written.

If allowances are made for the lengths of the DMA/memory pipeline, poll-
ing of the current address, pointer, and count registers can permit loose
synchronization of DMA with software. The depth of the DMA FIFO is
four locations (either four 8- or 16-bit data elements, or two 32-bit data
elements) for a peripheral DMA channel, and eight locations (four 32-bit
data elements) for an MDMA FIFO. The DMA will not advance current
address/pointer/count registers if these FIFOs are filled with incomplete
work (including reads that have been started but not yet finished).

Additionally, the length of the combined DMA and L1 pipelines to inter-
nal memory is approximately six 8- or 16-bit data elements. The length of
the DMA and external bus interface unit (EBIU) pipelines is approxi-
mately three data elements, when measured from the point where a DMA
register update is visible to an MMR read to the point where DMA and
core accesses to memory become strictly ordered. If the DMA FIFO
length and the DMA/memory pipeline length are added, an estimate can
be made of the maximum number of incomplete memory operations in
progress at one time. This value is a maximum because the DMA/memory
pipeline may include traffic from other DMA channels.

For example, assume a peripheral DMA channel is transferring a work
unit of 100 data elements into internal memory and its
DMAx_CURR_X_COUNT register reads a value of 60 remaining elements, so
that processing of the first 40 elements has at least been started. Since the
total pipeline length is no greater than the sum of four (for the peripheral
DMA FIFO) plus six (for the DMA/memory pipeline) or ten data ele-
ments, it is safe to conclude that the DMA transfer of the first 30 (40-10)
data elements is complete.

For precise synchronization, software should either wait for an interrupt
or consult the channel’s DMAx_IRQ_STATUS register to confirm completion
of DMA, rather than polling current address/pointer/count registers.
When the DMA system issues an interrupt or changes a DMAx_IRQ_STATUS

ADSP-BF59x Blackfin Processor Hardware Reference 5-53



Programming Model

bit, it guarantees that the last memory operation of the work unit has been
completed and will definitely be visible to processor code. For memory
read DMA, the final memory read data will have been safely received in
the DMA’s FIFO. For memory write DMA, the DMA unit will have
received an acknowledgement from L1 memory, or the EBIU, that the
data has been written.

The following examples show methods of synchronizing software with

several different styles of DMA.

Single-Buffer DMA Transfers

Synchronization is simple if a peripheral’s DMA activity consists of iso-
lated transfers of single buffers. DMA activity is initiated by software
writes to the channel’s control registers. The user may choose to use a sin-
gle descriptor in memory, in which case the software only needs to write
the DMAx_CONFIG and the DMAX_NEXT_DESC_PTR registers. Alternatively, the
user may choose to write all the MMR registers directly from software,
ending with the write to the DMAx_CONFIG register.

The simplest way to signal completion of DMA is by an interrupt. This is
selected by the DI_EN bit in the DMAX_CONFIG register, and by the necessary
setup of the system interrupt controller. If no interrupt is desired, the soft-
ware can poll for completion by reading the DMAXx_IRQ_STATUS register and
testing the DMA_RUN bit. If this bit is zero, the buffer transfer has
completed.

Continuous Transfers Using Autobuffering

If a peripheral’s DMA data consists of a steady, periodic stream of signal
data, DMA autobuffering (FLOW = 1) may be an effective option. Here,
DMA is transferred from or to a memory buffer with a circular addressing

5-54 ADSP-BF59x Blackfin Processor Hardware Reference



Direct Memory Access

scheme, using either one- or two-dimensional indexing with zero proces-
sor and DMA overhead for looping. Synchronization options include:

e 1-D interrupt-driven—software is interrupted at the conclusion of
each buffer. The critical design consideration is that the software
must deal with the first items in the buffer before the next DMA
transfer, which might overwrite or re-read the first buffer location
before it is processed by software. This scheme may be workable if
the system design guarantees that the data repeat period is longer
than the interrupt latency under all circumstances.

e 2-D interrupt-driven (double buffering)—the DMA bulffer is parti-
tioned into two or more sub-buffers, and interrupts are selected
(set DI_SEL = 1 in DMAX_CONFIG) to be signaled at the completion of
each DMA inner loop. In this way, a traditional double buffer or
“ping-pong” scheme can be implemented.

For example, two 512-word sub-buffers inside a 1K-word buffer
could be used to receive 16-bit peripheral data with these settings:

* DMAx_START_ADDR = buffer base address

* DMAx_CONFIG = 0x10D7 (FLOW = 1, DI_EN =1, DI_SEL = 1,
DMA2D = 1, WDSIZE = b#01, WNR = 1, DMAEN = 1)

* DMAX_X_COUNT = 512
* DMAX_X_MODIFY = 2 for 16-bit data
e DMAX_Y_COUNT = 2 for two sub-buffers

* DMAX_Y_MODIFY = 2 same as DMAx_X_MODIFY for contiguous
sub-buffers

e 2-D polled—if interrupt overhead is unacceptable but the loose
synchronization of address/count register polling is acceptable, a
2-D multibuffer synchronization scheme may be used. For exam-

ADSP-BF59x Blackfin Processor Hardware Reference 5-55



Programming Model

ple, assume receive data needs to be processed in packets of sixteen
32-bit elements. A four-part 2-D DMA buffer can be allocated
where each of the four sub-buffers can hold one packet with these
settings:

DMAX_START_ADDR = buffer base address

DMAX_CONFIG = Ox101B (FLOW = 1, DI_EN = 0, DMA2D = 1,
WDSIZE = b#10, WNR = 1, DMAEN = 1)

DMAX_X_COUNT = 16
DMAX_X_MODIFY = 4 for 32-bit data
DMAX_Y_COUNT = 4 for four sub-buffers

DMAX_Y_MODIFY = 4 same as DMAx_X_MODIFY for contiguous
sub-buffers

The synchronization core might read DMAx_Y_COUNT to determine
which sub-buffer is currently being transferred, and then allow one
full sub-buffer to account for pipelining. For example, if a read of
DMAX_Y_COUNT shows a value of 3, then the software should assume
that sub-buffer 3 is being transferred, but some portion of
sub-buffer 2 may not yet be received. The software could, however,
safely proceed with processing sub-buffers 1 or 0.

1-D unsynchronized FIFO—if a system’s design guarantees that

the processing of a peripheral’s data and the DMA rate of the data
will remain correlated in the steady state, but that short-term
latency variations must be tolerated, it may be appropriate to build
a simple FIFO. Here, the DMA channel may be programmed using
1-D autobuffer mode addressing without any interrupts or polling.

5-56

ADSP-BF59x Blackfin Processor Hardware Reference



Direct Memory Access

Descriptor Structures

DMA descriptors may be used to transfer data to or from memory data
structures that are not simple 1-D or 2-D arrays. For example, if a packet
of data is to be transmitted from several different locations in memory (a
header from one location, a payload from a list of several blocks of mem-
ory managed by a memory pool allocator, and a small trailer containing a
checksum), a separate DMA descriptor can be prepared for each memory
area, and the descriptors can be grouped in either an array or list by select-
ing the appropriate FLOW setting in DMAx_CONFIG.

The software can synchronize with the progress of the structure’s transfer
by selecting interrupt notification for one or more of the descriptors. For
example, the software might select interrupt notification for the header’s
descriptor and for the trailer’s descriptor, but not for the payload blocks’
descriptors.

It is important to remember the meaning of the various fields in the
DMAX_CONFIG descriptor elements when building a list or array of DMA
descriptors. In particular:

* The lower byte of DMAx_CONFIG specifies the DMA transfer to be
performed by the current descriptor (for example 2-D inter-
rupt-enable mode)

e The upper byte of DMAx_CONFIG specifies the format of the next
descriptor in the chain. The NDSIZE and FLOW fields in a given
descriptor do not correspond to the format of the descriptor itself;
they specify the link to the next descriptor, if any.

On the other hand, when the DMA unit is being restarted, both bytes of
the DMAx_CONFIG value written to the DMA channel’s DMAx_CONFIG register
should correspond to the current descriptor. At a minimum, the FLOW,
NDSIZE, WNR, and DMAEN fields must all agree with the current descriptor.
The WDSIZE, DI_EN, DI_SEL, SYNC, and DMA2D fields will be taken from the
DMAx_CONFIG value in the descriptor read from memory. The field values
initially written to the register are ignored. See “Initializing Descriptors in

ADSP-BF59x Blackfin Processor Hardware Reference 5-57



Programming Model

Memory” on page 5-97 in the “Programming Examples” section for infor-
mation on how descriptors can be set up.

Descriptor Queue Management

A system designer might want to write a DMA manager facility which
accepts DMA requests from other software. The DMA manager software
does not know in advance when new work requests will be received or
what these requests might contain. The software could manage these
transfers using a circular linked list of DMA descriptors, where each
descriptor’s NDPH and NDPL members point to the next descriptor, and the
last descriptor points back to the first.

The code that writes into this descriptor list could use the processor’s cir-
cular addressing modes (Ix, Lx, Mx, and Bx registers), so that it does not
need to use comparison and conditional instructions to manage the circu-
lar structure. In this case, the NDPH and NDPL members of each descriptor
could even be written once at startup and skipped over as each descriptor’s
new contents are written.

The recommended method for synchronization of a descriptor queue is
through the use of an interrupt. The descriptor queue is structured so that
at least the final valid descriptor is always programmed to generate an
interrupt.

There are two general methods for managing a descriptor queue using
interrupts:

e Interrupt on every descriptor

e Interrupt minimally - only on the last descriptor

Descriptor Queue Using Interrupts on Every Descriptor

In this system, the DMA manager software synchronizes with the DMA
unit by enabling an interrupt on every descriptor. This method should

5-58 ADSP-BF59x Blackfin Processor Hardware Reference



Direct Memory Access

only be used if system design can guarantee that each interrupt event will
be serviced separately (no interrupt overrun).

To maintain synchronization of the descriptor queue, the non-interrupt
software maintains a count of descriptors added to the queue, while the
interrupt handler maintains a count of completed descriptors removed
from the queue. The counts are equal only when the DMA channel is
paused after having processed all the descriptors.

When each new work request is received, the DMA manager software ini-
tializes a new descriptor, taking care to write a DMAx_CONFIG value with a
FLOW value of 0. Next, the software compares the descriptor counts to
determine if the DMA channel is running or not. If the DMA channel is
paused (counts are equal), the software increments its count and then
starts the DMA unit by writing the new descriptor’s DMAx_CONFIG value to
the DMA channel’s DMAX_CONFIG register.

If the counts are unequal, the software instead modifies the next-to-last
descriptor’s DMAx_CONFIG value so that its upper half (FLOW and NDSIZE)
now describes the newly queued descriptor. This operation does not dis-
rupt the DMA channel, provided the rest of the descriptor data structure
is initialized in advance. It is necessary, however, to synchronize the soft-
ware to the DMA to correctly determine whether the new or the old
DMAX_CONFIG value was read by the DMA channel.

This synchronization operation should be performed in the interrupt
handler. First, upon interrupt, the handler should read the channel’s
DMAX_IRQ_STATUS register. If the DMA_RUN status bit is set, then the channel
has moved on to processing another descriptor, and the interrupt handler
may increment its count and exit. If the DMA_RUN status bit is not set, how-
ever, then the channel has paused, either because there are no more
descriptors to process, or because the last descriptor was queued too late
(the modification of the next-to-last descriptor’s DMAx_CONFIG element
occurred after that element was read into the DMA unit). In this case, the
interrupt handler should write the DMAXx_CONFIG value appropriate for the

ADSP-BF59x Blackfin Processor Hardware Reference 5-59



Programming Model

last descriptor to the DMA channel’s DMAXx_CONFIG register, increment the
completed descriptor count, and exit.

Again, this system can fail if the system’s interrupt latencies are large
enough to cause any of the channel’s DMA interrupts to be dropped. An
interrupt handler capable of safely synchronizing multiple descriptors’
interrupts would need to be complex, performing several MMR accesses to
ensure robust operation. In such a system environment, a minimal inter-
rupt synchronization method is preferred.

Descriptor Queue Using Minimal Interrupts

In this system, only one DMA interrupt event is possible in the queue at
any time. The DMA interrupt handler for this system can also be
extremely short. Here, the descriptor queue is organized into an “active”
and a “waiting” portion, where interrupts are enabled only on the last
descriptor in each portion.

When each new DMA request is processed, the software’s non-interrupt
code fills in a new descriptor’s contents and adds it to the waiting portion
of the queue. The descriptor’s DMAx_CONFIG word should have a FLOW value
of zero. If more than one request is received before the DMA queue com-
pletion interrupt occurs, the non-interrupt code should queue later
descriptors, forming a waiting portion of the queue that is disconnected
from the active portion of the queue being processed by the DMA unit. In
other words, all but the last active descriptors contain FLOW values = 4 and
have no interrupt enable set, while the last active descriptor contains a
FLOW of 0 and an interrupt enable bit DI_EN set to 1. Also, all but the last
waiting descriptors contain FLOW values = 4 and no interrupt enables set,
while the last waiting descriptor contains a FLOW of 0 and an interrupt
enable bit set. This ensures that the DMA unit can automatically process
the whole active queue and then issue one interrupt. Also, this arrange-
ment makes it easy to start the waiting queue within the interrupt handler
with a single DMAx_CONFIG register write.

5-60 ADSP-BF59x Blackfin Processor Hardware Reference



Direct Memory Access

After queuing a new waiting descriptor, the non-interrupt software should
leave a message for its interrupt handler in a memory mailbox location
containing the desired DMAx_CONFIG value to use to start the first waiting
descriptor in the waiting queue (or 0 to indicate no descriptors are
waiting).

Once processing by the DMA unit has started, it is critical that the soft-
ware not directly modify the contents of the active descriptor queue unless
careful synchronization measures are taken. In the most straightforward
implementation of a descriptor queue, the DMA manager software would
never modify descriptors on the active queue; instead, the DMA manager
waits until the DMA queue completion interrupt indicates the processing
of the entire active queue is complete.

When a DMA queue completion interrupt is received, the interrupt han-
dler reads the mailbox from the non-interrupt software and writes the
value in it to the DMA channel’s DMAx_CONFIG register. This single register
write restarts the queue, effectively transforming the waiting queue to an
active queue. The interrupt handler should then pass a message back to
the non-interrupt software indicating the location of the last descriptor
accepted into the active queue. If, on the other hand, the interrupt han-
dler reads its mailbox and finds a DMAx_CONFIG value of zero, indicating
there is no more work to perform, then it should pass an appropriate mes-
sage (for example zero) back to the non-interrupt software indicating that
the queue has stopped. This simple handler should be able to be coded in

a very small number of instructions.

The non-interrupt software which accepts new DMA work requests needs
to synchronize the activation of new work with the interrupt handler. If
the queue has stopped (the mailbox from the interrupt software is zero),
the non-interrupt software is responsible for starting the queue (writing
the first descriptor’s DMAx_CONFIG value to the channel’s DMAx_CONFIG reg-
ister). If the queue is not stopped, the non-interrupt software must not
write to the DMAx_CONFIG register (which would cause a DMA error).

ADSP-BF59x Blackfin Processor Hardware Reference 5-61



Programming Model

Instead the descriptor should queue to the waiting queue, and update its
mailbox directed to the interrupt handler.

Software Triggered Descriptor Fetches

If a DMA has been stopped in FLOW = 0 mode, the DMA_RUN bit in the
DMAX_IRQ_STATUS register remains set until the content of the internal
DMA FIFOs has been completely processed. Once the DMA_RUN bit clears,
it is safe to restart the DMA by simply writing again to the DMAX_CONFIG
register. The DMA sequence is repeated with the previous settings.

Similarly, a descriptor-based DMA sequence that has been stopped tem-
porarily with a FLOW = 0 descriptor can be continued with a new write to
the configuration register. When the DMA controller detects the FLOW = 0
condition by loading the DMACFG field from memory, it has already
updated the next descriptor pointer, regardless of whether operating in
descriptor array mode or descriptor list mode.

The next descriptor pointer remains valid if the DMA halts and is
restarted. As soon as the DMA_RUN bit clears, software can restart the DMA
and force the DMA controller to fetch the next descriptor. To accomplish
this, the software writes a value with the DMAEN bit set and with proper val-
ues in the FLOW and NDSIZE fields into the configuration register. The next
descriptor is fetched if FLOW equals 0x4, 0x6, or 0x7. In this mode of oper-
ation, the NDSIZE field should at least span up to the DMACFG field to
overwrite the configuration register immediately.

One possible procedure is:
1. Write to DMAX_NEXT_DESC_PTR
2. Write to DMAx_CONFIG with
* FLOW = 0x8

e NDSIZE 2 0xA

5-62 ADSP-BF59x Blackfin Processor Hardware Reference



Direct Memory Access

DI_EN=10

DMAEN = 1

3. Automatically fetched DMACFG has

FLOW = 0x0

NDSIZE = 0x0

SYNC = 1 (for transmitting DMAs only)
DI_EN =1

DMAEN = 1

4. In the interrupt routine, repeat step 2. The DMAX_NEXT_DESC_PTR is
updated by the descriptor fetch.

@ To avoid polling of the DMA_RUN bit, set the SYNC bit in case of
memory read DMAs (DMA transmit or MDMA source).

If all DMACFG fields in a descriptor chain have the FLOW and NDSIZE fields set
to zero, the individual DMA sequences do not start until triggered by soft-
ware. This is useful when the DMAs need to be synchronized with other
events in the system, and it is typically performed by interrupt service rou-
tines. A single MMR write is required to trigger the next DMA sequence.

Especially when applied to MDMA channels, such scenarios play an
important role. Usually, the timing of MDMAs cannot be controlled (See
“Handshaked Memory DMA Operation” on page 5-37). By halting
descriptor chains or rings this way, the whole DMA transaction can be
broken into pieces that are individually triggered by software.

Source and destination channels of a MDMA may differ in descrip-
tor structure. However, the total work count must match when the

DMA stops. Whenever a MDMA is stopped, destination and

ADSP-BF59x Blackfin Processor Hardware Reference 5-63



DMA Registers

source channels should both provide the same FLOW = 0 mode after
exactly the same number of words. Accordingly, both channels
need to be started afterward.

Software-triggered descriptor fetches are illustrated in Listing 5-7 on
page 5-100. MDMA channels can be paused by software at any time by
writing a 0 to the DRQ bit field in the HMDMAX_CONTROL register. This simply
disables the self-generated DMA requests, whether or not the HMDMA is
enabled.

DMA Registers

DMA registers fall into three categories:
* DMA channel registers
* Handshaked MDMA registers
* Global DMA traffic control registers

DMA Channel Registers

A processor features up to twelve peripheral DMA channels and two chan-
nel pairs for memory DMA. All channels have an identical set of registers
as summarized in Table 5-4.

Table 5-4 lists the generic names of the DMA registers. For each register,
the table also shows the MMR offset, a brief description of the register,

5-64 ADSP-BF59x Blackfin Processor Hardware Reference



Direct Memory Access

the register category, and where applicable, the corresponding name for
the data element in a DMA descriptor.

Table 5-4. Generic Names of the DMA Memory-mapped

Registers
MMR |Generic MMR MMR Description Register |Name of
Offset |Name Category |Corresponding
Descriptor Element in
Memory
0x00 | NEXT_DESC_PTR Link pointer to next descrip- | Parame- | NDPH (upper 16 bits),
tor ter NDPL (lower 16 bits)
0x04 | START_ADDR Start address of current buffer | Parame- | SAH (upper 16 bits),
ter SAL (lower 16 bits)
0x08 | CONFIG DMA Configuration register, | Parame- | DMACFG
including enable bit ter
0x0C | Reserved Reserved
0x10 | X_COUNT Inner loop count Parame- | XCNT
ter
0x14 | X_MODIFY Inner loop address increment, | Parame- | XMOD
in bytes ter
0x18 | Y_COUNT Outer loop count (2-D only) | Parame- | YCNT
ter
0x1C | Y_MODIFY Outer loop address incre- Parame- | YMOD
ment, in bytes ter
0x20 | CURR_DESC_PTR Current descriptor pointer Current | N/A
0x24 | CURR_ADDR Current DMA address Current | N/A
0x28 | IRQ_STATUS Interrupt status register con- | Control/ | N/A
tains completion and DMA | Status
error interrupt status and
channel state
(run/fetch/paused)

ADSP-BF59x Blackfin Processor Hardware Reference

5-65



DMA Registers

Table 5-4. Generic Names of the DMA Memory-mapped

Registers (Continued)

MMR |Generic MMR
Offset |Name

MMR Description

Register
Category

Name of
Corresponding
Descriptor Element in
Memory

0x2C | PERIPHERAL_MAP

Peripheral to DMA channel

mapping contains a 4-bit

value specifying the periph-
eral associated with this DMA

channel (read-only for
MDMA channels)

Control/
Status

N/A

0x30 | CURR_X_COUNT

Current count (1-D) or
intra-row X count (2-D);
counts down from

X_COUNT

Current

N/A

0x34

Reserved

Reserved

0x38 | CURR_Y_COUNT

Current row count (2-D
only); counts down from

Y_COUNT

Current

N/A

0x3C

Reserved

Reserved

Channel-specific register names are composed of a prefix and the generic
MMR name shown in Table 5-4. For peripheral DMA channels the prefix
“DMAx_” is used, where “x” stands for a channel number between 0 and
11. For memory DMA channels, the prefix is “MDMA_yy_”, where “yy”
stands for either “D0”, “S0”, “D1”, or “S1” to indicate destination and
source channel registers of MDMAO and MDMALI. For example the
peripheral DMA channel 6 configuration register is called

5-66

ADSP-BF59x Blackfin Processor Hardware Reference




Direct Memory Access

DMAG_CONTFIG. The register for the MDMAL source channel is called
MDMA_S1_CONFIG.

The generic MMR names shown in Table 5-4 are not actually
mapped to resources in the processor.

For convenience, discussions in this chapter use generic
(non-peripheral specific) DMA and memory DMA register names.

DMA channel registers fall into three categories.

e DParameter registers such as DMAx_CONFIG and DMAx_X_COUNT that can
be loaded directly from descriptor elements as shown in Table 5-4

e Current registers such as DMAx_CURR_ADDR and DMAx_CURR_X_COUNT

» Control/status registers such as DMAx_IRQ_STATUS and
DMAx_PERIPHERAL_MAP

All DMA registers can be accessed as 16-bit entities. However, the follow-
ing registers may also be accessed as 32-bit registers.

® DMAX_NEXT_DESC_PTR
®* DMAX_START_ADDR

®* DMAxXx_CURR_DESC_PTR
* DMAx_CURR_ADDR

@ When these four registers are accessed as 16-bit entities, only the

lower 16 bits can be accessed.

Because confusion might arise between descriptor element names and
generic DMA register names, this chapter uses different naming conven-
tions for physical registers and their corresponding elements in descriptors
that reside in memory. Table 5-4 shows the relation.

ADSP-BF59x Blackfin Processor Hardware Reference 5-67



DMA Registers

DMA Peripheral Map Registers(DMAx_PERIPHERAL_MAP/
MDMA_yy_PERIPHERAL_MAP)

Each DMA channel’s DMAX_PERIPHERAL_MAP register contains bits that:
* Map the channel to a specific peripheral

* Identify whether the channel is a peripheral DMA channel or a
memory DMA channel

DMA Peripheral Map Registers
(DMAx_PERIPHERAL_MAP/MDMA_yy_PERIPHERAL_MAP)
R/W prior to enabling channel; RO after enabling channel

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
EJENENES ES ENES B3 ENENESES ENENESES

PMAP[3:0] \;I_‘ \— CTYPE (DMA Channel Type) - RO

(Peripheral is mapped to this channel) 0 - Peripheral DMA
1 - Memory DMA

Default peripheral mappings are provided in Table 5-7 on page 5-107.

Figure 5-5. DMA Peripheral Map Registers

Follow these steps to swap the DMA channel priorities of two channels.
Assume that channels 6 and 7 are involved.

1. Make sure DMA is disabled on channels 6 and 7.

2. Write DMA6_PERIPHERAL_MAP with 0x7000 and
DMA7_PERIPHERAL_MAP with 0x6000.

3. Enable DMA on channels 6 and/or 7.

DMA Configuration Registers
(DMAX_CONFIG/MDMA_yy CONFIG)

The DMAx_CONFIG register, shown in Figure 5-6, is used to set up DMA
parameters and operating modes. Writing the DMAx_CONFIG register while

5-68 ADSP-BF59x Blackfin Processor Hardware Reference



Direct Memory Access

DMA is already running will cause a DMA error unless writing with the

DMAEN bit set to 0.

DMA Configuration Registers (DMAx_CONFIG/MDMA_yy_CONFIG)

R/W prior to enabling channel; RO after enabling channel

15 14 13 12 11 10 9

3 2

1

0

E IO o [ I0 [0 ] I°I0I0 O

ofofo]o]

Reset = 0x0000

FLOW[2:0] (Next
Operation)
0x0 - Stop
0x1 - Autobuffer mode
0x4 - Descriptor array
0x6 - Descriptor list (small model)
0x7 - Descriptor list (large model)
NDSIZE[3:0] (Flex Descriptor Size)
Size of next descriptor
0000 - Required if in Stop or Autobuffer mode
0001 - 1001 - Descriptor size
1010 - 1111 - Reserved
DI_EN (Data Interrupt Enable)
0 - Do not allow completion of

work unit to generate an interrupt
1 - Allow completion of work unit

to generate a data interrupt

DI_SEL (Data Interrupt Timing Select)

Applies only when DMA2D = 1

0 - Interrupt after completing
whole buffer (outer loop)

1 - Interrupt after completing
each row (inner loop)

DMAEN (DMA

Channel Enable)

0 - Disable DMA channel

1 - Enable DMA channel

WNR (DMA Direction)

0 - DMA is a memory read
(source) operation

1 - DMA is a memory write
(destination) operation

WDSIZE[1:0] (Transfer
Word Size)

00 - 8-bit transfers

01 - 16-bit transfers

10 - 32-bit transfers

11 - Reserved

DMA2D (DMA Mode)

0 - Linear (One-dimensional)
1 - Two-dimensional (2-D)

Figure 5-6. DMA Configuration Registers

SYNC (Work Unit
Transitions)

0 - Continuous transition

1 - Synchronized transition

The fields of the DMAXx_CONFIG register are used to set up DMA parameters

and operating modes.

* FLOW[2:0] (next operation). This field specifies the type of DMA
transfer to follow the present one. The flow options are:

e 0x0 - stop. When the current work unit completes, the DMA chan-
nel stops automatically, after signaling an interrupt (if selected).
The DMA_RUN status bit in the DMAx_IRQ_STATUS register changes

ADSP-BF59x Blackfin Processor Hardware Reference 5-69



DMA Registers

from 1 to 0, while the DMAEN bit in the DMAX_CONFIG register is
unchanged. In this state, the channel is paused. Peripheral
interrupts are still filtered out by the DMA unit. The channel may
be restarted simply by another write to the DMAX_CONFIG register
specifying the next work unit, in which the DMAEN bit is set to 1.

0x1 - autobuffer mode. In this mode, no descriptors in memory are
used. Instead, DMA is performed in a continuous circular buffer
fashion based on user-programmed DMA MMR settings. Upon
completion of the work unit, the parameter registers are reloaded
into the current registers, and DMA resumes immediately with
zero overhead. Autobuffer mode is stopped by a user write of 0 to
the DMAEN bit in the DMAX_CONFIG register.

0x4 - descriptor array mode. This mode fetches a descriptor from
memory that does not include the NDPH or NDPL elements. Because
the descriptor does not contain a next descriptor pointer entry, the
DMA engine defaults to using the DMAx_CURR_DESC_PTR register to
step through descriptors, thus allowing a group of descriptors to
follow one another in memory like an array.

0x6 - descriptor list (small model) mode. This mode fetches a
descriptor from memory that includes NDPL, but not NDPH. There-
fore, the high 16 bits of the next descriptor pointer field are taken
from the upper 16 bits of the DMAXx_NEXT_DESC_PTR register, thus
confining all descriptors to a specific 64K page in memory.

5-70 ADSP-BF59x Blackfin Processor Hardware Reference



Direct Memory Access

0x7 - descriptor list (large model) mode. This mode fetches a
descriptor from memory that includes NDPH and NDPL, thus allowing
maximum flexibility in locating descriptors in memory.

* NDSIZE[3:0] (flex descriptor size). This field specifies the number
of descriptor elements in memory to load. This field must be 0 if in
stop or autobuffer mode. If NDSIZE and FLOW specify a descriptor
that extends beyond YMOD, a DMA error results.

e DI_EN (data interrupt enable). This bit specifies whether to allow
completion of a work unit to generate a data interrupt.

e DI_SEL (data interrupt timing select). This bit specifies the timing
of a data interrupt—after completing the whole buffer or after
completing each row of the inner loop. This bit is used only in 2-D
DMA operation.

e SYNC (work unit transitions). This bit specifies whether the DMA
channel performs a continuous transition (SYNC = 0) or a syn-
chronized transition (SYNC = 1) between work units. For more
information, see “Work Unit Transitions” on page 5-25.

In DMA transmit (memory read) and MDMA source channels, the
SYNC bit controls the interrupt timing at the end of the work unit
and the handling of the DMA FIFO between the current and next

work unit.

@ Work unit transitions for MDMA streams are controlled by the
SYNC bit of the MDMA source channel’s DMAx_CONFIG register. The
SYNC bit of the MDMA destination channel is reserved and must be
0.

ADSP-BF59x Blackfin Processor Hardware Reference 5-71



DMA Registers

®

DMA2D (DMA mode). This bit specifies whether DMA mode
involves only DMAx_X_COUNT and DMAx_X_MODIFY (one-dimensional
DMA) or also involves DMAx_Y_COUNT and DMAx_Y_MODIFY
(two-dimensional DMA).

WDSIZE[1:0] (transfer word size). The DMA engine supports trans-
fers of 8-, 16-, or 32-bit items. Each request/grant results in a
single memory access (although two cycles are required to transfer
32-bit data through a 16-bit memory port or through the 16-bit
DMA access bus). The increment sizes (strides) of the DMA
address pointer registers must be a multiple of the transfer unit
size—one for 8-bit, two for 16-bit, four for 32-bit.

Only SPORT DMA and Memory DMA can operate with a transfer
size of 32 bits. All other peripherals have a maximum DMA trans-
fer size of 16 bits.

WNR (DMA direction). This bit specifies DMA direction—mem-

ory read (0) or memory write (1).

DMAEN (DMA channel enable). This bit specifies whether to enable
a given DMA channel.

When a peripheral DMA channel is enabled, interrupts from the
peripheral denote DMA requests. When a channel is disabled, the
DMA unit ignores the peripheral interrupt and passes it directly to
the interrupt controller. To avoid unexpected results, take care to
enable the DMA channel before enabling the peripheral, and to
disable the peripheral before disabling the DMA channel.

5-72

ADSP-BF59x Blackfin Processor Hardware Reference



Direct Memory Access

DMA Interrupt Status Registers
(DMAX_IRQ_STATUS/MDMA_yy_ IRQ_STATUS)

The DMAX_IRQ_STATUS register, shown in Figure 5-7, contains bits that
record whether the DMA channel:

* Is enabled and operating, enabled but stopped, or disabled.
e Is fetching data or a DMA descriptor.

* Has detected that a global DMA interrupt or a channel interrupt is
being asserted.

* Has logged occurrence of a DMA error.

Note the DMA_DONE interrupt is asserted when the last memory access (read
or write) has completed.

For a memory transfer to a peripheral, there may be up to four data
words in the channel’s DMA FIFO when the interrupt occurs. At

this point, it is normal to immediately start the next work unit. If,
however, the application needs to know when the final data item is

ADSP-BF59x Blackfin Processor Hardware Reference 5-73



DMA Registers

actually transferred to the peripheral, the application can test or
poll the DMA_RUN bit. As long as there is undelivered transmit data
in the FIFO, the DMA_RUN bit is 1.

@ For a memory write DMA channel, the state of the DMA_RUN bit has
no meaning after the last DMA_DONE event has been signaled. It does

not indicate the status of the DMA FIFO.

For MDMA transfers where an interrupt is not desired to notify
when the DMA operation has ended, software should poll the
DMA_DONE bit, rather than the DMA_RUN bit to determine when the
transaction has completed.

DMA Interrupt Status Registers (DMAx_IRQ_STATUS/MDMA_yy_IRQ_STATUS)

1514 1312 11 10 9 8 7 6 5 4 3 2 1 0
|o|o|o|o|o|o|o|o|o|o |0|0|0|0|0|0|Reset:OxOOOO

DMA_RUN (DMA Channel Running) - RO |— DMA_DONE (DMA Comple-
This bit is set to 1 automatically when tion Interrupt Status) - W1C
the DMAx_CONFIG register is written 0 - No interrupt is being
0 - This DMA channel is disabled, or it asserted for this channel
is enabled but paused (FLOW 1 - DMA work unit has
mode 0) completed, and this DMA
1 - This DMA channel is enabled and channel’s interrupt is being
operating, either transferring data asserted
or fetching a DMA descriptor —— DMA_ERR (DMA Error Inter-
DFETCH (DMA Descriptor Fetch) - RO rupt Status) - W1C
0 - No DMA error has

This bit is set to 1 automatically when
the DMAx_CONFIG register is written
with FLOW modes 4-7

occurred
1 - A DMA error has occurred,

h L . and the global DMA Error
0 - This DMA channel is disabled, or it interrupt is being asserted.

is enabled but stopped (FLOW After this error occurs,

mode 0)
. . the contents of the DMA
1 - This DMA channel is enabled and Current registers are

presently fetching a DMA descriptor unspecified. Control/

Status and Parameter
registers are unchanged.

Figure 5-7. DMA Interrupt Status Registers

5-74 ADSP-BF59x Blackfin Processor Hardware Reference



Direct Memory Access

The processor supports a flexible interrupt control structure with three
interrupt sources:

* Data driven interrupts (see Table 5-5)

e DPeripheral error interrupts

* DMA error interrupts (for example, bad descriptor or bus error)

Separate interrupt request (IRQ) levels are allocated for data, peripheral
error, and DMA error interrupts.

Table 5-5. Data Driven Interrupts

Interrupt Name Description

No Interrupt Interrupts can be disabled for a given work unit.

Peripheral Inter- These are peripheral (non-DMA) interrupts.
rupt

Row Completion | DMA Interrupts can occur on the completion of a row (CURR_X_COUNT
expiration).

Buffer Completion | DMA Interrupts can occur on the completion of an entire buffer (when
CURR_X_COUNT and CURR_Y_COUNT expire).

The DMA error conditions for all DMA channels are OR’d together into
one system-level DMA error interrupt. The individual TRQ_STATUS words

of each channel can be read to identify the channel that caused the DMA
error interrupt.

@ Note the DMA_DONE and DMA_ERR interrupt indicators are
write-one-to-clear (W1C).

/ When switching a peripheral from DMA to non-DMA mode, the

peripheral’s interrupts should be disabled during the mode switch
(via the appropriate peripheral register or SIC_IMASK register) so
that no unintended interrupt is generated on the shared
DMA/interrupt request line.

ADSP-BF59x Blackfin Processor Hardware Reference 5-75



DMA Registers

DMA Start Address Registers
(DMAX_START_ADDR/MDMA_yy_ START_ADDR)

The DMAX_START_ADDR register, shown in Figure 5-8, contains the start
address of the data buffer currently targeted for DMA.

DMA Start Address Registers (DMAx_START_ADDR/ MDMA_yy START_ADDR)
R/W prior to enabling channel; RO after enabling channel

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
D D fx P P Pefx e gx x|
]

Reset = Undefined

|
| DMA Start
Address[31:16]

15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0
KN ES N EN CNES ENES ENEN ENES ENESENER
|

L
| DMA Start
Address[15:0]

Figure 5-8. DMA Start Address Registers

DMA Current Address Registers
(DMAXx_CURR_ADDR/MDMA_yy CURR_ADDR)

The 32-bit DMAXx_CURR_ADDR register shown in Figure 5-9, contains the
present DMA transfer address for a given DMA session. On the first mem-
ory transfer of a DMA work unit, the DMAXx_CURR_ADDR register is loaded

5-76 ADSP-BF59x Blackfin Processor Hardware Reference



Direct Memory Access

from the DMAX_START_ADDR register, and it is incremented as each transfer
occurs.

DMA Current Address Registers (DMAx_CURR_ADDR/MDMA_yy CURR_ADDR)
R/W prior to enabling channel; RO after enabling channel

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
|x |x |x |x |x |x |x |x |x |x |x |x |x |x IX |x | Reset = Undefined
1 ]
| Current Address[31:16]
Upper 16 bits of present

DMA transfer address for
a given DMA session

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

D D e P P e e e e [x [x Px [x [x ¢

L |
| Current Address[15:0]

Lower 16 bits of present
DMA transfer address for
a given DMA session

Figure 5-9. DMA Current Address Registers

DMA Inner Loop Count Registers
(DMAXx_X_COUNT/MDMA_yy X_COUNT)

For 2-D DMA, the DMAx_X_COUNT register, shown in Figure 5-10, contains
the inner loop count. For 1-D DMA, it specifies the number of elements

ADSP-BF59x Blackfin Processor Hardware Reference 5-77



DMA Registers

to transfer. For details, see “Two-Dimensional DMA Operation” on
page 5-12. A value of 0 in DMAX_X_COUNT corresponds to 65,536 elements.

DMA Inner Loop Count Registers (DMAx_X_COUNT/MDMA_yy_X_COUNT)
R/W prior to enabling channel; RO after enabling channel

1514 1312 1110 9 8 7 6 5 4 3 2 1 0
|x |x |x |x |x |x |x |x|x |x |x |x|x |x |x |x| Reset = Undefined
1 I
| X_COUNT[15:0] (Inner
Loop Count)

The number of elements to
transfer (1-D); the number of
rows in the inner loop (2-D)

Figure 5-10. DMA Inner Loop Count Registers

DMA Current Inner Loop Count Registers
(DMAX_CURR_X_COUNT
/MDMA _yy CURR_X_COUNT)

The DMAX_CURR_X_COUNT register, shown in Figure 5-11, holds the number
of transfers remaining in the current DMA row (inner loop). On the first
memory transfer of each DMA work unit, it is loaded with the value in the
DMAX_X_COUNT register and then decremented. For 2-D DMA, on the last
memory transfer in each row except the last row, it is reloaded with the
value in the DMAX_X_COUNT register; this occurs at the same time that the
value in the DMAx_CURR_Y_COUNT register is decremented. Otherwise it is
decremented each time an element is transferred. Expiration of the count
in this register signifies that DMA is complete. In 2-D DMA, the
DMAX_CURR_X_COUNT register value is 0 only when the entire transfer is

5-78 ADSP-BF59x Blackfin Processor Hardware Reference



Direct Memory Access

complete. Between rows it is equal to the value of the DMAX_X_COUNT
register.

DMA Current Inner Loop Count Registers (DMAx_CURR_X_COUNT/
MDMA_yy_CURR_X_COUNT)

R/W prior to enabling channel; RO after enabling channel

1514 1312 11 10 9 8 7 6 5 4 3 2 1 0
|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x| Reset = Undefined
| I

| CURR_X_COUNT[15:0]
(Current Inner Loop
Count)
Loaded by X_COUNT
at the beginning of each
DMA session (1-D DMA),
or at the beginning of
each row (2-D DMA)

Figure 5-11. DMA Current Inner Loop Count Registers

DMA Inner Loop Address Increment Registers
(DMAX_X_MODIFY/MDMA_yy X_MODIFY)

The DMAX_X_MODIFY register, shown in Figure 5-12, contains a signed,
two’s-complement byte-address increment. In 1-D DMA, this increment
is the stride that is applied after transferring each element.

@ DMAX_X_MODIFY is specified in bytes, regardless of the DMA transfer

size.

In 2-D DMA, this increment is applied after transferring each element in
the inner loop, up to but not including the last element in each inner
loop. After the last element in each inner loop, the DMAX_Y_MODIFY register
is applied instead, except on the very last transfer of each work unit. The
DMAX_X_MODIFY register is always applied to the last transfer of a work unit.

The dDMAx_X_MODIFY field may be set to 0. In this case, DMA is performed
repeatedly to or from the same address. This is useful, for example, in

ADSP-BF59x Blackfin Processor Hardware Reference 5-79



DMA Registers

transferring data between a data register and an external memory-mapped

peripheral.

DMA Inner Loop Address Increment Registers (DMAx_X_MODIFY/MDMA_yy_X_MODIFY)
R/W prior to enabling channel; RO after enabling channel

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
|x |x |x |x |x |x |x |x |x |x |x |x |x |x |x |x | Reset = Undefined
L |
l X_MODIFY[15:0] (Inner
Loop Address Increment)

Stride (in bytes) to take after
each decrement of
CURR_X_COUNT

Figure 5-12. DMA Inner Loop Address Increment Registers

DMA Outer Loop Count Registers
(DMAXx_Y_COUNT/MDMA_yy_Y_COUNT)

For 2-D DMA, the DMAx_Y_COUNT register, shown in Figure 5-13, contains
the outer loop count. It is not used in 1-D DMA mode. This register con-
tains the number of rows in the outer loop of a 2-D DMA sequence. For
details, see “Two-Dimensional DMA Operation” on page 5-12.

DMA Outer Loop Count Registers (DMAx_Y_COUNT/MDMA_yy_Y_COUNT)
R/W prior to enabling channel; RO after enabling channel

1514 1312 1110 9 8 7 6 5 4 3 2 1 0
|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x| Reset = Undefined
L ]

| Y_COUNT[15:0]
(Outer Loop Count)
The number of rows in
the outer loop of a 2-D
DMA sequence

Figure 5-13. DMA Outer Loop Count Registers

5-80 ADSP-BF59x Blackfin Processor Hardware Reference



Direct Memory Access

DMA Current Outer Loop Count Registers
(DMAXx_CURR_Y_COUNT/
MDMA_yy CURR_Y_COUNT)

The DMAX_CURR_Y_COUNT register, used only in 2-D mode, holds the num-
ber of full or partial rows (outer loops) remaining in the current work
unit. See Figure 5-14. On the first memory transfer of each DMA work
unit, it is loaded with the value of the DMAx_Y_COUNT register. The register
is decremented each time the DMAX_CURR_X_COUNT register expires during
2-D DMA operation (1 to DMAx_X_COUNT or 1 to O transition), signifying
completion of an entire row transfer. After a 2-D DMA session is com-
plete, DMAX_CURR_Y_COUNT = 1 and DMAx_CURR_X_COUNT = 0.

DMA Current Outer Loop Count Registers
(DMAx_CURR_Y_COUNT/MDMA_yy_CURR_Y_COUNT)
R/W prior to enabling channel; RO after enabling channel

1514 1312 1110 9 8 7 6 5 4 3 2 1 0
lexlxlxlxlxlxlxlxlxlexlxlxlxlxl Reset = Undefined
| I

l CURR_Y_COUNT[15:0]
(Current Outer Loop
Count)
Loaded by Y_COUNT
at the beginning of each
2-D DMA session; not
used for 1-D DMA

Figure 5-14. DMA Current Outer Loop Count Registers

DMA Outer Loop Address Increment Registers
(DMAX_Y_MODIFY/MDMA_yy_Y_MODIFY)

The DMAX_Y_MODIFY register contains a signed, two’s-complement value.
See Figure 5-15. This byte-address increment is applied after each decre-
ment of the DMAX_CURR_Y_COUNT register except for the last item in the 2-D
array where the DMAX_CURR_Y_COUNT also expires. The value is the offset

ADSP-BF59x Blackfin Processor Hardware Reference 5-81



DMA Registers

between the last word of one row and the first word of the next row. For
details, see “T'wo-Dimensional DMA Operation” on page 5-12.

@ DMAX_Y_MODIFY is specified in bytes, regardless of the DMA transfer

size.

DMA Outer Loop Address Increment Registers (DMAx_Y_MODIFY/ MDMA_yy_Y_MODIFY)
R/W prior to enabling channel; RO after enabling channel

15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0
|x |x |x |x |x |x |x |x |x|x |x |x |x |x |x |x| Reset = Undefined
1 I

Y_MODIFY[15:0]
(Outer Loop Address
Increment)

Stride to take after each
decrement of
CURR_Y_COUNT

Figure 5-15. DMA Outer Loop Address Increment Registers

DMA Next Descriptor Pointer Registers
(DMAX_NEXT_DESC_PTR/
MDMA_yy NEXT_DESC_PTR)

The 32-bit DMAX_NEXT_DESC_PTR register, shown in Figure 5-16, specifies
where to look for the start of the next descriptor block when the DMA
activity specified by the current descriptor block finishes. This register is
used in small and large descriptor list modes. At the start of a descriptor
fetch in either of these modes, this register is copied into the
DMAX_CURR_DESC_PTR register. Then, during the descriptor fetch, the
DMAX_CURR_DESC_PTR register increments after each element of the descrip-
tor is read in.

In small and large descriptor list modes, the DMAX_NEXT_DESC_PTR
register, and not the DMAx_CURR_DESC_PTR register, must be pro-
grammed directly via MMR access before starting DMA operation.

5-82 ADSP-BF59x Blackfin Processor Hardware Reference



Direct Memory Access

In descriptor array mode, the next descriptor pointer register is disre-
garded, and fetching is controlled only by the DMAx_CURR_DESC_PTR
register.

DMA Next Descriptor Pointer Registers
(DMAx_NEXT_DESC_PTR/MDMA_yy NEXT_DESC_PTR)

R/W prior to enabling channel; RO after enabling channel

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x| Reset = Undefined

Next Descriptor
Pointer[31:16]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

KN ENESES ENENENES ESENENES ENENERER
L |

Next Descriptor
Pointer[15:0]

Figure 5-16. DMA Next Descriptor Pointer Registers

DMA Current Descriptor Pointer Registers
(DMAXx_CURR_DESC_PTR/
MDMA_yy CURR_DESC_PTR)

The 32-bit DMAx_CURR_DESC_PTR register, shown in Figure 5-17, contains
the memory address for the next descriptor element to be loaded. For FLOW
mode settings that involve descriptors (FLOW = 4, 6, or 7), this register is
used to read descriptor elements into appropriate MMRs before a DMA
work block begins. For descriptor list modes (FLOW = 6 or 7), this register
is initialized from the DMAX_NEXT_DESC_PTR register before loading each
descriptor. Then, the address in the DMAx_CURR_DESC_PTR register incre-
ments as each descriptor element is read in.

When the entire descriptor has been read, the DMAx_CURR_DESC_PTR regis-
ter contains this value:

ADSP-BF59x Blackfin Processor Hardware Reference 5-83



DMA Registers

Descriptor Start Address + (2 x Descriptor Size) (# of elements)

For descriptor array mode (FLOW = 4), this register, and not the
DMAX_NEXT_DESC_PTR register, must be programmed by MMR
access before starting DMA operation.

DMA Next Descriptor Pointer Registers
(DMAx_NEXT_DESC_PTR/MDMA_yy_NEXT_DESC_PTR)

R/W prior to enabling channel; RO after enabling channel
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
|>< |>< |>< |>< |x |>< |>< |>< |>< |x |>< |>< |>< |>< |x |>< | Reset = Undefined
L ]

Next Descriptor
Pointer[31:16]

15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0

ES ENENES ENESESES ESENENES ENESESES

Next Descriptor
Pointer[15:0]

Figure 5-17. DMA Current Descriptor Pointer Registers

HMDMA Registers

Some processors have two HMDMA blocks, while others have none. See
the “Unique Information for the ADSP-BF59x Processor” on page 5-105
to determine whether this feature is applicable to your product.
HMDMADQO is associated with MDMAOQ, and HMDMALI is associated with
MDMAL.

Handshake MDMA Control Registers (HMDMAXx_CONTROL)

The HMDMAX_CONTROL register, shown in Figure 5-18, is used to set up
HMDMA parameters and operating modes.

5-84 ADSP-BF59x Blackfin Processor Hardware Reference



Direct Memory Access

The DRQ[1:01] field is used to control the priority of the MDMA channel
when the HMDMA is disabled, that is, when handshake control is not
being used (see Table 5-6).

Table 5-6. DRQ[1:0] Values

DRQ[1:0] |Priority Description

00 Disabled | The MDMA request is disabled.

01 Enabled/S | Normal MDMA channel priority. The channel in this mode is limited to
single memory transfers separated by one idle system clock. Request sin-
gle transfer from MDMA channel.

10 Enabled/ | Normal MDMA channel functionality and priority. Request multiple

M transfers from MDMA channel (default).

11 Urgent The MDMA channel priority is elevated to urgent. In this state, it has
higher priority for memory access than non-urgent channels. If two chan-
nels are both urgent, the lower-numbered channel has priority.

ADSP-BF59x Blackfin Processor Hardware Reference 5-85



DMA Registers

The RBC bit forces the BCOUNT register to be reloaded with the BCINIT value
while the module is already active. Do not set this bit in the same write
that sets the HMDMAEN bit to active.

Handshake MDMA Control Registers (HMDMAXx_CONTROL)

15 14 13 12 11

10

fofofofofe]o

BDI (Block Done
Interrupt Generated)
-WicC

0 - Block done interrupt
not generated

1 - Block done interrupt
generated

Ol (Overflow Interrupt

Generated) - W1C

0 - Overflow interrupt
not generated

1 - Overflow interrupt
generated

PS (Pin Status) - RO
0 - Request pinis 0
1 - Request pin is 1

RBC (Force Reload of

BCOUNT) - WO
0 - Reload not active

1 - Force reload of BCOUNT with BCINIT.

Write 1 to activate
DRQ[1:0] (Default MDMA Request

When Handshake DMA is Disabled

9 8 7 6 5 4 3 2 1 0
t JoJofo Jofofofofofo]
|

EN=0)
00 - No request

01 - Request single transfer from MDMA channel
10 - Request multiple transfers from MDMA channel (default)
11 - Request urgent multiple transfers from MDMA channel

Figure 5-18. Handshake MDMA Control Registers

Reset = 0x0200

HMDMAEN (Handshake MDMA

Enable)

0 - Disable handshake
Operation

1 - Enable handshake
Operation

REP (HMDMA Request Polarity)

0 - Increment ECOUNT on
falling edges of DMARX
input

1 - Increment ECOUNT on
rising edges of DMARX
input

UTE (Urgency Threshold
Enable)

0 - Disable urgency threshold
1 - Enable urgency threshold
OIE (Overflow Interrupt
Enable)

0 - Disable overflow interrupt
1 - Enable overflow interrupt

BDIE (Block Done Interrupt

Enable)

0 - Disable block done interrupt

1 - Enable block done interrupt

MBDI (Mask Block Done

Interrupt)

BDIE must =1

0 - Interrupt generated when
BCOUNT decrements to 0

1 - Interrupt generated when
BCOUNT decrements to 0
and ECOUNT =0

5-86

ADSP-BF59x Blackfin Processor Hardware Reference



Direct Memory Access

Handshake MDMA Initial Block Count Registers
(HMDMAX_BCINIT)

The HMDMAX_BCINIT register, shown in Figure 5-19, holds the number of
transfers to do per edge of the DMARx control signal.

Handshake MDMA Initial Block Count Registers (HMDMAXx_BCINIT)

1514 1312 1110 9 8 7 6 5 4 3 2 1 0
0|0|o|o|o|o|o|o|o|o |o|0|o|o|o|0| Reset = 0x0000

| BCINIT[15:0] (Initial Block
Count)

Figure 5-19. Handshake MDMA Initial Block Count Registers

Handshake MDMA Current Block Count Registers
(HMDMAX_BCOUNT)

The HMDMAX_BCOUNT register, shown in Figure 5-20, holds the number of
transfers remaining for the current edge. MDMA requests are generated if
this count is greater than 0.

Examples:
e 0000 = 0 transfers remaining
* FFFF = 65535 transfers remaining

The BCOUNT field is loaded with BCINIT when ECOUNT is greater than 0 and
BCOUNT is expired (0). Also, if the RBC bit in the HMDMAX_CONTROL register is
written to 1, BCOUNT is loaded with BCINIT. The BCOUNT field is decre-
mented with each MDMA grant. It is cleared when HMDMA is disabled.

A block done interrupt is generated when BCOUNT decrements to 0. If the
MBDI bit in the HMDMAX_CONTROL register is set, the interrupt is suppressed

ADSP-BF59x Blackfin Processor Hardware Reference 5-87



DMA Registers

until ECOUNT is 0. If BCINIT is 0, no block done interrupt is generated,
since no DMA requests were generated or grants received.

Handshake MDMA Current Block Count Register (HMDMAXx_BCOUNT)

1514 1312 11 10 9 8 7 6 5 4
|0 |o |o |o |o |0 |o|o|o |o |0|0 |o |o |0| Reset = 0x0000
|

| BCOUNT[15:0] (Transfers
Remaining for Current Edge)

Figure 5-20. Handshake MDMA Current Block Count Registers

Handshake MDMA Current Edge Count Registers
(HMDMAX_ECOUNT)

The HMDMAX_ECOUNT register, shown in Figure 5-21, holds a signed number
of edges remaining to be serviced. This number is in a signed two’s com-
plement representation. When an edge is detected on the respective DMARX
input, requests occur if this count is greater than or equal to 0 and BCOUNT
is greater than 0.

When the handshake mode is enabled, ECOUNT is loaded and the resulting
number of requests is:

Number of edges + N,

where N is the number loaded from ECINIT. The number N can be posi-
tive or negative. Examples:

* Ox7FFF = 32,767 edges remaining
e 0x0000 = 0 edges remaining
* 0x8000 = —32,768: ignore the next 32,768 edges

5-88 ADSP-BF59x Blackfin Processor Hardware Reference



Direct Memory Access

Each time that BCOUNT expires, ECOUNT is decremented and BCOUNT is
reloaded from BCINIT. When a handshake request edge is detected, ECOUNT
is incremented. The ECOUNT field is cleared when HMDMA is disabled.

Handshake MDMA Current Edge Count Register (HMDMAXx_ECOUNT)

1514 1312 1110 9 8 7 6 5 4 3 2 1 0
|o|o|o|o|0|o|o|o|o|o |0|o|o|o|o|o| Reset = 0x0000
|

| ECOUNT[15:0] (Edges
Remaining to be Serviced)

Figure 5-21. Handshake MDMA Current Edge Count Registers

Handshake MDMA Initial Edge Count Registers
(HMDMAX_ECINIT)

The HMDMAX_ECINIT register, shown in Figure 5-22, holds a signed number
that is loaded into HMDMAx_ECOUNT when handshake DMA is enabled. This
number is in a signed two’s complement representation.

Handshake MDMA Initial Edge Count Registers (HMDMAXx_ECINIT)

1514 1312 11 10 9 8 7 6 5 4 3 2 1 0
|o |o |o |o |o |o |o |o |o |o |o |o|o |o |o |0| Reset = 0x0000
| |

| ECINIT[15:0] (Initial Edge
Count)

Figure 5-22. Handshake MDMA Initial Edge Count Registers

Handshake MDMA Edge Count Urgent Registers
(HMDMAXx_ECURGENT)

The HMDMAX_ECURGENT register, shown in Figure 5-23, holds the urgent
threshold. If the ECOUNT field in the HMDMAX_ECOUNT register is greater than

ADSP-BF59x Blackfin Processor Hardware Reference 5-89



DMA Registers

this threshold, the MDMA request is urgent and might get higher
priority.

Handshake MDMA Edge Count Urgent Registers (HMDMAx_ECURGENT)

1514 1312 1110 9 8 7 6 5 4 3 2 1 0
|1 |1 |1 |1 |1 |1 |1 |1 |1 |1 |1 |1 |1 |1 |1 |1| Reset = OXFFFF

UTHE[15:0] (Urgent
Threshold)

Figure 5-23. Handshake MDMA Edge Count Urgent Registers

Handshake MDMA Edge Count Overflow Interrupt
Registers (HMDMAx_ECOVERFLOW)

The HMDMAX_ECOVERFLOW register, shown in Figure 5-24, holds the inter-
rupt threshold. If the ECOUNT field in the HMDMAX_ECOUNT register is greater
than this threshold, an overflow interrupt is generated.

Handshake MDMA Edge Count Overflow Interrupt Registers (HMDMAx_ECOVERFLOW)

15 14 13 12 11 10 9 8 3 2 10
|1 |1 |1 |1 |1 |1 |1 |1 |1 |1 |1 |1 |1 |1 |1 |1| Reset = OXFFFF

ITHR[15:0] (Interrupt
Threshold)

Figure 5-24. Handshake MDMA Edge Count Overflow Interrupt
Registers

DMA Traffic Control Registers
(DMA_TC_PER and DMA_TC_CNT)

The DMA_TC_PER register (see Figure 5-25) and the DMA_TC_CNT register (see
Figure 5-26) work with other DMA registers to define traffic control.

5-90 ADSP-BF59x Blackfin Processor Hardware Reference



Direct Memory Access

DMA_TC_PER Register

DMA Traffic Control Counter Period Register (DMA_TC_PER)

15 14 13 12 11

fofofofofe]
I |

10 9 8 76 5 4 38 2 10
oJoJoJofoJo[oJo[o[o]o] Reset = 0x0000
I I I

MDMA_ROUND_ROBIN_PERIODI[4:0]
Maximum length of MDMA round

robin bursts. If not zero, any MDMA
stream which receives a grant is
allowed up to that number of DMA
transfers, to the exclusion of the other
MDMA streams.

DAB_TRAFFIC_PERIOD[2:0]

000 - No DAB bus transfer grouping performed
Other - Preferred length of unidirectional bursts
on the DAB bus between the DMA and the
peripherals

DCB_TRAFFIC_PERIODI[3:0]
0000 - No DCB bus transfer
grouping performed

Other - Preferred length of unidi-
rectional bursts on the DCB bus
between the DMA and internal L1
memory

DEB_TRAFFIC_PERIOD[3:0]
0000 - No DEB bus transfer
grouping performed

Other - Preferred length of unidi-
rectional bursts on the DEB bus
between the DMA and external
memory

Figure 5-25. DMA Traffic Control Counter Period Register

ADSP-BF59x Blackfin Processor Hardware Reference

5-91



DMA Registers

DMA_TC_CNT Register

DMA Traffic Control Counter Register (DMA_TC_CNT)
RO

15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0
fofofofofofofofofofofofofofofofo]
| I | I |

MDMA?ROUNDfROBIN?COUNT[4:0]—I I— DCB_TRAFFIC_COUNTI[3:0]

Current transfer count remaining in Current cycle count remaining
the MDMA round-robin period in the DCB traffic period

DAB_TRAFFIC_COUNT[2:0] —— DEB_TRAFFIC_COUNT[3:0]

P Current cycle count remaining
Current cycle count remaining in the ) - )
DAB lraffi% period 9 in the DEB traffic period

Reset = 0x0000

Figure 5-26. DMA Traffic Control Counter Register

The MDMA_ROUND_ROBIN_COUNT field shows the current transfer count
remaining in the MDMA round-robin period. It initializes to
MDMA_ROUND_ROBIN_PERIOD whenever DMA_TC_PER is written, whenever a
different MDMA stream is granted, or whenever every MDMA stream is
idle. It then counts down to 0 with each MDMA transfer. When this
count decrements from 1 to 0, the next available MDMA stream is
selected.

The DAB_TRAFFIC_COUNT field shows the current cycle count remaining in
the DAB traffic period. It initializes to DAB_TRAFFIC_PERIOD whenever
DMA_TC_PER is written, or whenever the DAB bus changes direction or
becomes idle. It then counts down from DAB_TRAFFIC_PERIOD to 0 on each
system clock (except for DMA stalls). While this count is nonzero, same
direction DAB accesses are treated preferentially. When this count decre-
ments from 1 to 0, the opposite direction DAB access is treated
preferentially, which may result in a direction change. When this count is
0 and a DAB bus access occurs, the count is reloaded from
DAB_TRAFFIC_PERIOD to begin a new burst.

The DEB_TRAFFIC_COUNT field shows the current cycle count remaining in
the DEB traffic period. It initializes to DEB_TRAFFIC_PERIOD whenever

5-92 ADSP-BF59x Blackfin Processor Hardware Reference



Direct Memory Access

DMA_TC_PER is written or whenever the DEB bus changes direction or
becomes idle. It then counts down from DEB_TRAFFIC_PERIOD to 0 on each
system clock (except for DMA stalls). While this count is nonzero, same
direction DEB accesses are treated preferentially. When this count decre-
ments from 1 to 0, the opposite direction DEB access is treated
preferentially, which may result in a direction change. When this count is
0 and a DEB bus access occurs, the count is reloaded from
DEB_TRAFFIC_PERIOD to begin a new burst.

The DCB_TRAFFIC_COUNT field shows the current cycle count remaining in
the DCB traffic period. It initializes to DCB_TRAFFIC_PERIOD whenever
DMA_TC_PER is written or whenever the DCB bus changes direction or
becomes idle. It then counts down from DCB_TRAFFIC_PERIOD to 0 on each
system clock (except for DMA stalls). While this count is nonzero, same
direction DCB accesses are treated preferentially. When this count decre-
ments from 1 to 0, the opposite direction DCB access is treated
preferentially, which may result in a direction change. When this count is
0 and a DCB bus access occurs, the count is reloaded from
DCB_TRAFFIC_PERIOD to begin a new burst.

Programming Examples

The following examples illustrate memory DMA and handshaked memory
DMA basics. Examples for peripheral DMAs can be found in the respec-
tive peripheral chapters.

ADSP-BF59x Blackfin Processor Hardware Reference 5-93



Programming Examples

Register-Based 2-D Memory DMA

Listing 5-1 shows a register-based, two-dimensional MDMA. While the
source channel processes linearly, the destination channel re-sorts ele-
ments by transposing the two-dimensional data array. See Figure 5-27.

1|7 |13]19]25 1(2[3]4a|s]se
218 )14)20(26 7|8 9]10|11|12
3|9 f15]21)27 13(14[ 15[ 16[ 17|18
4 (1016 | 22|28

19| 20| 21| 22| 23|24
5|11 |17 | 23|29

25|26 27| 28| 29|30
6 |12|18 | 24|30

Figure 5-27. DMA Example, 2-D Array

The two arrays reside in two different L1 data memory blocks. However,
the arrays could reside in any internal or external memory, including L1
instruction memory and SDRAM. For the case where the destination
array resided in SDRAM, it is a good idea to let the source channel re-sort
elements and to let the destination buffer store linearly.

Listing 5-1. Register-Based 2-D Memory DMA

f#include <defBF527.h>/*For ADSP-BF527 product, as an example.*/
ffdefine X 5
fidefine Y 6

.section L1_data_a;
.byte? aSourcel[X*Y] =
1, 7, 13, 19, 25,
8, 14, 20, 26,
9, 15, 21, 27,
10, 16, 22, 28,
11, 17, 23, 29,

ol W N

5-94 ADSP-BF59x Blackfin Processor Hardware Reference



Direct Memory Access

6, 12, 18, 24, 30;

.section Ll_data_b;
.byte2 aDestination[X*Y];

.section L1_code;
.global _main;
_main:
p0.1 = To(MDMA_SO_CONFIG);
pO.h = hi(MDMA_SO_CONFIG);
call memdma_setup;
call memdma_wait;
_main.forever:
Jjump _main.forever;
_main.end:

The setup routine shown in Listing 5-2 initializes either MDMAO or

MDMALI, depending on whether the MMR address of MDMA_SO_CONFIG or
MDMA_S1_CONFIG is passed in the PO register. Note that the source channel
is enabled before the destination channel. Also, it is common to synchro-
nize interrupts with the destination channel because only those interrupts

indicate completion of both DMA read and write operations.

Listing 5-2. Two-Dimensional Memory DMA Setup Example

memdma_setup:
[--sp]l = r7;

/* setup 1D source DMA for 16-bit transfers */
r7.1 = lo(aSource);
r7.h = hi(aSource);

[p0O + MDMA_SO_START_ADDR - MDMA_SO_CONFIG] = r7;

r7.1 = 2;

wlp0 + MDMA_SO_X_MODIFY - MDMA_SO_CONFIG] = r7;

r7.1 =X *Y;
w[pO + MDMA_SO_X_COUNT - MDMA_SO_CONFIG] = r7;

ADSP-BF59x Blackfin Processor Hardware Reference

5-95



Programming Examples

r7.1 = WDSIZE_16 | DMAEN;
wlp0] = r7;

/* setup 2D destination DMA for 16-bit transfers */

r7.1 lo(aDestination);

r7.h = hi(aDestination);

[pO + MDMA_DO_START_ADDR - MDMA_SO_CONFIG] = r7;
r7.1 = 2*Y;

w[pO + MDMA_DO_X_MODIFY - MDMA_SO_CONFIG] = r7;
r7.1 =1Y;

w[pO + MDMA_DO_Y_COUNT - MDMA_SO_CONFIG] = r7;
r7.1 = X;

w[pO + MDMA_DO_X_COUNT - MDMA_SO_CONFIG] = r7;
r7.1 = -2 * (Y * (X-1) - 1);

w[pO + MDMA_DO_Y_MODIFY - MDMA_SO_CONFIG] = r7;

r7.1 = DMA2D | DI_EN | WDSIZE_16 | WNR | DMAEN;
w[p0 + MDMA_DO_CONFIG - MDMA_SO_CONFIG] = r7;
r7 = [sp++1;

rts;

memdma_setup.end:

For simplicity the example shown in Listing 5-3 polls the DMA status
rather than using interrupts, which is the normal case in a real application.

Listing 5-3. Polling DMA Status

memdma_wait:

[--sp]l =1r7;

memdma_wait.test:

r7 = wlp0 + MDMA_DO_IRQ_STATUS - MDMA_SO_CONFIG] (z);
CC = bittst (r7, bitpos(DMA_DONE));

if ICC jump memdma_wait.test;

r7 = DMA_DONE (z);

w[pO + MDMA_DO_IRQ_STATUS - MDMA_SO_CONFIG] = r7;

r7 = [sp++1;

5-96

ADSP-BF59x Blackfin Processor Hardware Reference



Direct Memory Access

rts;
memdma_wait.end:

Initializing Descriptors in Memory

Descriptor-based DMAs expect the descriptor data to be available in
memory by the time the DMA is enabled. Often, the descriptors are pro-
grammed by software at run-time. Many times, however, the
descriptors—or at least large portions of them—can be static and there-
fore initialized at boot time. How to set up descriptors in global memory
depends heavily on the programming language and the tool set used. The
following examples show how this is best performed in the Visual DSP++
tools’ assembly language.

Listing 5-4 uses multiple variables of either 16-bit or 32-bit size to
describe DMA descriptors. This example has two descriptors in small list
flow mode that point to each other. At the end of the second work unit,
an interrupt is generated without discontinuing the DMA processing. The
trailing . end label is required to let the linker know that a descriptor forms
a logical unit. It prevents the linker from removing variables when
optimizing.

Listing 5-4. Two Descriptors in Small List Flow Mode

.section sdram;
.byte2 arrBlockl1[0x4001];
.byte2 arrBlock2[0x800];

.section Ll_data_a;

.byte2 descBlockl = To(descBlock?2);

.var descBlockl.addr = arrBlockl;

.byte2 descBlockl.cfg = FLOW_SMALL|NDSIZE_5|WDSIZE_16]|DMAEN;
.byte2 descBlockl.len = length(arrBlockl);

ADSP-BF59x Blackfin Processor Hardware Reference 5-97



Programming Examples

descBlockl.end:

.byte2 descBlock2 = To(descBlockl);

.var descBlock2.addr = arrBlock?;

.byte?2 descBlock2.cfg =

FLOW_SMALL|NDSIZE_5|DI_EN|WDSIZE_16|DMAEN;

.byte? descBlock2.len = length(arrBlock?2);
descBlock?Z.end:

Another method featured by the VisualDSP++ tools takes advantage of
C-style structures in global header files. The header file descriptors.h
could look like Listing 5-5.

Listing 5-5. Header File to Define Descriptor Structures

#ifndef __INCLUDE_DESCRIPTORS__
f#idefine __INCLUDE_DESCRIPTORS__
f#ifdef _LANGUAGE_C
typedef struct ({

void *pStart;

short dConfig;

short dXCount;

short dXModify;

short dYCount;

short dYModify;
} dma_desc_arr;

typedef struct ({

void *pNext;

void *pStart;
short dConfig;
short dXCount;
short dXModify;
short dYCount;
short dYModify;

5-98 ADSP-BF59x Blackfin Processor Hardware Reference



Direct Memory Access

} dma_desc_list;

ffendif // _LANGUAGE_C
ffendif // __INCLUDE_DESCRIPTORS__

Note that near pointers are not natively supported by the C language and,
thus, pointers are always 32 bits wide. Therefore, the scheme above cannot
be used directly for small list mode without giving up pointer syntax. The
variable definition file is required to import the C-style header file and can
finally take advantage of the structures. See Listing 5-6.

Listing 5-6. Using Descriptor Structures

f#include "descriptors.h"”
.import "descriptors.h";

.section L1_data_a;
.align 4;

.var arrBlock3[N];
.var arrBlock4[N];

.struct dma_desc_list descBlock3 = {
descBlock4, arrBlock3,
FLOW_LARGE | NDSIZE_7 | WDSIZE_32 | DMAEN,
length(arrBlock3), 4,
0, 0 /* unused values */

.struct dma_desc_list descBlock4 = {
descBlock3, arrBlock4,
FLOW_LARGE | NDSIZE_7 | DI_EN | WDSIZE_32 | DMAEN,
length(arrBlock4), 4,
0, 0 /* unused values */

ADSP-BF59x Blackfin Processor Hardware Reference 5-99



Programming Examples

Software-Triggered Descriptor Fetch Example

Listing 5-7 demonstrates a large list of descriptors that provide FLOW = 0
(stop mode) configuration. Consequently, the DMA stops by itself as soon
as the work unit has finished. Software triggers the next work unit by sim-
ply writing the proper value into the DMA configuration registers. Since
these values instruct the DMA controller to fetch descriptors in large list
mode, the DMA immediately fetches the descriptor, thus overwriting the
configuration value again with the new settings when it is started.

Note the requirement that source and destination channels stop after the
same number of transfers. Between stops, the two channels can have com-
pletely individual structures.

Listing 5-7. Software-Triggered Descriptor Fetch
.import "descriptors.h";

ffdefine N 4

.section Ll _data_a;
.byte2 arrSourcel[N]
.byte2 arrSource2[N]
.byte? arrSource3[N]
.byte2 arrDestl[N];
.byte2 arrDest2[2*N];

{ 0x1001, 0x1002, 0x1003, 0x1004 };
{ 0x2001, 0x2002, 0x2003, 0x2004 };
{ 0x3001, 0x3002, 0x3003, 0x3004 };

.struct dma_desc_list descSourcel = {
descSource?2, arrSourcel,
WDSIZE_16 | DMAEN,
length(arrSourcel), 2,
0, 0 /* unused values */

b

.struct dma_desc_list descSource?2 = {
descSource3, arrSource?,
FLOW_LARGE | NDSIZE_7 | WDSIZE_16 | DMAEN,

5-100 ADSP-BF59x Blackfin Processor Hardware Reference



Direct Memory Access

length(arrSource?2), 2,
0, 0 /* unused values */
Vs
.struct dma_desc_list descSource3 = {
descSourcel, arrSource3,
WDSIZE_16 | DMAEN,
length(arrSource3d), 2,
0, 0O /* unused values */
Vs
.struct dma_desc_list descDestl = {
descDest?2, arrDestl,
DI_EN | WDSIZE_16 | WNR | DMAEN,
length(arrDestl), 2,
0, 0O /* unused values */
Vs
.struct dma_desc_list descDest2 = {
descDestl, arrDest?,
DI_EN | WDSIZE_16 | WNR | DMAEN,
length(arrDest?2), 2,
0, 0O /* unused values */

.section L1_code;
_main:
/* write descriptor address to next descriptor pointer */

pO.h = hi(MDMA_SO_CONFIG);

p0.1 = To(MDMA_SO_CONFIG);

r0.h = hi(descDestl);

ro.1 = lo(descDestl);

[p0 + MDMA_DO_NEXT_DESC_PTR - MDMA_SO_CONFIG] = rO;
r0.h = hi(descSourcel);

r0.1 = lo(descSourcel);

[p0 + MDMA_SO_NEXT_DESC_PTR - MDMA_SO_CONFIG] = rO;

ADSP-BF59x Blackfin Processor Hardware Reference 5-101



Programming Examples

/* start first work unit */
ré.1l FLOW_LARGE [NDSIZE_7 |WDSIZE_16|DMAEN;
wlpO MDMA_SO_CONFIG - MDMA_SO_CONFIG] = r6;
r7.1 FLOW_LARGE [NDSIZE_7 |[WDSIZE_16 |WNR|DMAEN;
wlpO MDMA_DO_CONFIG - MDMA_SO_CONFIG] = r7;

+

+

/* wait until destination channel has finished and W1C Tatch */
_main.wait:

r0 = wlp0 + MDMA_DO_IRQ_STATUS - MDMA_SO_CONFIG] (z);

CC = bittst (r0, bitpos(DMA_DONE));

if ICC jump _main.wait;

r0.1 = DMA_DONE;

w[pO + MDMA_DO_IRQ_STATUS - MDMA_SO_CONFIG] = roO;

/* wait for any software or hardware event here */

/* start next work unit */
w[p0 + MDMA_SO_CONFIG - MDMA_SO_CONFIG]
w[pO0 + MDMA_DO_CONFIG - MDMA_SO_CONFIG]
Jjump _main.wait;

re;
r7;

_main.end:

Handshaked Memory DMA Example

The functional block for the handshaked MDMA operation can be con-
sidered completely separately from the MDMA channels themselves.
Therefore the following HMDMA setup routine can be combined with
any of the MDMA examples discussed above. Be sure that the HMDMA
module is enabled before the MDMA channels.

Listing 5-8 enables the HMDMAT1 block, which is controlled by the DMAR1
pin and is associated with the MDMAL1 channel pair.

5-102 ADSP-BF59x Blackfin Processor Hardware Reference



Direct Memory Access

Listing 5-8. HMDMALI1 Block Enable

/* optionally, enable all four bank select strobes */
pl.1T = To(EBIU_AMGCTL);

pl.h = hi(EBIU_AMGCTL);
r0.1 = 0x0009;
wlpl]l = r0;

/* function enable for DMAR1 */

pl.1 = To(PORTG_FER);
ro.1 = PG12;

wlpl]l = r0;

pl.1 = To(PORTG_MUX);
ro.1T = 0x0000;

wlpl]l = r0;

/* every single transfer requires one DMARL event */
pl.1 = To(HMDMA1_BCINIT);
ro.1 = 1;
wlpl]l = r0;

/* start with balanced request counter */
pl.1T = To(HMDMAI_ECINIT);
ro.1 = 0;
wlpl]l = r0;

/* enable for rising edges */
pl.1 = To(HMDMAL1_CONTROL);
r2.1 = REP | HMDMAEN;
wlpl]l = r2;

If the HMDMA is intended to copy from internal memory to external
devices, the above setup is sufficient. If, however, the data flow is from
outside the processor to internal memory, then this small issue must be
considered—the HMDMA only controls the destination channel of the

ADSP-BF59x Blackfin Processor Hardware Reference 5-103



Programming Examples

memory DMA. It does not gate requests to the source channel at all.
Thus, as soon as the source channel is enabled, it starts filling the DMA
FIFO immediately. In 16-bit DMA mode, this results in eight read strobes
on the EBIU even before the first DMARI event has been detected. In
other words, the transferred data and the DMARTI strobes are eight posi-
tions off. The example in Listing 5-9 delays processing until eight
DMARI requests have been received. By doing so, the transmitter is
required to add eight trailing dummy writes after all data words have been
sent. This is because the transmit channel still has to drain the DMA
FIFO.

Listing 5-9. HMDMA With Delayed Processing

/* wait for eight requests */
pl.T = To(HMDMAI_ECOUNT);
ro =7 (z);
initial_requests:
rl = wlpll (z);
CC =rl1 < r0;
if CC jump initial_requests;

/* disable and reenable to clear edge count */

pl.T = To(HMDMAL_CONTROL);
ro.1 = 0;

wlpl]l = r0;

wlpl] = r2;

If the polling operation shown in Listing 5-9 is too expensive, an interrupt
version of it can be implemented by using the HMDMA overflow feature.
Temporarily set the HMDMAX_OVERFLOW register to eight.

5-104 ADSP-BF59x Blackfin Processor Hardware Reference



Direct Memory Access

Unique Information for the ADSP-BF59x
Processor

Figure 5-28 on page 5-106 provides a block diagram of the ADSP-BF59x
DMA controller.

The ADSP-BF59x processors do 7ot contain either cache, an asyn-
chronous memory interface, an SDRAM interface, o an HMDMA
controller. Therefore, any discussion or examples above regarding
cache, asynchronous memory, SDRAM, and HMDMA do not
apply to the ADSP-BF59x.

Static Channel Prioritization

The default DMA channel priority and mapping shown in Table 5-7 on
page 5-107 can be changed by altering the 4-bit PMAP field in the
DMAX_PERIPHERAL_MAP registers for the peripheral DMA channels.

ADSP-BF59x Blackfin Processor Hardware Reference 5-105



Unique Information for the ADSP-BF59x Processor

|
CCLK | SCLK y.

\
|
DMA TRAFFIC CONTROL  |<} N
T
4 I
! > IRQ 1
! D::> 4—' MDMA 0 SOURCE CONTROL lg
T FIFO N
I <—| MDMA 0 DESTINATION CONTROL lg > IRQ 29
—4¢
<—| MDMA 1 SOURCE CONTROL lg
FIFO Ll
4—' MDMA 1 DESTINATION CONTROL lg > IRQ 30
AN
L4
FIFO |<:>'~| PMAP |:| DMA 8 CONTROL lg > IRQ 16
1 1
L 4
FIFO |<:>'~| PMAP |:| DMA 7 CONTROL lg > IRQ 15
1 1
L4
FIFO |<:>'~| PMAP |:| DMA 6 CONTROL lg > IRQ 14
I I
L 4
FIFO E:_:) ~| PMAP |:| DMA 5 CONTROL lg > IRQ 13
- L4
FIFO E:_:) ~| PMAP |:| DMA 4 CONTROL lg > IRQ 12
1 1
L4
FIFO E:_:) ~| PMAP |:| DMA 3 CONTROL lg > IRQ 11
1 1
L4
FIFO E:_:) ~| PMAP |:| DMA 2 CONTROL lg > IRQ 10
I I
L1
FIFO E:_:)ﬂ PMAP |:| DMA 1 CONTROL lg > IRQ 9
1 1
FIFO E:_:) ~| PMAP |:| DMA 0 CONTROL lg — IRQ3
7 TM1e ‘|'12 3x12 [ 16
3 AVARE | v

[=]
o

DAB DGT DRQ PAB

Figure 5-28. ADSP-BF59x DMA Controller Block Diagram

5-106 ADSP-BF59x Blackfin Processor Hardware Reference



Table 5-7. Priority and Default Mapping of Peripheral to DMA

Direct Memory Access

Priority |DMA Channel |PMAP Default Value |Peripheral Mapped by Default
Highest DMA 0 0x0 PPI receive or transmit
DMA 1 0x1 SPORTO receive
DMA 2 0x2 SPORTO transmit
DMA 3 0x3 SPORT1 receive
DMA 4 0x4 SPORT1 transmit
DMA 5 0x5 SPIO transmit/receive
DMA 6 0x6 SPI1 transmit/receive
DMA 7 0x7 UARTO receive
DMA 8 0x8 UARTO transmit
DMA 9 0x9 Not available on this product
DMA 10 0xA Not available on this product
DMA 11 0xB Not available on this product
MDMA DO | None Mem DMA has no peripheral mapping.
MDMA S0 None Mem DMA has no peripheral mapping.
MDMA D1 None Mem DMA has no peripheral mapping.
Lowest MDMA S1 None Mem DMA has no peripheral mapping.

ADSP-BF59x Blackfin Processor Hardware Reference

5-107



Unique Information for the ADSP-BF59x Processor

5-108 ADSP-BF59x Blackfin Processor Hardware Reference



6 DYNAMIC POWER
MANAGEMENT

This chapter describes the dynamic power management functionality of
the processor and includes the following sections:

e “Phase Locked Loop and Clock Control” on page 6-1
* “Dynamic Power Management Controller” on page 6-7
*  “Operating Modes” on page 6-7
*  “Dynamic Supply Voltage Control” on page 6-16
e “System Control ROM Function” on page 6-24
e “PLL and VR Registers” on page 6-19

* “Programming Examples” on page 6-30

Phase Locked Loop and Clock Control

The input clock into the processor, CLKIN, provides the necessary clock
frequency, duty cycle, and stability to allow accurate internal clock multi-
plication by means of an on-chip PLL module. During normal operation,
the user programs the PLL with a multiplication factor for CLKIN. The
resulting, multiplied signal is the voltage controlled oscillator (VCO)
clock. A user-programmable value then divides the VCO clock signal to
generate the core clock (CCLK).

ADSP-BF59x Blackfin Processor Hardware Reference 6-1



Phase Locked Loop and Clock Control

A user-programmable value divides the VCO signal to generate the system
clock (scLk). The scLk signal clocks the Peripheral Access Bus (PAB) and
DMA Access Bus (DAB).

These buses run at the PLL frequency divided by 1-15 (SCLK
domain). Using the SSEL parameter of the PLL divide register,
select a divider value that allows these buses to run at or below the
maximum SCLK rate specified in the processor data sheet.

To optimize performance and power dissipation, the processor allows the
core and system clock frequencies to be changed dynamically in a “coarse
adjustment.” For a “fine adjustment,” the PLL clock frequency can also be
varied.

PLL Overview

To provide the clock generation for the core and system, the processor
uses an analog PLL with programmable state machine control.

The PLL design serves a wide range of applications. It emphasizes embed-
ded and portable applications and low cost, general-purpose processors, in
which performance, flexibility, and control of power dissipation are key
features. This broad range of applications requires a wide range of fre-
quencies for the clock generation circuitry. The input clock may be a
crystal, a crystal oscillator, or a buffered, shaped clock derived from an
external system clock oscillator.

The PLL interacts with the Dynamic Power Management Controller
(DPMC) block to provide power management functions for the processor.
For information about the DPMC, see “Dynamic Power Management

Controller” on page 6-7.

Subject to the maximum VCO frequency specified in the processor data
sheet, the PLL supports a wide range of multiplier ratios and achieves
multiplication of the input clock, CLKIN. To achieve this wide multiplica-

6-2 ADSP-BF59x Blackfin Processor Hardware Reference



Dynamic Power Management

tion range, the processor uses a combination of programmable dividers in
the PLL feedback circuit and output configuration blocks.

Figure 6-1 illustrates a conceptual model of the PLL circuitry, configura-
tion inputs, and resulting outputs. In the figure, the VCO is an
intermediate clock from which the core clock (CCLK) and system clock
(SCLK) are derived.

SCLK
T
DF CLKIN SSEL [3:0}
CLKIN
i LOOP fuco
m FILTER veo —> - SCLK
R Y I — PDWN
a | DEEP SLEEP
CLKOUT | POWERDOWN
| (CCLK AND
| EN I SCLK OFF)
| CCLK
CLKBUFHlj I
OUTPUT CLOCK
| I PHASE LOCKED LOOP GENERATOR (CLOCK
EN | MSEL [5:0] DIVIDE AND MUX)
Lo _ :
XTAL
eran CSEL [1:0] (SSTLOEPE%KMODE)
PLL_OFF DISABLE STOP CLOCK
CONTROL INPUTTO PLL. CCLK OFF
BYPASS
CAN ADDITIONALLY BE (ACTIVE
USED WITH BYPASS MODE)

CCLK = SCLK = CLKIN

Figure 6-1. PLL Block Diagram

PLL Clock Multiplier Ratios

The PLL control register (PLL_CTL) governs the operation of the PLL. For
details about the PLL_CTL register, see “PLL_CTL Register” on page 6-21.

ADSP-BF59x Blackfin Processor Hardware Reference 6-3



Phase Locked Loop and Clock Control

The divide frequency (DF) bit and multiplier select (MSEL[5:01) field con-
figure the various PLL clock dividers:

* DF enables the input divider
e MSEL[5:071 controls the feedback dividers

The reset value of MSEL is 0x6. This value can be reprogrammed at startup
in the boot code.

Table 6-1 illustrates the VCO multiplication factors for the various MSEL
and DF settings.

As shown in the table, different combinations of MSEL[5:0] and DF can
generate the same VCO frequencies. For a given application, one combi-
nation may provide lower power or satisfy the VCO maximum frequency.
Under normal conditions, setting DF to 1 typically results in lower power
dissipation. See the processor data sheet for maximum and minimum fre-
quencies for CLKIN, CCLK, and VCO.

Table 6-1. MSEL Encodings

Signal name VCO Frequency
MSEL[5:0] DF=0 DF =1
5 5x 2.5x

6 6x 3x

N =7-62 Nx 0.5Nx
63 63x 31.5x
0 64x 32x

The PLL control (PLL_CTL) register controls operation of the PLL (see
Figure 6-4 on page 6-21). Note that changes to the PLL_CTL register do
not take effect immediately. In general, the PLL_CTL register is first pro-
grammed with a new value, and then a specific PLL programming
sequence must be executed to implement the changes. This is handled

6-4

ADSP-BF59x Blackfin Processor Hardware Reference



Dynamic Power Management

automatically by the system control ROM function (bfrom_SysControl())
as described in “System Control ROM Function” on page 6-24.

Core Clock/System Clock Ratio Control

Table 6-2 describes the programmable relationship between the VCO fre-
quency and the core clock. Table 6-3 shows the relationship of the VCO
frequency to the system clock. Note the divider ratio must be chosen to
limit the SCLK to a frequency specified in the processor data sheet. The
SCLK drives all synchronous, system-level logic.

The divider ratio control bits, CSEL and SSEL, are in the PLL divide
(PLL_DIV) register. For information about this register, see “PLL_DIV
Register” on page 6-21.

The reset value of CSEL[1:0] is 0x0, and the reset value of SSEL[3:0] is
0x4. These values can be reprogrammed at startup by the boot code.

By updating PLL_DIV with an appropriate value, you can change the CSEL
and SSEL value dynamically. Note the divider ratio of the core clock can

never be greater than the divider ratio of the system clock. If the PLL_DIV
register is programmed to illegal values, the sCLK divider is automatically
increased to be greater than or equal to the core clock divider.

Unlike writing the PLL_CTL register, the PLL_DIV register can be pro-
grammed at any time to change the CCLK and SCLK divide values without
entering the PLL programing sequence.

Table 6-2. Core Clock Ratio

Signal Name Divider Ratio Example Frequency Ratios (MHz)
CSEL[1:0] VCO/CCLK VCO CCLK

00 1 300 300

01 2 300 150

10 4 400 100

11 8 400 50

ADSP-BF59x Blackfin Processor Hardware Reference 6-5



Phase Locked Loop and Clock Control

As long as the MSEL and DF control bits in the PLL control (PLL_CTL) regis-
ter remain constant, the PLL is locked.

Table 6-3. System Clock Ratio

Signal Name Divider Ratio Example Frequency Ratios (MHz)
SSEL[3:0] VCO/SCLK VCO SCLK

0000 Reserved N/A N/A

0001 1:1 50 50

0010 2:1 150 75

0011 3:1 150 50

0100 4:1 200 50

0101 5:1 300 60

0110 6:1 360 60

N=7-15 N:1 400 400/N

If changing the clock ratio via writing a new SSEL value into
PLL_DIV, take care that the enabled peripherals do not suffer data
loss due to SCLK frequency changes.

When changing clock frequencies in the PLL, the PLL requires time to
stabilize and lock to the new frequency. The PLL lock count
(PLL_LOCKCNT) register defines the number of CLKIN cycles that occur
before the processor sets the PLL_LOCKED bit in the PLL_STAT register.
When executing the PLL programming sequence, the internal PLL lock
counter begins incrementing upon execution of the IDLE instruction. The
lock counter increments by 1 each CLKIN cycle. When the lock counter has
incremented to the value defined in the PLL_LOCKCNT register, the
PLL_LOCKED bit is set.

See the processor data sheet for more information about PLL stabilization
time and programmed values for this register. For more information about
operating modes, see “Operating Modes” on page 6-7.

6-6 ADSP-BF59x Blackfin Processor Hardware Reference



Dynamic Power Management

Dynamic Power Management Controller

The Dynamic Power Management Controller (DPMC) works in conjunc-

tion with the PLL, allowing the user to control the processor’s

erformance characteristics and power dissipation dynamically. The
p P P y y
DPMC provides these features that allow the user to control performance

and power:

Multiple operating modes — The processor works in four operating

modes, each with different performance characteristics and power

dissipation profiles. See “Operating Modes” on page 6-7.

ically when the peripheral is disabled.

Peripheral clocks — Clocks to each peripheral are disabled automat-

Voltage control — The VppnT domain must be powered by an

external voltage regulator. For more information see “Voltage Reg-
ulation Interface” on page 17-9.

Operating Modes

The processor works in four operating modes, each with unique perfor-

mance and power saving benefits. Table 6-4 summarizes the operational
characteristics of each mode.

Table 6-4. Operational Characteristics

Operating Power PLL CCLK SCLK Allowed

Mode Savings Status Bypassed DMA
Access

Full On None Enabled No Enabled Enabled L1

Active Medium Enabled ! | Yes Enabled Enabled L1

Sleep High Enabled No Disabled Enabled -

Deep Sleep Maximum Disabled - Disabled Disabled -

ADSP-BF59x Blackfin Processor Hardware Reference

6-7



Dynamic Power Management Controller

1 PLL can also be disabled in this mode.

Dynamic Power Management Controller States

Ful

Ac

Power management states are synonymous with the PLL control state.

The active and full-on states of the DPMC/PLL can be determined by
reading the PLL status register (see “PLL_STAT Register” on page 6-22).
In these modes, the core can either execute instructions or be in the IDLE
core state. If the core is in the IDLE state, it can be awakened by several
sources (See Chapter 4, “System Interrupts” for details).

The following sections describe the DPMC/PLL states in more detail, as
they relate to the power management controller functions.

[-On Mode

Full-on mode is the maximum performance mode. In this mode, the PLL
is enabled and not bypassed. Full-on mode is the normal execution state of
the processor, with the processor and all enabled peripherals running at
full speed. The system clock (SCLK) frequency is determined by the SSEL
specified ratio to VCO. DMA access is available to L1 and external mem-
ories. From full-on mode, the processor can transition directly to active,
sleep, or deep sleep modes, as shown in Figure 6-2 on page 6-12.

tive Mode

In active mode, the PLL is enabled but bypassed. Because the PLL is
bypassed, the processor’s core clock (CCLK) and system clock (SCLK) run at
the input clock (CLKIN) frequency. DMA access is available to appropri-
ately configured L1 and external memories.

In active mode, it is possible not only to bypass, but also to disable the
PLL. If disabled, the PLL must be re-enabled before transitioning to full-
on or sleep modes.

6-8

ADSP-BF59x Blackfin Processor Hardware Reference



Dynamic Power Management

From active mode, the processor can transition directly to full-on, sleep,
or deep sleep modes.

In this mode or in the transition phase to other modes, changes to
MSEL are not latched by the PLL.

Sleep Mode

Sleep mode significantly reduces power dissipation by idling the processor
core. The cCLK is disabled in this mode; however, SCLK continues to run at
the speed configured by MSEL and SSEL bit settings. Since CCLK is disabled,
DMA access is available only to external memory in sleep mode. From
sleep mode, a wakeup event causes the processor to transition to one of
these modes:

e Active mode if the BYPASS bit in the PLL_CTL register is set
e Full-on mode if the BYPASS bit is cleared

When sleep mode is exited, the processor resumes execution from the pro-
gram counter value present immediately prior to entering sleep mode.

Deep Sleep Mode

Deep sleep mode maximizes power savings by disabling the PLL, CCLK,
and SCLK. In this mode, the processor core and all peripherals (except
those enabled as wakeup sources) are disabled. DMA is not supported in
this mode.

Deep sleep mode can be exited only by a hardware reset event or a wakeup
event on a programmable flag pin (including PF8, PFO, PG12, or PG1). A
hardware reset begins the hardware reset sequence. For more information
about hardware reset, see Chapter 4, “System Interrupts”. A programma-
ble flag event causes the processor to transition to active mode, and
execution resumes at the program counter value at which the processor
entered deep sleep mode. If an interrupt is also enabled in SIC_IMASK, the

ADSP-BF59x Blackfin Processor Hardware Reference 6-9



Dynamic Power Management Controller

interrupt is vectored immediately after exit of deep sleep, and the related

ISR executed.

Note that a programmable flag event in deep sleep mode automatically
resets some fields in the PLL control (PLL_CTL) register. See Table 6-5.

Table 6-5. PLL_CTL Values after Programmable Flag Event

Field Value
PLL_OFF 0
STOPCK 0
PDWN 0
BYPASS 1

Hibernate State

For lowest possible power dissipation, this state allows the internal supply
(VppINT) to be powered down by the external regulator, while keeping
the I/O supply (VppgxT) running. Although not strictly an operating
mode like the four modes detailed above, it is illustrative to view it as such

in the diagram of Figure 6-2.This feature is discussed in detail in “Power-
ing Down the Core (Hibernate State)” on page 6-18.

Operating Mode Transitions

Figure 6-2 graphically illustrates the operating modes and transitions. In
the diagram, ellipses represent operating modes and rectangles represent

processor states. Arrows show the allowed transitions into and out of each
mode or state.

For mode transitions, the text next to each transition arrow shows the
fields in the PLL control (PLL_CTL) register that must be changed for the
transition to occur. For example, the transition from full-on mode to sleep

6-10 ADSP-BF59x Blackfin Processor Hardware Reference



Dynamic Power Management

mode indicates that the STOPCK bit must be set to 1 and the PDWN bit must
be set to 0.

For transitions to processor states, the text next to each transition arrow
shows either a processor event (hardware reset or wakeup event) or the
fields in the voltage regulator control register (VR_CTL) that must be
changed for the transition to occur.

For information about how to effect mode transitions, see “Programming
Operating Mode Transitions” on page 6-14.

ADSP-BF59x Blackfin Processor Hardware Reference 6-11



Dynamic Power Management Controller

. WAKEUP &
SOk =1 & BYPASS = 0

STOPCK =1 &
PDWN =

WAKEUP &
BYPASS =1

BYPASS =0 & PLL_OFF =0 &
STOPCK =0 & PDWN =0

BYPASS =1 & STOPCK =0 &
PDWN =0

WAKEUP
ENABLED

IBERNATEB =0
HARDWARE

RESET
MSEL = new value

&PLL_OFF=0
& BYPASS =0

Hibernate

HIBERNATEB = 0
HARDWARE RESET

GPIO ASSERTION &
GPIO WAKEUP ENABLED

Figure 6-2. Operating Mode Transitions

6-12 ADSP-BF59x Blackfin Processor Hardware Reference



Dynamic Power Management

In addition to the mode transitions shown in Figure 6-2, the PLL can be
modified while in active operating mode. Changes to the PLL do not take
effect immediately. As with operating mode transitions, the PLL program-
ming sequence must be executed for these changes to take effect (see
“Programming Operating Mode Transitions” on page 6-14).

e PLL disabled: In addition to being bypassed in the active mode, the
PLL can be disabled.

When the PLL is disabled, additional power savings are achieved
although they are relatively small. To disable the PLL, set the
PLL_OFF bit in the PLL_CTL register, and then execute the PLL pro-
gramming sequence.

e PLL enabled: When the PLL is disabled, it can be re-enabled later

when additional performance is required.

The PLL must be re-enabled before transitioning to the full-on or
sleep operating modes. To re-enable the PLL, clear the PLL_OFF bit
in the PLL_CTL register, and then execute the PLL programming
sequence.

* New multiplier ratio: The multiplier ratio can also be changed
while in full-on mode.

The PLL state automatically transitions to active mode while the
PLL is locking. After locking, the PLL returns to full-on mode. To
program a new CLKIN to VCO multiplier, write the new MSEL[5:0]
and/or DF values to the PLL_CTL register; then execute the PLL pro-
gramming sequence (see on page 6-14).

ADSP-BF59x Blackfin Processor Hardware Reference 6-13



Dynamic Power Management Controller

Table 6-6 summarizes the allowed operating mode transitions.

Attempting to cause mode transitions other than those shown in
Table 6-6 causes unpredictable behavior.

Table 6-6. Allowed Operating Mode Transitions

Current Mode
New Mode Full-On Active Sleep Deep Sleep
Full On - Allowed Allowed Allowed
Active Allowed - Allowed Allowed
Sleep Allowed Allowed - -
Deep Sleep Allowed Allowed - -

Programming Operating Mode Transitions

The operating mode is defined by the state of the PLL_OFF, BYPASS,
STOPCK, and PDWN bits of the PLL control (PLL_CTL) register. Merely modi-
fying the bits of the PLL_CTL register does not change the operating mode
or behavior of the PLL. Changes to the PLL_CTL register are realized only
after a specific code sequence is executed. This sequence is managed by a
user-callable routine in the on-chip ROM called bfrom_SysControl ().
When calling this function, no further precautions have to be taken. See
“System Control ROM Function” on page 6-24 for more information.

If the PLL_CTL register changes include a new CLKIN to VCO multiplier or
power is reapplied to the PLL, the PLL needs to relock. To relock, the
PLL lock counter is cleared first, then starts incrementing once per SCLK
cycle. After the PLL lock counter reaches the value programmed in the
PLL lock count (PLL_LOCKCNT) register, the PLL sets the PLL_LOCKED bit in

the PLL status (PLL_STAT) register, and the PLL asserts the PLL wake-up
interrupt.

6-14 ADSP-BF59x Blackfin Processor Hardware Reference




Dynamic Power Management

When the bfrom_SysControl () routine reprograms the PLL_CTL register
with a new value, the bfrom_SysControl () routine executes a subsequent
IDLE instruction and prevents all other system interrupt sources, other
than the DPMC, from waking up the core from the IDLE state. If the lock
counter expires, the PLL issues an interrupt, and the code execution con-
tinues the instruction after the IDLE instruction. Therefore, the system is
in the new state by the time the bfrom_SysControl () routine returns.

@ If the new value written to the PLL_CTL or VR_CTL register is the

same as the previous value, the PLL wake-up occurs immediately
(PLL is already locked), but the core and system clock are bypassed
for the PLL_LOCKCNT duration. For this interval, code executes at
the CLKIN rate instead of the expected CCLK rate. Software guards
against this condition by comparing the current value to the new
value before writing the new value.

*  When the wake-up signal is asserted, the code execution continues
the instruction after the IDLE instruction, causing a transition to:

e Active mode if BYPASS in the PLL_CTL register is set
¢ Full-on mode if the BYPASS bit is cleared

e If the PLL_CTL register is programmed to enter the sleep operating
mode, the processor transitions immediately to sleep mode and
waits for a wake-up signal before continuing code execution. If the
PLL_CTL register is programmed to enter the deep sleep operating
mode, the processor immediately transitions to deep sleep mode
and waits for a hardware reset signal or GPIO wakeup:

* A hardware reset causes the processor to execute the reset
sequence. For more information, see “System Reset and
Booting” on page 16-1.

* A GPIO wakeup event causes the processor to enter active
operating mode and return from the bfrom_SysControl ()
routine.

ADSP-BF59x Blackfin Processor Hardware Reference 6-15



Dynamic Power Management Controller

If no operating mode transition is programmed, the PLL generates a
wake-up signal, and the bfrom_SysControl() routine returns.

Dynamic Supply Voltage Control

In addition to clock frequency control, the processor's core is capable of
running at different voltage levels. As power dissipation is proportional to
the voltage squared, significant power reductions can be accomplished
when lower voltages are used.

The processor uses multiple power domains. Each power domain has a
separate Vpp supply. Note that the internal logic of the processor and

much of the processor I/O can be run over a range of voltages. See the
product data sheet for details on the allowed voltage ranges for each power
domain and power dissipation data.

Power Supply Management

VppInT is supplied by an external regulator and pin PG is used to accept

an active-low power-good indicator from the regulator. Note that the
external regulator must comply with the VN specifications defined in

the processor data sheet.

Changing Voltage

When changing the voltage using an external regulator, a specific pro-
gramming sequence must be followed.

Unlike other Blackfin derivatives that feature an internal voltage regulator;
the voltage level for the ADSP-BF59x cannot be changed by program-
ming the VR_CTL register. With an internal voltage regulator, the PLL
would automatically enter the active mode when the processor enters the
IDLE state. At that point the voltage level would change and the PLL
would re-lock to the new voltage. After the PLL_LOCKCNT has expired, the
part returns to the full-on state.

6-16 ADSP-BF59x Blackfin Processor Hardware Reference



Dynamic Power Management

With an external voltage regulator, this sequence must be reproduced in
the program code by the user. The PLL_LOCKCNT register cannot be used in
this case, but the value is still needed for calculating the required delay. A
larger PLL_LOCKCNT value may be necessary for changing voltages than
when changing just the PLL frequency. See the processor data sheet for
details.

The processor must enter active mode before the user can access the exter-
nal voltage regulator and program a new voltage level. See the data sheet of
external voltage regulator for information on changing voltage levels. See
the processor data sheet for more information about voltage tolerances
and allowed rates of change.

Reducing the processor’s operating voltage to greatly conserve
power or raising the operating voltage to greatly increase perfor-
mance will probably require significant changes to the operating
voltage level. To ensure predictable behavior the recommended
procedure is to bring the processor to the sleep operating mode
before substantially varying the voltage.

The user must ensure a stable voltage and give the PLL time to re-lock at
the new voltage level. This can be done by running the core in a loop for a
certain amount of time before leaving active mode.

After the voltage has been changed to the new level, the processor can
safely return to any operational mode—so long as the operating parame-
ters, such as core clock frequency (CCLK), are within the limits specified
in the processor data sheet for the new operating voltage level.

Please see “Changing Voltage Levels” on page 6-40 for more details on
mode transitions and changing voltage levels.

The VSTAT bit in the PLL_STAT register can be used to indicate whether
VpDINT is stable and ready to use. The VSTAT bit works in conjunction

with the PG (Power Good) input signal of the ADSP-BF59x. The inverted

version of a "power good" signal from the external regulator is fed to the

ADSP-BF59x Blackfin Processor Hardware Reference 6-17



Dynamic Power Management Controller

ADSP-BF59x to indicate that the voltage has reached its programmed
value. That in turn will set the VSAT bit, which should be considered the
end of your "wait" state for the voltage regulator to settle.

Powering Down the Core (Hibernate State)

The external regulator can be signaled to shut off Vppnt using the
EXT_WAKE signal. Writing O to the HIBERNATEB bit of the VR_CTL register,
which disables CCLK and SCLK, will also make EXT_WAKE go low. EXT_WAKE
will transition high if any wakeup sources occur, which will signal the
external voltage regulator to turn Vppnt on again. The wakeup sources

are several user-selectable events, all of which are controlled in the VR_CTL
register:

O

Assertion of the RESET pin always exits hibernate state and requires
no modification to VR_CTL.

External GPIO event. Set a GPIO wakeup enable control bit
(WAKE_ENO, WAKE_EN1, WAKE_EN2, WAKE_EN3) to enable wakeup on
assertion of a signal on the corresponding pin.

Pin EXT_WAKE is provided to indicate the occurrence of wakeup.
EXT_WAKE is an output pin, which is a logical OR of the above
wakeup sources, except hardware reset. The pin follows the wakeup
signal of the various wakeup sources.

When the core is powered down, Vppn is set to 0 V, and the
internal state of the processor is not maintained, with the exception
of the VR_CTL register. Therefore, any critical information stored
internally (memory contents, register contents, and so on) must be
written to a non-volatile storage device prior to removing power.

Powering down VppnT does not affect Vpppxr. While Vppgxr is still

applied to the processor, external pins are maintained at a three-state level
unless specified otherwise.

ADSP-BF59x Blackfin Processor Hardware Reference



Dynamic Power Management

To signal the external regulator to power down VN

1. Write 0 to the appropriate bits in the SIC_IWRx registers to prevent
enabled peripheral resources from interrupting the hibernate
process.

2. Call the bfrom_SysControl() routine; ensure that the HIBERNATEB
bit in the VR_CTL register is set to 0, and the appropriate wakeup
enable bit or bits (WAKE_ENO, WAKE_EN1, WAKE_EN2, or WAKE_EN3) are
setto 1.

3. The bfrom_SysControl() routine executes until Vi transi-
tions to 0 V. The bfrom_SysControl() routine never returns.

4. When the processor is woken up, the PLL relocks and the boot
sequence defined by the BMODE[2:0] pin settings takes effect.

The WURESET bit in the SYSCTRL register is set and stays set until the next
hardware reset. The WURESET bit may control a conditional boot process.

PLL and VR Registers

The user interface to the PLL and VR registers is through the system con-
trol ROM function (bfrom_SysControl()) described in “System Control
ROM Function” on page 6-24. The memory-mapped registers (MMRs)
are shown in Table 6-7 and illustrated in Figure 6-3 through Figure 6-7.

Table 6-7 shows the functions of the PLL/VR registers.

Table 6-7. PLL/VR Register Mapping

Register Name Function Notes For More Information See:

PLL_CTL PLL control register Requires reprogram- Figure 6-4 on page 6-21
ming sequence when
written

PLL_DIV PLL divisor register Can be written freely Figure 6-3 on page 6-21

ADSP-BF59x Blackfin Processor Hardware Reference 6-19



PLL and VR Registers

Table 6-7. PLL/VR Register Mapping (Continued)

Register Name

Function

Notes

For More Information See:

PLL_STAT PLL status register Monitors active modes | Figure 6-5 on page 6-22
of operation
PLL_LOCKCNT | PLL lock count register| Number of SCLKSs Figure 6-6 on page 6-22

allowed for PLL to
relock

VR_CTL

Voltage regulator
control register

Requires PLL repro-
gramming sequence
when written

Figure 6-7 on page 6-23

6-20

ADSP-BF59x Blackfin Processor Hardware Reference




Dynamic Power Management

PLL_DIV Register

PLL Divide Register (PLL_DIV)

1514 1312 1110 9 8 7 6 5 4 3 2 1 0
0xFFCO0 0004 |o |0 |0 |o |o |o |0 |0 |o |o |o |o |o |1 |o |o |Reset=0x0004
| I

I
CSEL[1:0] (Core Select) I L SSEL[3:0] (System Select)
00-CCLK=VCO /1 0 - Reserved
01-CCLK=VCO/2 1-15- SCLK =VCO / X

10-CCLK =VCO/4
11-CCLK=VCO/8

Figure 6-3. PLL Divide Register

PLL_CTL Register

PLL Control Register (PLL_CTL)

1514 1312 1110 9 8 7 6 5 4 3 2 1 0
0xFFCO 0000 |o|o|o |o|1 |1 Io |o|o|o |o Iolo Io |0 Iol Reset = 0x0C00

MSEL[5:0] I_ DF (Divide Frequency)
(Multiplier Select) 0 - Pass CLKIN to PLL
See CLKIN/VCO multiplication 1 - Pass CLKIN/2 to PLL
factors PLL_OFF

0 - Enable control of PLL
BYPASS 1 - Disable control of PLL
0 - Do not bypass PLL STOPCK (Stop Clock)
1 - Bypass PLL 0 - CCLK on

1 - CCLK off

PDWN (Power Down)
0 - All internal clocks on
1 - All internal clocks off

For CLKIN/VCO multiplication factors, see Table 6-1 on page 6-4.
Figure 6-4. PLL Control Register

ADSP-BF59x Blackfin Processor Hardware Reference 6-21



PLL and VR Registers

PLL_STAT Register

PLL Status Register (PLL_STAT)
Read only. Unless otherwise noted, 1 - Processor operating in this mode.

15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0
0xFFCO 000C |o |o |o |o |o |o |o |o |1 |o|1 |o |o |o |1 |o | Reset = 0x00A2

VSTAT-

0: Voltage regulator is not stable. ACTIVE_PLLENABLED
1: Voltage regulator is stable. FULL ON
PLL_LOCKED B

ACTIVE_PLLDISABLED

For more information, see “Operating Modes” on page 6-7.
g g

Figure 6-5. PLL Status Register

PLL_LOCKCNT Register

PLL Lock Count Register (PLL_LOCKCNT)

1514 1312 1110 9 8 7 6 5 4 3 2 1.0
oxFFc0 0010 fo JoJo JoJo JoJti JoJoJoJoJoJoJoJoJo] Reset=oxo200

LOCKCNT[15:0]
Number of SCLK cycles
before PLL Lock Count
timer expires.

Figure 6-6. PLL Lock Count Register

6-22 ADSP-BF59x Blackfin Processor Hardware Reference



Dynamic Power Management

VR_CTL Register

Voltage Regulator Control Register (VR_CTL)

i5 14 13 12 11 10 9 8 7 6 5 4
0xFFCO 0008 |0|0|1|1|o|0|0|o|0|0_|o|o|

2 1 0
|L| 0 |o | Reset = 0x3000

3
0

POLARITY Q

0 - Active Low level
initiates wakeup

1 - Active High Level
initiates wakeup

EXTCLK_OE
0 = disable EXTCLK pin
1 = enable EXTCLK pin

EXTCLK_SEL

0 - EXTCLK pin drives
CLKBUF signal

1 = EXTCLK pin drives
CLKOUT signal

HIBERNATEB
0 - Deassert EXT_WAKE pin

and enter hibernate state.

1- Writing 1 has no effect.

\— Reserved

WAKE_ENO

0 - PF8 event wakeup disabled

1 - PF8 event wakeup enabled
A PF8 event will assert the
EXT_WAKEOUT pin.

WAKE_EN1
0 - PFO event wakeup disabled
1 - PFO event wakeup enabled

WAKE_EN2
0 = PG12 event wakeup disabled
1 = PG12 event wakeup enabled

WAKE_EN3
0 - PG1 event wakeup disabled
1 - PG1 event wakeup enabled

Figure 6-7. Voltage Regulator Control Register

The external clock select (EXTCLK_SEL) control bit configures the EXTCLK
pin to output either the SCLK frequency (called CLKOUT) or to output an
input buffered CLKIN frequency (called CLKBUF). When configured to
output SCLK (CLKOUT), the EXTCLK pin acts as a reference signal in many
timing specifications. When configured to output CLKIN (CLKBUF), the
EXTCLK pin allows another device and the processor to run from a single
crystal oscillator.

The external clock output enable (EXTCLK_OE) control bit configures the
EXTCLK pin to either enable (when set, =1) or disable (when cleared, =0) the
output of the clock signal selected by EXTCLK_SEL. When EXTCLK_OE is
cleared, the EXTCLK pin is three-stated.

The POLARITY control bit configure the active level of the wakeup event on
the programmable flags.

ADSP-BF59x Blackfin Processor Hardware Reference 6-23



System Control ROM Function

System Control ROM Function

The PLL and voltage regulator registers should not be accessed directly.
Instead, use the bfrom_SysControl() function to alter or read the register
values. The function resides in the on-chip ROM and can be called by the

user following C-language style calling conventions.
Entry address: 0xEF00 0038
Arguments:

e dActionFlags word in RO

* pSysCtriSettings pointer in R1

* zero value in R?

A potential error message of internally called bfrom_0tpRead() function
forwarded and returned in RO.

The system control ROM function does not verify the correctness
of the forwarded arguments. Therefore, it is up to the programmer
to choose the correct values.

C prototype: u32 bfrom_SysControl(u32 dActionFlags,
ADI_SYSCTRL_VALUES *pSysCtrlSettings, void *reserved);

The first argument (u32 dActionFlags) to the system control ROM func-
tion holds the instruction flags. The following flags are supported.

ffdefine SYSCTRL_READ 0x00000000
ffdefine SYSCTRL_WRITE 0x00000001
ftdefine SYSCTRL_SYSRESET 0x00000002
ffdefine SYSCTRL_SOFTRESET 0x00000004
ftdefine SYSCTRL_VRCTL 0x00000010
ftdefine SYSCTRL_EXTVOLTAGE 0x00000020
ffdefine SYSCTRL_PLLCTL 0x00000100
ftdefine SYSCTRL_PLLDIV 0x00000200

6-24 ADSP-BF59x Blackfin Processor Hardware Reference



Dynamic Power Management

ffdefine SYSCTRL_LOCKCNT 0x00000400
ffdefine SYSCTRL_PLLSTAT 0x00000800

With SYSCTRL_READ and SYSCTRL_WRITE, a read or a write operation is ini-
tialized. The SYSCTRL_SYSRESET flag performs a system reset, while the
SYSCTRL_SOFTRESET flag combines a core and system reset. The
SYSCTRL_EXTVOLTAGE flag indicates that Vppn is supplied externally.

The last five flags (_VRCTL, _PLLCTL, _PLLDIV, _LOCKCNT, _PLLSTAT) tells
the system control ROM function which registers to be written to or read
from. Note that SYSCTRL_PLLSTAT flag is read-only.

The second argument (ADI_SYSCTRL_VALUES *pSysCtri1Settings) to the
system control ROM function passes a pointer to a special structure,
which has entries for all PLL and voltage regulator registers. It is pre-
defined in the bfrom.h header file as follows.

typedef struct
{
ulé uwVrCtl;
ulée uwP11CtT;
ule uwP11Div;
ulé uwPlTLockCnt;
ulée uwPl1Stat;
} ADI_SYSCTRL_VALUES;

The third argument to the system control ROM function is reserved and
should be kept zero (NULL pointer).

The function’s return value is described in the following bfrom_0tpRead()
ROM routine descriptions; whereby a single-bit warning is suppressed.

The system control ROM function executes the correct steps and
programming sequence for the Dynamic Power Management Sys-
tem of the Blackfin processor.

ADSP-BF59x Blackfin Processor Hardware Reference 6-25



System Control ROM Function

Programming Model

The programming model for the system control ROM function in C/C++
and Assembly is described in the following sections.

Accessing the System Control ROM Function in
C/C++

To read the PLL_DIV and PLL_CTL register values, for example, specify the
SYSCTRL_READ instruction flag along with the SYSCTRL_PLLCTL and
SYSCTRL_PLLDIV register flags. The bfrom_0tpRead() function then only
updates the uwP11Ct1 and uwP11D1v variables:

ADI_SYSCTRL_VALUES read;
bfrom_SysControl (SYSCTRL_READ | SYSCTRL_PLLCTL | SYSCTRL_PLLDIV,
&read, NULL);

The read.uwP11Ct1 and read.uwP11Div variables access the PLL_CTL and
PLL_DIV register values, respectively. To update the register values, specify
the SYSCTRL_WRITE instruction flag along with the register flags of those
registers that should be modified and have valid data in the respective
ADI_SYSCTRL_VALUES variables:

ADI_SYSCTRL_VALUES write;

write.uwP11Ctl = 0x0C00;

write.uwP11Div = 0x0004;

bfrom_SysControl (SYSCTRL_WRITE | SYSCTRL_PLLCTL |SYSCTRL_PLLDIV,
dwrite, NULL);

6-26 ADSP-BF59x Blackfin Processor Hardware Reference



Dynamic Power Management

Accessing the System Control ROM Function in
Assembly

The assembler supports C structs, which is required to import the file

bfrom.h:

#include <bfrom.h>
.IMPORT "bfrom.h";
.STRUCT ADI_SYSCTRL_VALUES dpm;

You can pre-load the struct:

.STRUCT ADI_SYSCTRL_VALUES dpm = { 0x3000, 0x0C00, 0x0004,
0x0200, 0x00AZ2 };

or load the values dynamically inside the code:

P5.H = hi(dpm);

P5.L = lo(dpm->uwVrCtl1);
R7 = 0x3000 (z);
w[P5] = R7;

P5.L = To(dpm->uwP11Ct1);
R7 = 0x0C00 (z);
w[P5] = R7;

P5.L = lTo(dpm->uwP11Div);
R7 = 0x0004 (z);
w[P5] = R7;

P5.L = To(dpm->uwP11LockCnt);
R7 = 0x0200 (z);
wlP5] = RO;

ADSP-BF59x Blackfin Processor Hardware Reference 6-27



System Control ROM Function

The function u32 bfrom_SysControl(u32 dActionFlags,
ADI_SYSCTRL_VALUES *pSysCtriSettings, void *reserved); can be
accessed by BFROM_SYSCONTROL. Following the C/C++ run-time environ-
ment conventions, the parameters passed are hold by the data registers R0,
R1, and R2.

/* 10 = sizeof (ADI_SYSCTRL_VALUES). uimml8m4: 18-bit unsigned
field that must be a multiple of 4, with a range of 8 through
262,152 bytes (0x00000 through Ox3FFFC) */

Tink sizeof(ADI_SYSCTRL_VALUES)+2;
[--SP] = (R7:0,P5:0);

/* Allocate at least 12 bytes on the stack for outgoing argu-
ments, even if the function being called requires less than this.
*/

SP += -12;

RO = SYSCTRL_WRITE |
SYSCTRL_VRCTL
SYSCTRL_EXTVOLTAGE
SYSCTRL_PLLCTL
SYSCTRL_PLLDIV

R1.H = hi(dpm);

L

R1.L = To(dpm);

R2 =0 (z);

P5.H = hi(BFROM_SYSCONTROL);
P5.L = To(BFROM_SYSCONTROL) ;
call(P5);

SP +=12;

(R7:0,P5:0) = [SP++1];
unlink;

rts;

6-28 ADSP-BF59x Blackfin Processor Hardware Reference



Dynamic Power Management

The processor’s internal scratcchpad memory can be used as an alternative
for taking a C struct. Therefore, the stack/frame pointer must be loaded
and passed.

/* 10 = sizeof (ADI_SYSCTRL_VALUES). uimml8m4: 18-bit unsigned
field that must be a multiple of 4, with a range of 8 through
262,152 bytes (0x00000 through Ox3FFFC) */

link sizeof (ADI_SYSCTRL_VALUES)+2;

[--SP] = (R7:0,P5:0);

/* Allocate at least 12 bytes on the stack for outgoing argu-
ments, even if the function being called requires less than this.
*/

SP += -12;

R7 = 0;

R7.L = 0x3000;

W[FP+-sizeof (ADI_SYSCTRL_VALUES)+off-
setof (ADI_SYSCTRL_VALUES,uwVrCtl)] = R7;
R7.L = 0x0C00;

W[FP+-sizeof (ADI_SYSCTRL_VALUES)+off-
setof (ADI_SYSCTRL_VALUES,uwP11Ct1)] = R7;
R7.L = 0x0004;

W[FP+-sizeof (ADI_SYSCTRL_VALUES)+off-
setof (ADI_SYSCTRL_VALUES,uwP11Div)] = R7;
R7.L = 0x0200;

W[FP+-sizeof (ADI_SYSCTRL_VALUES)+off-
setof (ADI_SYSCTRL_VALUES,uwP11LockCnt)] = R7;

RO = SYSCTRL_WRITE |
SYSCTRL_VRCTL |
SYSCTRL_EXTVOLTAGE
SYSCTRL_PLLCTL
SYSCTRL_PLLDIV

ADSP-BF59x Blackfin Processor Hardware Reference 6-29



Programming Examples

R1 = FP;

Rl += -sizeof(ADI_SYSCTRL_VALUES);
R2 = 0;

P5.H = hi(BFROM_SYSCONTROL) ;

P5.L = 10(BFROM_SYSCONTROL) ;
call(P5);

SP += 12;

(R7:0,P5:0) = [SP++];

unlink;

rts;

Programming Examples

The following code examples illustrate how to use the system control
ROM function to effect various operating mode transitions.

The following examples are only meant to demonstrate how to pro-
gram the PLL registers. Do not assume that the voltages and
frequencies shown in the examples are supported by your proces-
sor. Instead, check your product's data sheet for supported voltages
and frequencies.

Some setup code has been removed for clarity, and the following assump-
tions are made.

* PLL control (PLL_CTL) register setting: 0x0C00
e PLL divider (PLL_DIV) register setting: 0x0004
e PLL lock count (PLL_LOCKCNT) register setting: 0x0200

e Clock in (CLKIN) frequency: 25 MHz

6-30 ADSP-BF59x Blackfin Processor Hardware Reference



Dynamic Power Management

VCO frequency is 125 MHz, core clock frequency is 125 MHz, and sys-
tem clock frequency is 31.25 MHz.

* Voltage regulator control (VR_CTL) register setting: 0x3000
* Logical voltage level (VDDINT) is at 1.20 V
For operating mode transition and voltage regulator examples:
« C
* Jinclude <blackfin.h>
* finclude <bfrom.h>
e Assembly
* Jinclude <blackfin.h>

e Jinclude <bfrom.h>

.IMPORT "bfrom.h";

jfdefine IMM32(reg,val) regi.H=hi(val);

regift.L=1o(val);

Full-on Mode to Active Mode and Back

Listing 6-1 and Listing 6-2 provide code for transitioning from the full-on
operating mode to active mode in C and Blackfin assembly code,
respectively.

Listing 6-1. Transitioning from Full-on Mode to Active Mode (C)
void active(void)

{
ADI_SYSCTRL_VALUES active;

ADSP-BF59x Blackfin Processor Hardware Reference 6-31



Programming Examples

bfrom_SysControl(SYSCTRL_READ | SYSCTRL_EXTVOLTAGE |
SYSCTRL_PLLCTL, &active, NULL);

active.uwP11Ct1 |= (BYPASS | PLL_OFF); /* PLL_OFF bit optional */
bfrom_SysControl(SYSCTRL_WRITE | SYSCTRL_EXTVOLTAGE |
SYSCTRL_PLLCTL, &active, NULL);

return;

}

Listing 6-2. Transitioning from Full-on Mode to Active Mode (ASM)
__active:

link sizeof (ADI_SYSCTRL_VALUES)+2;

[--SP] = (R7:0,P5:0);

SP += -12;

RO
R1

(SYSCTRL_READ | SYSCTRL_EXTVOLTAGE | SYSCTRL_PLLCTL);
FP;

R1 += -sizeof(ADI_SYSCTRL_VALUES);

R2 0 (z);

IMM32 (P4 ,BFROM_SYSCONTROL) ;

call(P4);

+

RO =

W[FP+-sizeof (ADI_SYSCTRL_VALUES)+off-
setof (ADI_SYSCTRL_VALUES,uwP11Ct1)71;
bitset(RO,bitpos(BYPASS));
bitset(RO,bitpos(PLL_OFF)); /* optional */
WLFP+-sizeof (ADI_SYSCTRL_VALUES)+off-
setof (ADI_SYSCTRL_VALUES,uwP11Ct1)] = RO;

RO (SYSCTRL_WRITE | SYSCTRL_EXTVOLTAGE | SYSCTRL_PLLCTL);
R1 = FP;
Rl += -sizeof (ADI_SYSCTRL_VALUES);

6-32 ADSP-BF59x Blackfin Processor Hardware Reference



Dynamic Power Management

R2 =0 (z2);
IMM32(P4,BFROM_SYSCONTROL) ;
call(P4);

SP += 12;

(R7:0,P5:0) = [SP++1;
unlink;

rts;

__active.end:

To return from active mode (go back to full-on mode), the BYPASS bit and
the PLL_OFF bit must be cleared again, respectively.

Transition to Sleep Mode or Deep Sleep Mode

Listing 6-3 and Listing 6-4 provide code for transitioning from the full-on
operating mode to sleep or deep sleep mode in C and Blackfin assembly
code, respectively.

Listing 6-3. Transitioning to Sleep Mode or Deep Sleep Mode (C)

void sleep(void)

{

ADI_SYSCTRL_VALUES sleep;
bfrom_SysControl(SYSCTRL_EXTVOLTAGE | SYSCTRL_PLLCTL |
SYSCTRL_READ, &sleep, NULL);

sleep.uwP11Ct1 |= STOPCK; /* either: Sleep Mode */
sleep.uwP11Ctl |= PDWN; /* or: Deep Sleep Mode */
bfrom_SysControl(SYSCTRL_WRITE | SYSCTRL_EXTVOLTAGE |
SYSCTRL_PLLCTL, &sleep, NULL);

return;

}

ADSP-BF59x Blackfin Processor Hardware Reference 6-33



Programming Examples

Listing 6-4. Transitioning to Sleep Mode or Deep Sleep Mode (ASM)
__Sleep:

Tink sizeof (ADI_SYSCTRL_VALUES)+2;
[--SP] = (R7:0,P5:0);
SP += -12;

RO = (SYSCTRL_READ | SYSCTRL_EXTVOLTAGE |
SYSCTRL_PLLCTL);

R1 = FP;

R1 += -sizeof(ADI_SYSCTRL_VALUES);

R2 =0 (2);

IMM32 (P4 ,BFROM_SYSCONTROL) ;

call(P4);

RO =

W[FP+-sizeof (ADI_SYSCTRL_VALUES)+off-

setof (ADI_SYSCTRL_VALUES,uwP11Ct1)1;
bitset(RO,bitpos(STOPCK)); /* either: Sleep Mode */
pitset(RO,bitpos(PDWN)); /* or: Deep Sleep Mode */
W[FP+-sizeof (ADI_SYSCTRL_VALUES)+off-

setof (ADI_SYSCTRL_VALUES,uwP11Ct1)] = RO;

RO
R1

(SYSCTRL_WRITE | SYSCTRL_EXTVOLTAGE | SYSCTRL_PLLCTL);
FP;

R1 += -sizeof(ADI_SYSCTRL_VALUES);

R2 0 (z);

IMM32 (P4 ,BFROM_SYSCONTROL) ;

call(P4);

+

SP += 12;
(R7:0,P5:0) = [SP++];
unlink;

6-34 ADSP-BF59x Blackfin Processor Hardware Reference



Dynamic Power Management

rts;

__Sleep.end:

Set Wakeup Events and Enter Hibernate State

Listing 6-5 and Listing 6-6 provide code for configuring the regulator
wakeups (PF8, PFO, PG12, and PG1) and placing the regulator in the hiber-
nate state in C and processor assembly code, respectively.

Listing 6-5. Configuring Regulator Wakeups and Entering Hibernate
State (C)

void hibernate(void)

{

ADI_SYSCTRL_VALUES hibernate;
hibernate.uwVrCt1=WAKE_ENO | /* PF8 Wake-Up Enable */
WAKE_EN1 | /* PFO Wake-Up Enable */

WAKE_EN2 | /* PG12 Wake-Up Enable */

WAKE_EN3 | /* PGl Wake-Up Enable */

HIBERNATE; / *Powerdown */
bfrom_SysControl(SYSCTRL_WRITE | SYSCTRL_VRCTL |
SYSCTRL_EXTVOLTAGE, &hibernate, NULL);

/* Hibernate State: no code executes until wakeup triggers
reset */

}

Listing 6-6. Configuring Regulator Wakeups and Entering Hibernate
State (ASM)

__hibernate:

link sizeof (ADI_SYSCTRL_VALUES)+2;
[--SP] = (R7:0,P5:0);

SP += -12;

ADSP-BF59x Blackfin Processor Hardware Reference 6-35



Programming Examples

cli Ré6; /* disable interrupts, copy IMASK to R6 */
RO.L = WAKE_ENO | /* PF8 Wake-Up Enable */
WAKE_EN1 | /* PFO Wake-Up Enable */

WAKE_EN2 | /* PG12 Wake-Up Enable */

WAKE_EN3 | /* PGl Wake-Up Enable */

HIBERNATE; / *Powerdown */

W[FP+-sizeof (ADI_SYSCTRL_VALUES)+

offsetof (ADI_SYSCTRL_VALUES,uwVrCt1)] = RO;

RO = (SYSCTRL_WRITE | SYSCTRL_VRCTL | SYSCTRL_EXTVOLTAGE);
R1 = FP;

Rl += -sizeof(ADI_SYSCTRL_VALUES);

R2 =0 (z);

IMM32 (P4 ,BFROM_SYSCONTROL) ;

call(P4);

/* Hibernate State: no code executes until wakeup triggers
reset */

__hibernate.end:

Note that there may be a need to call bfrom_SysControl() twice, once to
setup the polarity and the wakeup sources and once to enter hibernate.

Perform a System Reset or Soft-Reset

Listing 6-7 and Listing 6-8 provide code for executing a system reset or a
soft-reset (system and core reset) in C and Blackfin assembly code,
respectively.

Listing 6-7. Execute a System Reset or a Soft-Reset (C)

void reset(void)

{

bfrom_SysControl (SYSCTRL_SYSRESET, NULL, NULL); /* either */
bfrom_SysControl (SYSCTRL_SOFTRESET, NULL, NULL); /* or */

6-36 ADSP-BF59x Blackfin Processor Hardware Reference



Dynamic Power Management

return;

}

Listing 6-8. Execute a System Reset or a Soft-Reset (ASM)
__reset:

Tink sizeof(ADI_SYSCTRL_VALUES)+2;

[--SP] = (R7:0,P5:0);

SP += -12;

RO

SYSCTRL_SYSRESET; /* either */
RO SYSCTRL_SOFTRESET; /* or */

R1 0 (z);

R2 =0 (z);

IMM32 (P4 ,BFROM_SYSCONTROL) ;
call(P4);

SP +=12;

(R7:0,P5:0) = [SP++];
unlink;

rts;

__reset.end:

In Full-on Mode, Change VCO Frequency, Core
Clock Frequency, and System Clock Frequency

Listing 6-9 and Listing 6-10 provide C and Blackfin assembly code for
changing the CLKIN to VCO multiplier (from 10x to 21x), keeping the
CSEL divider at 1, and changing the SSEL divider (from 5 to 4) in the
full-on operating mode.

ADSP-BF59x Blackfin Processor Hardware Reference 6-37



Programming Examples

Listing 6-9. Transition of Frequencies (C)

void frequency(void)
{
ADI_SYSCTRL_VALUES frequency;

/* Set MSEL = 5-63 --> VCO = CLKIN*MSEL */
frequency.uwP11Ct1 = SET_MSEL(21) ;

/* Set SSEL = 1-15 --> SCLK = VCO/SSEL */

/* CCLK = VCO / 1 */

frequency.uwP11Div = SET_SSEL(4) |
CSEL_DIV1

frequency.uwPT1LockCnt = 0x0200;

bfrom_SysControl(SYSCTRL_WRITE | SYSCTRL_EXTVOLTAGE |
SYSCTRL_PLLCTL | SYSCTRL_PLLDIV | SYSCTRL_LOCKCNT |, &frequency,
NULL);

return;

}

Listing 6-10. Transition of Frequencies (ASM)
__frequency:

link sizeof (ADI_SYSCTRL_VALUES)+2;
[--SP] = (R7:0,P5:0);

SP += -12;

/* write the struct */
RO = 0;

RO.L = SET_MSEL(21) ; /* Set MSEL = 5-63 --> VCO = CLKIN*MSEL */

6-38 ADSP-BF59x Blackfin Processor Hardware Reference



Dynamic Power Management

wW[FP+-sizeof (ADI_SYSCTRL_VALUES)+
offsetof (ADI_SYSCTRL_VALUES,uwP11Ct1)] = RO;

RO.L = SET_SSEL(4) | /* Set SSEL = 1-15 --> SCLK = VCO/SSEL */
CSEL_DIV1 ; /* CCLK = VvCo / 1 */

W[FP+-sizeof (ADI_SYSCTRL_VALUES)+

offsetof (ADI_SYSCTRL_VALUES,uwP11Div)] = RO;

RO.L = 0x0200;
WLFP+-sizeof (ADI_SYSCTRL_VALUES)+
offsetof (ADI_SYSCTRL_VALUES,uwP11LockCnt)] = RO;

/* argument 1 in RO */
RO = (SYSCTRL_WRITE | SYSCTRL_EXTVOLTAGE | SYSCTRL_PLLCTL |
SYSCTRL_PLLDIV);

/* argument 2 in R1: structure lays on local stack */
R1 = FP;
R1 += -sizeof(ADI_SYSCTRL_VALUES);

/* argument 3 must always be NULL */
R2 = 0;

/* call of SysControl function */
IMM32 (P4 ,BFROM_SYSCONTROL) ;
call (P4); /* RO contains the result from SysControl */

SP += 12;

(R7:0,P5:0) = [SP++];
unlink;

rts;

__frequency.end:

ADSP-BF59x Blackfin Processor Hardware Reference 6-39



Programming Examples

Changing Voltage Levels

Listing 6-11 provides C code for changing the voltage level dynamically.
The User must include his own code for accessing the external voltage
regulator.

Listing 6-11. Changing Core Voltage (C)

void voltage(void)

{

ADI_SYSCTRL_VALUES voltage;

u32 ulCnt = 0;

bfrom_SysControl( SYSCTRL_EXTVOLTAGE | SYSCTRL_PLLCTL |
SYSCTRL_READ, &init, NULL );

init.uwP11Ct1 |= BYPASS;

init.uwP11LockCnt = 0x0200;

bfrom_SysControl (SYSCTRL_WRITE | SYSCTRL_PLLCTL | SYSCTRL_LOCKCNT
| SYSCTRL_EXTVOLTAGE, &voltage, NULL);

/* Put your code for accessing the external voltage regulator
here */

/* A delay loop is required to ensure VDDint is stable and the
PLL has re-locked. As this is depending on the external voltage
regulator circuitry the user must ensure timings are kept. The
compiler (no optimization enabled) will create a loop that takes
about 10 cycles. Time base is CLKIN as the PLL is bypassed. We
need 0x0200 CLKIN cycles that represent PLL_LOCKCNT and addition-
ally the time required by the circuitry */

ulCnt = 0x0200 + 0x0200;

while (ulCnt != 0) {ulCnt--;}

init.uwP11Ctl &= ~BYPASS;

bfrom_SysControl(SYSCTRL_WRITE | SYSCTRL_PLLCTL |
SYSCTRL_EXTVOLTAGE, &voltage, NULL);

return;

}

6-40 ADSP-BF59x Blackfin Processor Hardware Reference



7/ GENERAL-PURPOSE PORTS

This chapter describes the general-purpose ports. Following an overview
and a list of key features is a block diagram of the interface and a descrip-
tion of operation. The chapter concludes with a programming model,
consolidated register definitions, and programming examples.

Overview

The ADSP-BF59x Blackfin processors feature a rich set of peripherals,
which, through a powerful pin multiplexing scheme, provides great flexi-
bility to the external application space.

Features

The peripheral pins are functionally organized into general-purpose ports
designated port F and port G.

Port F provides 16 pins:
e SPORTT signals
e DPPI data and frame sync signals
e Primary SPIO signals
* GP Timer signals
e SPIO and SPI1 slave selects

ADSP-BF59x Blackfin Processor Hardware Reference 7-1



Interface Overview

* UARTO signals
* GPIOs
Port G provides 16 pins:
e SPORTO signals
e Primary SPI1 signals
e SPIO and SPI1 slave selects
e PPI data signals
* GPIOs

Note that the PPI clock and the TWI signals are provided on separate
pins, independent of the ports.

Interface Overview

By default, all port F and port G pins are in general-purpose 1/O (GPIO)
mode. In this mode, a pin can function as a digital input, digital output,
or interrupt input. See “General-Purpose I/O Modules” on page 7-8 for
details. Peripheral functionality must be explicitly enabled by the function
enable registers (PORTF_FER and PORTG_FER). The competing peripherals
on port F and port G are controlled by the respective multiplexer control
register (PORTF_MUX and PORTG_MUX).

In this chapter, the naming convention for registers and bits uses a
lowercase x to represent F or G. For example, the name PORTx_FER
represents PORTF_FER and PORTG_FER. The bit name Px0 represents
PF0 and PGO. This convention is used to discuss registers common
to these ports.

7-2 ADSP-BF59x Blackfin Processor Hardware Reference



External Interface

General-Purpose Ports

The external interface of the general-purpose ports are described in the
following sections.

Port F Structure

Table 7-1 on page 7-3 shows the multiplexer scheme for port F. Port F is

controlled by the PORTF_MUX and the PORTF_FER registers.

Port F consists of 16 pins, referred to as PFO to PF15, as shown in

Table 7-1 on page 7-3. All the input signals in the “Additional Use” col-

umn are enabled by their module only, regardless of the state of the

PORTx_MUX and PORTx_FER registers.

Any GPIO can be enabled individually and overrides the peripheral func-
tion if the respective bit in PORTF_FER is cleared.

Table 7-1. Port F Multiplexing Scheme

PORTF_MUX 0 1

1st function 2nd function Additional Use GPIO
Bit 0 DRISEC PPI8 WAKEN1 PFO
Bit 1 DRIPRI PPI9 PF1
Bit 2 RSCLK1 PPI10 PF2
Bit 3 RFS1 PPI11 PF3
Bit 4 DT1SEC PPI12 PF4
Bit 5 DT1PRI PPI13 PF5
Bit 6 TSCLK1 PPI14 PF6
Bit 7 TFS1 PPIL5 PF7
Bit 8 TMR2 SPTIOSSEL? WAKENO PF8
Bit 9 TMRO/PPI_FS1 SPTIOSSEL3 PF9
Bit 10 TMRI/PPI_FS2 Reserved PF10

ADSP-BF59x Blackfin Processor Hardware Reference

7-3



Interface Overview

Table 7-1. Port F Multiplexing Scheme (Continued)

PORTF_MUX |0 1

1st function 2nd function Additional Use GPIO
Bit 11 UARTOTX SPTIOSSEL4 PF11
Bit 12 UARTORX SPTOSSEL7 TACI2-0 PF12
Bit 13 SPIOMOST SPTISSEL3 PF13
Bit 14 SPIOMISO SPTIISSEL4 PF14
Bit 15 SPIOCLK SPIISSELS PF15

Port G Structure

Table 7-2 on page 7-4 shows the multiplexer scheme for port G. Port G
is controlled by the PORTG_MUX and PORTG_FER registers.

Port G consists of 16 pins, referred to as PGO to PG15, as shown in

Table 7-2.

Any GPIO can be enabled individually and overrides the peripheral func-

tion if the respective bit in the PORTG_FER register is cleared.

Table 7-2. Port G Multiplexing Scheme

PORTG_MUX 0 1
1st function 2nd function Additional Use GPIO

Bit 0 DROSEC SPTOSSELT SPTI0SS PGO

Bit 1 DROPRI SPTISSELT WAKEN3 PG1

Bit 2 RSCLKO SPIOSSELS PG2

Bit 3 RFSO PPI_FS3 PG3

Bit 4 DTOSEC SPIOSSELG PGA/HWAIT
Bit 5 DTOPRI SPTISSELG PG5

Bit 6 TSCLKO TSCLKO (Gated) PG6

Bit 7 TFSO SPTISSEL7 PG7

7-4

ADSP-BF59x Blackfin Processor Hardware Reference




General-Purpose Ports

Table 7-2. Port G Multiplexing Scheme (Continued)

PORTG_MUX 0 1

1st function 2nd function Additional Use GPIO
Bit 8 SPI1CLK PPIO PGS
Bit 9 SPI1MOSI PPI1 PGY
Bit 10 SPIIMISO PPI2 PG10
Bit 11 SPTISSELS PPI3 PG11
Bit 12 SPIISSELZ PPI4 WAKEN? PG12
Bit 13 SPTIISSELT PPI5 SPIISS PG13
Bit 14 SPTISSEL4 PPI6 TACLK1 PG14
Bit 15 SPTISSELG PPI7 TACLK2 PG15

Additional Considerations

Port control and GPIO registers are part of the system memory-mapped
registers (MMRs). The addresses of the GPIO module MMRs appear in
Appendix A, “System MMR Assignments”. Core access to the GPIO con-

figuration registers is through the system bus. The PORTx_MUX registers

control the muxing schemes of port F and port G. The function enable
registers (PORTF_FER and PORTG_FER) enable the peripheral functionality
for each individual pin of a port.

e If pin PF9 serves as TMRO/PPI_FS1, TMRO is internally looped back to
PPI_FS1 whenever TMRO is configured as an output. Similarly, if pin

PF10 serves as TMR1/PPI_FS2, TMR1 is internally looped back to

PPI_FS2 whenever TMR1 is configured as an output. This is done to
avoid possible erroneous behavior associated with ringing if out-

ADSP-BF59x Blackfin Processor Hardware Reference

7-5



Interface Overview

puts are not well terminated. Whenever TMRO or TMR1 inputs are
used, PPI_CLK must be separately specified as the clock input for
the associated timer.

* Pins configured to serve as triggers for hibernate and deepsleep
wakeup (see register VR_CTL) automatically have their input buffers
enabled. Note that if there are multiple simultaneous uses of these
input buffers (such as wake source and GPIO input), each use must
still be individually enable to achieve reliable behavior.

* The input buffer of pin PG14 is automatically enabled if system
timer 1 specifies TACLK as its input clock source.

* The input buffer of pin PG15 is automatically enabled if system
timer 2 specifies TACLK as its input clock source.

* The input buffer of pin PF12 is automatically enabled if any of the
three system timers specify their TACIx input as their clock source.
When PF12 serves as UART RX, any of the system timers may be
used for autobaud detection.

Internal Interfaces

Port control and GPIO registers are part of the system memory-mapped
registers (MMRs). The addresses of the GPIO module MMRs appear in
Appendix B. Core access to the GPIO configuration registers is through
the system bus.

The PORTx_MUX registers control the muxing schemes of port F and port G.

The function enable registers (PORTF_FER and PORTG_FER) enable the
peripheral functionality for each individual pin of a port.

7-6

ADSP-BF59x Blackfin Processor Hardware Reference



General-Purpose Ports

Performance/Throughput

The PFx and PGx pins are synchronized to the system clock (SCLK). When
configured as outputs, the GPIOs can transition once every system clock
cycle.

When configured as inputs, the overall system design should take into
account the potential latency between the core and system clocks. Changes
in the state of port pins have a latency of 3 SCLK cycles before being detect-
able by the processor. When configured for level-sensitive interrupt
generation, there is a minimum latency of 4 SCLK cycles between the time
the signal is asserted on the pin and the time that program flow is inter-
rupted. When configured for edge-sensitive interrupt generation, an
additional SCLK cycle of latency is introduced, giving a total latency of 5
SCLK cycles between the time the edge is asserted and the time that the
core program flow is interrupted.

Description of Operation

The operation of the general-purpose ports is described in the following
sections.

Operation

The GPIO pins on port F and port G can be controlled individually by
the function enable registers (PORTx_FER). With a control bit in these reg-
isters cleared, the peripheral function is fully decoupled from the pin. It
functions as a GPIO pin only. To drive the pin in GPIO output mode, set
the respective direction bit in the PORTxI0_DIR register. To make the pin a

ADSP-BF59x Blackfin Processor Hardware Reference 7-7



Description of Operation

digital input or interrupt input, enable its input driver in the
PORTXIO_INEN register.

By default all peripheral pins are configured as inputs after reset.
port F and port G pins are in GPIO mode. However, GPIO input
drivers are disabled to minimize power consumption and any need
of external pulling resistors.

When the control bit in the function enable registers (PORTx_FER) is set,
the pin is set to its peripheral functionality and is no longer controlled by
the GPIO module. However, the GPIO module can still sense the state of
the pin. When using a particular peripheral interface, pins required for the
peripheral must be individually enabled. Keep the related function enable
bit cleared if a signal provided by the peripheral is not required by your
application. This allows it to be used in GPIO mode.

General-Purpose I/0 Modules

The processor supports 32 bidirectional or general-purpose 1/0 (GPIO)
signals. These 32 GPIOs are managed by two different GPIO modules,
which are functionally identical. One is associated with port F, and one is
associated with port G. Port F and port G each consist of 16 GPIOs
(PF15-0 and PG15-0), respectively.

Each GPIO can be individually configured as either an input or an output
by using the GPIO direction registers (PORTxI0_DIR).

When configured as output, the GPIO data registers (PORTFI0, PORTGIO,
and PORTHIO) can be directly written to specify the state of the GPIO:s.

The GPIO direction registers are read-write registers with each bit posi-
tion corresponding to a particular GPIO. A logic 1 configures a GPIO as
an output, driving the state contained in the GPIO data register if the

7-8 ADSP-BF59x Blackfin Processor Hardware Reference



General-Purpose Ports

peripheral function is not enabled by the function enable registers. A logic
0 configures a GPIO as an input.

Note when using the GPIO as an input, the corresponding bit
should also be set in the GPIO input enable register. Otherwise,
changes at the input pins will not be recognized by the processor.

The GPIO input enable registers (PORTFIO_INEN and PORTGIO_INEN) are
used to enable the input buffers on any GPIO that is being used as an
input. Leaving the input buffer disabled eliminates the need for pull-ups
and pull-downs when a particular PFx or PGx pin is not used in the system.

By default, the input buffers are disabled.
/ Once the input driver of a GPIO pin is enabled, the GPIO is not

allowed to operate as an output anymore. Never enable the input
driver (by setting PORTxIO_INEN bits) and the output driver (by set-
ting PORTxI0_DIR bits) for the same GPIO.

A write operation to any of the GPIO data registers sets the value of all
GPIOs in this port that are configured as outputs. GPIOs configured as
inputs ignore the written value. A read operation returns the state of the
GPIOs defined as outputs and the sense of the inputs, based on the polar-
ity and sensitivity settings, if their input buffers are enabled. Table 7-3

ADSP-BF59x Blackfin Processor Hardware Reference 7-9



Description of Operation

helps to interpret read values in GPIO mode, based on the settings of the
PORTXxIO_POLAR, PORTXIO_EDGE, and PORTXI0_BOTH registers.

Table 7-3. GPIO Value Register Pin Interpretation

POLAR EDGE BOTH Effect of MMR Settings

0 0 X Pin that is high reads as 1; pin that is low
reads as 0

0 1 0 If rising edge occurred, pin reads as 1;
otherwise, pin reads as 0

1 0 X Pin that is low reads as 1; pin that is high
reads as 0

1 1 0 If falling edge occurred, pin reads as 1;

otherwise, pin reads as 0

If any edge occurred, pin reads as 1; oth-
erwise, pin reads as 0

For GPIOs configured as edge-sensitive, a readback of 1 from one
of these registers is sticky. That is, once it is set it remains set until
cleared by user code. For level-sensitive GP1Os, the pin state is
checked every cycle, so the readback value will change when the
original level on the pin changes.

The state of the output is reflected on the associated pin only if the func-
tion enable bit in the PORTx_FER register is cleared.

Werite operations to the GPIO data registers modify the state of all GPIOs
of a port. In cases where only one or a few GPIOs need to be changed, the
user may write to the GPIO set registers, PORTxI0_SET, the GPIO clear

registers, PORTxI0_CLEAR, or to the GPIO toggle registers, PORTxI0_TOGGLE
instead.

While a direct write to a GPIO data register alters all bits in the register,

writes to a GPIO set register can be used to set a single or a few bits only.
No read-modify-write operations are required. The GPIO set registers are
write-1-to-set registers. All 1s contained in the value written to a GPIO set

7-10 ADSP-BF59x Blackfin Processor Hardware Reference




General-Purpose Ports

register sets the respective bits in the GPIO data register. The 0s have no
effect. For example, assume that PF0 is configured as an output. Writing
0x0001 to the GPIO set register drives a logic 1 on the PF0 pin without
affecting the state of any other PFx pins. The GPIO set registers are typi-
cally also used to generate GPIO interrupts by software. Read operations
from the GPIO set registers return the content of the GPIO data registers.

The GPIO clear registers provide an alternative port to manipulate the
GPIO data registers. While a direct write to a GPIO data register alters all
bits in the register, writes to a GPIO clear register can be used to clear
individual bits only. No read-modify-write operations are required. The
clear registers are write-1-to-clear registers. All 1s contained in the value
written to the GPIO clear register clears the respective bits in the GPIO
data register. The Os have no effect. For example, assume that PF4 and PF5
are configured as outputs. Writing 0x0030 to the PORTFIO_CLEAR register
drives a logic 0 on the PF4 and PF5 pins without affecting the state of any
other PFx pins.

If an edge-sensitive pin generates an interrupt request, the service
routine must acknowledge the request by clearing the respective

GPIO latch. This is usually performed through the clear registers.

Read operations from the GPIO clear registers return the content of the

GPIO data registers.

The GPIO toggle registers provide an alternative port to manipulate the
GPIO data registers. While a direct write to a GPIO data register alters all
bits in the register, writes to a toggle register can be used to toggle individ-
ual bits. No read-modify-write operations are required. The GPIO toggle
registers are write-1-to-toggle registers. All 1s contained in the value writ-
ten to a GPIO toggle register toggle the respective bits in the GPIO data
register. The Os have no effect. For example, assume that PG1 is configured
as an output. Writing 0x0002 to the PORTGIO_TOGGLE register changes the
pin state (from logic 0 to logic 1, or from logic 1 to logic 0) on the PG1 pin
without affecting the state of any other PGx pins. Read operations from the
GPIO toggle registers return the content of the GPIO data registers.

ADSP-BF59x Blackfin Processor Hardware Reference 7-11



Description of Operation

The state of the GPIOs can be read through any of these data, set, clear, or
toggle registers. However, the returned value reflects the state of the input
pin only if the proper input enable bit in the PORTXIO_INEN register is set.
Note that GPIOs can still sense the state of the pin when the function
enable bits in the PORTx_FER registers are set.

Since function enable registers and GPIO input enable registers reset to
zero, no external pull-ups or pull-downs are required on the unused pins
of port F and port G.

GPIO Interrupt Processing

Each GPIO can be configured to generate an interrupt. The processor can
sense up to 32 asynchronous off-chip signals, requesting interrupts
through four interrupt channels. To make a pin function as an interrupt
pin, the associated input enable bit in the PORTXIO_INEN register must be
set. The function enable bit in the PORTx_FER register is typically cleared.
Then, an interrupt request can be generated according to the state of the
pin (either high or low), an edge transition (low to high or high to low), or
on both edge transitions (low to high and high to low). Input sensitivity is
defined on a per-bit basis by the GPIO polarity registers (PORTFIO_POLAR
and PORTGIO_POLAR), and the GPIO interrupt sensitivity registers
(PORTFIO_EDGE and PORTGIO_EDGE). If configured for edge sensitivity, the
GPIO set on both edges registers (PORTFI0_BOTH and PORTGIO_BOTH) let
the interrupt request generate on both edges.

The GPIO polarity registers are used to configure the polarity of the
GPIO input source. To select active high or rising edge, set the bits in the
GPIO polarity register to 0. To select active low or falling edge, set the
bits in the GPIO polarity register to 1. This register has no effect on
GPIOs that are defined as outputs. The contents of the GPIO polarity
registers are cleared at reset, defaulting to active high polarity.

The GPIO interrupt sensitivity registers are used to configure each of the
inputs as either a level-sensitive or an edge-sensitive source. When using

7-12 ADSP-BF59x Blackfin Processor Hardware Reference



General-Purpose Ports

an edge-sensitive mode, an edge detection circuit is used to prevent a situ-
ation where a short event is missed because of the system clock rate. The
GPIO interrupt sensitivity register has no effect on GPIOs that are
defined as outputs. The contents of the GPIO interrupt sensitivity regis-
ters are cleared at reset, defaulting to level sensitivity.

The GPIO set on both edges registers are used to enable interrupt genera-
tion on both rising and falling edges. When a given GPIO has been set to
edge-sensitive in the GPIO interrupt sensitivity register, setting the
respective bit in the GPIO set on both edges register to both edges results
in an interrupt being generated on both the rising and falling edges. This
register has no effect on GPIOs that are defined as level-sensitive or as
outputs. See Table 7-3 on page 7-10 for information on how the GPIO
set on both edges register interacts with the GPIO polarity and GPIO

interrupt sensitivity registers.

When the GPIO’s input drivers are enabled while the GPIO direction reg-
isters configure it as an output, software can trigger a GPIO interrupt by
writing to the data/set/toggle registers. The interrupt service routine
should clear the GPIO to acknowledge the request.

Each of the two GPIO modules provides two independent interrupt chan-
nels. Identical in functionality, these are called interrupt A and interrupt
B. Both interrupt channels have their own mask register which lets you
assign the individual GPIOs to none, either, or both interrupt channels.

Since all mask registers reset to zero, none of the GPIOs is assigned any
interrupt by default. Each GPIO represents a bit in each of these registers.
Setting a bit means enabling the interrupt on this channel.

Interrupt A and interrupt B operate independently. For example, writing
1 to a bit in the mask interrupt A register does not affect interrupt channel
B. This facility allows GPIOs to generate GPIO interrupt A, GPIO inter-
rupt B, both GPIO interrupts A and B, or neither.

A GPIO interrupt is generated by a logical OR of all unmasked GPIOs for
that interrupt. For example, if PF0 and PF1 are both unmasked for GPIO

ADSP-BF59x Blackfin Processor Hardware Reference 7-13



Description of Operation

interrupt channel A, GPIO interrupt A will be generated when triggered

by PF0 or PF1. The interrupt service routine must evaluate the GPIO data
register to determine the signaling interrupt source. Figure 7-1 illustrates
the interrupt flow of any GPIO module's interrupt A channel.

When using either rising or falling edge-triggered interrupts, the
interrupt condition must be cleared each time a corresponding
interrupt is serviced by writing 1 to the appropriate bit in the
GPIO clear register.

At reset, all interrupts are masked and disabled.

Similarly to the GPIOs themselves, the mask register can either be written
through the GPIO mask data registers (PORTxI0_MASKA, PORTxI0_MASKB) or
be controlled by the mask A/mask B set, clear and toggle registers.

The GPIO mask interrupt set registers (PORTxI0_MASKA_SET,

PORTXIO_MASKB_SET) provide an alternative port to manipulate the GPIO
mask interrupt registers. While a direct write to a mask interrupt register
alters all bits in the register, writes to a mask interrupt set register can be

7-14 ADSP-BF59x Blackfin Processor Hardware Reference



used to set a single or a few bits only
required.

START

IS THE
GPIO ENABLED IN
PORTxIO_MASKA_D?

NO
(INPUT)

IS THE GPIO SET

General-Purpose Ports

. No read-modify-write operations are

IS THE INPUT

AS AN OUTPUT IN
PORTxIO_DIR?

DRIVER ENABLED IN
PORTxIO_INEN?

NO IS THE GPIO YES
(LEVEL SENSITIVE) EDGE-SENSITIVE (EDGE SENSITIVE)
SIETTS gzlg? AS DEFINED IN

PORTxIO_EDGE?

IS EDGE

IS THE INPUT
AN ACTIVE LEVEL
AS DEFINED IN
PORTxIO_POLAR?

DETECTED

AS DEFINED IN
PORTxIO_POLAR &
PORTxIO_BOTH?

GENERATE INTERRUPT A

Figure 7-1. GPIO Interrupt Generation Flow for Interrupt Channel A

ADSP-BF59x Blackfin Processor Hardware Reference

7-15



Description of Operation

The mask interrupt set registers are write-1-to-set registers. All ones con-
tained in the value written to the mask interrupt set register set the
respective bits in the mask interrupt register. The zeroes have no effect.
Writing a one to any bit enables the interrupt for the respective GPIO.

The GPIO mask interrupt clear registers (PORTxI0_MASKA_CLEAR,
PORTXI0_MASKB_CLEAR) provide an alternative port to manipulate the
GPIO mask interrupt registers. While a direct write to a mask interrupt
register alters all bits in the register, writes to the mask interrupt clear reg-
ister can be used to clear a single bit or a few bits only. No
read-modify-write operations are required.

The mask interrupt clear registers are write-1-to-clear registers. All ones
contained in the value written to the mask interrupt clear register clear the
respective bits in the mask interrupt register. The zeroes have no effect.
Writing a one to any bit disables the interrupt for the respective GPIO.

The GPIO mask interrupt toggle registers (PORTxI0_MASKA_TOGGLE,
PORTXI0_MASKB_TOGGLE) provide an alternative port to manipulate the
GPIO mask interrupt registers. While a direct write to a mask interrupt
register alters all bits in the register, writes to a mask interrupt toggle reg-
ister can be used to toggle a single bit or a few bits only. No
read-modify-write operations are required.

The mask interrupt toggle registers are write-1-to-clear registers. All ones
contained in the value written to the mask interrupt toggle register toggle
the respective bits in the mask interrupt register. The zeroes have no

effect. Writing a one to any bit toggles the interrupt for the respective
GPIO.

Figure 7-1 illustrates the interrupt flow of any GPIO module’s interrupt A
channel. The interrupt B channel behaves identically.

All GPIOs assigned to the same interrupt channel are OR’ed. If multiple
GPIOs are assigned to the same interrupt channel, it is up to the interrupt
service routine to evaluate the GPIO data registers to determine the sig-
naling interrupt source.

7-16 ADSP-BF59x Blackfin Processor Hardware Reference



General-Purpose Ports

Figure 7-2 shows the mapping of the four GPIO interrupt channels of
port F and port G.

e

Figure 7-2. GPIO Interrupt Channels

ADSP-BF59x Blackfin Processor Hardware Reference 7-17



Programming Model

Programming Model

Figure 7-3 and Figure 7-4 show the programming model for the gen-

eral-purpose ports.

GPIO OR

PERIPHERAL?

WRITE PORTx_FERTO CLEAR
APPROPRIATE PERIPHERAL BITS

GPIO OUTPUT
OR INPUT?

OUTPUT

WRITE PORTxIO_DIRTO CLEAR
APPROPRIATE BITS FOR INPUT DIRECTION

!

WRITE PORTxIO_INEN TO SET APPROPRIATE
BITS TO ENABLE INPUT DRIVERS DIRECTION

'

PERIPHERAL

WRITE PORTx_MUX, WRITE PORTx_FER
TO SET APPROPRIATE PERIPHERAL BITS

!

SEE PERIPHERAL FOR MORE DETAILS

WRITE PORTxIO_DIRTO SET
APPROPRIATE BITS FOR OUTPUT DIRECTION

'

SET OR CLEAR
GPIO?

WRITE PORTxIO_CLEARTO SET
APPROPRIATE BITS TO LOWER INDIVIDUAL GPIO

WRITE PORTxIO_SETTO SET <
APPROPRIATE BITS TO RAISE INDIVIDUAL GPIO

Figure 7-3. GPIO Flow Chart (Part 1 of 2)

ADSP-BF59x Blackfin Processor Hardware Reference



EDGE OR LEVEL
SENSITIVE?

WRITE PORTxIO_EDGE TO CLEAR
APPROPRIATE BITS FOR LEVEL SENSITIVITY

LEVEL HIGH
OR LOW?

| WRITE PORTxIO_POLAR TO SET
APPROPRIATE BITS FOR LOW LEVEL SENSITIVITY

WRITE PORTxIO_POLAR TO CLEAR APPROPRIATE
BITS FOR HIGH LEVEL SENSITIVITY

General-Purpose Ports

EDGE
WRITE PORTxIO_EDGE TO SET
APPROPRIATE BITS FOR EDGE SENSITIVITY

1

RISING OR FALLING

ALLING OR BOTH?

WRITE PORTxIO_BOTH TO SET
APPROPRIATE BITS FOR BOTH EDGE SENSITIVITY

WRITE PORTxIO_BOTH TO CLEAR APPROPRIATE [
BITS FOR EDGE SENSITIVITY

'

EDGE RISING
OR FALLING?

FALLING

WRITE PORTxIO_POLAR TO SET
APPROPRIATE BITS FOR FALLING EDGE SENSITIVITY

WRITE PORTxIO_POLAR TO CLEAR APPROPRIATE
BITS FOR RISING EDGE SENSITIVITY

\ *

SOFTWARE CAN INTERROGATE
PORTx_DATA BITS TO
DETERMINE EVENTS

INTERRUPT
ABILITY?

WRITE EITHER PORTxIO_MASKA, PORTxIO_MASKB, PORTxIO_MASKA_SET,

PORTxIO_MASKB_SET, PORTxIO_MASKA_TOGGLE, OR PORTxIO_MASKB_TOGGLE

TO SET APPROPRIATE BITS ON WHICH TO GENERATE AN INTERRUPT

{

INTERRUPTS MUST THEN BE CONFIGURED AT THE
SYSTEM INTERRUPT CONTROLLER AND
CORE EVENT CONTROLLER

Figure 7-4. GPIO Flow Chart (Part 2 of 2)

ADSP-BF59x Blackfin Processor Hardware Reference




GPIO Schmitt Trigger Control

GPIO Schmitt Trigger Control

The ADSP-BF59x contains additional registers controlling the hysteresis
(via Schmitt triggering) for Port F and Port G. These are also included for
several pins and group of pins other than GPIOs. Figure 7-5 on page 7-20
to Figure 7-6 on page 7-21 show the bit descriptions of these registers.

PORTx Pad Control Registers

These registers configure hysteresis for the PORTx inputs. For each con-
trolled group of pins, b#0 will disable Schmitt triggering (hysteresis),
while b#1 will enable it.

Port F Pad Control (Hysteresis) Register (PORTF_PADCTL)

15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0
|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1IReset:OxFFFF

| | L
‘ FPADCTLO

DC
0 - Disable PFO/1 Hysteresis
1 - Enable PFO/1 Hysteresis

FPADCTL1 .
0 - Disable PF2/3 Hysteresis

1 - Enable PF2/3 Hysteresis

FPADCTL2
0 - Disable PF4/5 Hysteresis

1 - Enable PF4/5 Hysteresis

FPADCTL3
0 - Disable PF6/7 Hysteresis

1 - Enable PF6/7 Hysteresis
FPADCTL4

0 - Disable PF8/9/10 Hysteresis
1 - Enable PF8/9/10 Hysteresis

FPADCTL5 .
0 - Disable PF11/12 Hysteresis

1 - Enable PF11/12 Hysteresis

FPADCTL6 )
0 - Disable PF13/14 Hysteresis

1 - Enable PF13/14 Hysteresis

FPADCTL7
0 - Disable PF15 Hysteresis

1 - Enable PF15 Hysteresis

Reserved

Figure 7-5. Port F Pad Control (Hysteresis) Register

7-20 ADSP-BF59x Blackfin Processor Hardware Reference



General-Purpose Ports

Port G Pad Control (Hysteresis) Register (PORTG_PADCTL)

15 14 13 12 11
|1 |1 |1 |1 |1 |1 |1 |1 |1 |1 |1 |1 |1 |1 |1 |1 I Reset = OXFFFF

| -

CTL
0- Dlsable PGO/1 Hysteresis
1 - Enable PGO/1 Hysteresis

GPADCTL
0- Dlsable PG2/3 Hysteresis

1 - Enable PGZ/S Hysteresis

GPADCTL
0 - Disable PG4/5 Hysteresis

1 - Enable PG4/5 Hysteresis

GPADCTL
0 - Disable PGG/7 Hysteresis

1 - Enable PG6/7 Hysteresis

GPADCTL4
0 - Disable PG8 Hysteresis

1 - Enable PG8 Hysteresis

GPADCTL
0- Dlsable PGQ/1O Hysteresis

1 - Ensable PG9/10 Hysteresis

Reserved

GPADCTL6
0 - Disable PG11/12 Hysteresis
1 - Enable PG1 1/12 Hysteresis

GPADCTL
0 - Disable PG13/14/15 Hysteresis

1 - Enable PG13/14/15 Hysteresis

Figure 7-6. Port G Pad Control (Hysteresis) Register

Memory-Mapped GPIO Registers

The GPIO registers are part of the system memory-mapped registers
(MMREs). Figure 7-7 through Figure 7-25 on page 7-35 illustrate the
GPIO registers. The addresses of the programmable flag MMRs appear in
“System MMR Assignments” on page A-1.

ADSP-BF59x Blackfin Processor Hardware Reference 7-21



Memory-Mapped GPIO Registers

Port Multiplexer Control Register (PORTx_MUX)

Port x Multiplexer Control Register (PORTx_MUX)

15 14 13 12 11 10 9 8 1
lolololololololololoIoIolololololReset_Oxoooo

Port x Mux 15— Port x Mux 0
Port x Mux 14 —— Port x Mux 1
Port x Mux 13 Port x Mux 2
Port x Mux 12— —— Port x Mux 3
Port x Mux 1{—mMH—— '————— Port x Mux 4
Port x Mux 10 -————————————— Port x Mux 5
Port x Mux 9 Port x Mux 6
Port x Mux 8 Port x Mux 7

For all bit fields:
0 = Peripheral function
1 = Alternate peripheral function

Refer to Table 7-1 on page 7-3 to Table 7-2 on page 7-4 for reserved bits in the PORTx_MUX register.

Figure 7-7. Port Multiplexer Control Register

7-22 ADSP-BF59x Blackfin Processor Hardware Reference



General-Purpose Ports

Function Enable Registers (PORTx_FER)

Function Enable Registers (PORTx_FER)
For all bits, 0 - GPIO mode, 1 - Enable peripheral function

1514 1312 1110 9 8 7 6 5 4 3 2 1 0
[oJofoJoJoJofoJo]ofoJoJoJofoJofo] Reset=oxo000

L Px0

Px1

Px2

Px3

Px15 Px4
Px14 —— | Px5
Px13 Px6
Px12 Px7
Px11 Px8
Px10 Px9

Figure 7-8. Function Enable Registers

ADSP-BF59x Blackfin Processor Hardware Reference 7-23



Memory-Mapped GPIO Registers

GPIO Direction Registers (PORTxIO_DIR)

GPIO Direction Registers (PORTxIO_DIR)
For all bits, 0 - Input, 1 - Output

15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0
|o|o|o|o|o|o|o|o|o|o|0|o|o|o|0|o| Reset = 0x0000

L Px0 Direction

Px1 Direction

Px2 Direction

Px3 Direction

Px15 Direction Px4 Direction

Px14 Direction

Px5 Direction

Px13 Direction Px6 Direction

Px12 Direction

Px7 Direction

Px8 Direction
Px10 Direction Px9 Direction

Px11 Direction

Figure 7-9. GPIO Direction Registers

7-24 ADSP-BF59x Blackfin Processor Hardware Reference



General-Purpose Ports

GPIO Input Enable Registers (PORTxIO_INEN)

GPIO Input Enable Registers (PORTxIO_INEN)
For all bits, 0 - Input Buffer Disabled, 1 - Input Buffer Enabled

1514 1312 11 10 9 8 7 6 5 4 3 2 1 0
|o|o|o|o|o|o|o|o|o|o|0|0|0|0|0|0 Reset = 0x0000

L Px0 Input Enable
Px1 Input Enable
Px2 Input Enable
Px3 Input Enable

Px4 Input Enable
Px5 Input Enable

Px15 Input Enable
Px14 Input Enable —
Px13 Input Enable
Px12 Input Enable Px7 Input Enable

Px11 Input Enable —— — | Px8 Input Enable
Px10 Input Enable Px9 Input Enable

Px6 Input Enable

Figure 7-10. GPIO Input Enable Registers

GPIO Data Registers (PORTxIO)

GPIO Data Registers (PORTxIO)
1 - Set, 0 - Clear

1514 1312 11 10 9 8 7 6 5 4 3 2 1 0
|o|0|o|o|o|o|0|0|o|o|o|0|0|0|o|0| Reset = 0x0000

L Program Px0

Program Px1

Program Px2

Program Px3
Program Px15

Program Px14 ———

Program Px4

Program Px5
Program Px6
Program Px7
Program Px8
Program Px10 Program Px9

Program Px13

Program Px12

Program Px11

Figure 7-11. GPIO Data Registers

ADSP-BF59x Blackfin Processor Hardware Reference 7-25



Memory-Mapped GPIO Registers

GPIO Set Registers (PORTxIO_SET)

GPIO Set Registers (PORTxIO_SET)
Write-1-to-set
1514 1312 1110 9 8 7 6 5 4 3 2 1 0
Io |o |0 |0 Io |o |o |o Io |o |o |o Io |0 |o |o I Reset = 0x0000

L Set Px0

Set Px1

Set Px2

Set Px3

Set Px15 Set Px4
Set Px14 Set Px5
Set Px13 Set Px6
SetPx12 ——MM ——————— Set Px7
Set Px11 Set Px8
Set Px10 Set Px9

Figure 7-12. GPIO Set Registers

GPIO Clear Registers (PORTxIO_CLEAR)

GPIO Clear Registers (PORTxIO_CLEAR)
Write-1-to-clear
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Io Io Io Io Io Io Io Io Io Io Io |0 Io |0 |0 |0 I Reset = 0x0000

L Clear Px0

Clear Px1

Clear Px2

Clear Px3

Clear Px15 Clear Px4
Clear Px14 ——— Clear Px5
Clear Px13 —MM8M Clear Px6
ClearPx12 —— | Clear Px7
Clear Px11 Clear Px8
Clear Px10 Clear Px9

Figure 7-13. GPIO Clear Registers

7-26 ADSP-BF59x Blackfin Processor Hardware Reference



General-Purpose Ports

GPIO Toggle Registers (PORTXIO_TOGGLE)

GPIO Toggle Registers (PORTxIO_TOGGLE)

Write-1-to-toggle

15 14 13 12 11 10

9 8 7 6

4

1 0

[ofofolofofofofofofoofofofo]o]o]

Reset = 0x0000

Toggle Px15
Toggle Px14 ————
Toggle Px13
Toggle Px12

Toggle Px11

\—Toggle Px0
Toggle Px1

Toggle Px2
Toggle Px3
Toggle Px4

Toggle Px5

Toggle Px6

Toggle Px7

Toggle Px10

Toggle Px8

Figure 7-14. GPIO Toggle Registers

Toggle Px9

GPIO Polarity Registers (PORTXIO_POLAR)

GPIO Polarity Registers (PORTxIO_POLAR)
For all bits, 0 - Active high or rising edge, 1 - Active low or falling edge

Px15 Polarity
Px14 Polarity

15 14 13 12 11 10 9 8

7 6

5

4

3 2 1 0

fofofofodofofofofofo]ofofofofo]o]

Reset = 0x0000

L Px0 Polarity
Px1 Polarity
Px2 Polarity
Px3 Polarity

Px4 Polarity

) Px5 Polarity
Px13 Polarity Px6 Polarity
Px12 Polarity Px7 Polarity
Px11 Polarity Px8 Polarity
Px10 Polarity Px9 Polarity
Figure 7-15. GPIO Polarity Registers
ADSP-BF59x Blackfin Processor Hardware Reference 7-27



Memory-Mapped GPIO Registers

Interrupt Sensitivity Registers (PORTxIO_EDGE)

Interrupt Sensitivity Registers (PORTxIO_EDGE)

For all bits, O - Level, 1 - Edge
1514 1312 11 10 9 8 7 6 5 4 3 2 1 0
folofofofofofofofofofofofofofofo]  Reset=oxoo00

—

Px0 Sensitivity
Px1 Sensitivity
Px2 Sensitivity
Px3 Sensitivity

Px15 Sensitivity Px4 Sensitivity

Px14 Sensitivity ——

Px5 Sensitivity

Px13 Sensitivity

Px6 Sensitivity
Px7 Sensitivity

Px8 Sensitivity
Px10 Sensitivity Px9 Sensitivity

Px12 Sensitivity

Px11 Sensitivity

Figure 7-16. Interrupt Sensitivity Registers

GPIO Set on Both Edges Registers (PORTXIO_BOTH)

GPIO Set on Both Edges Registers (PORTxIO_BOTH)

For all bits when enabled for edge-sensitivity, 0 - Single edge, 1 - Both edges
15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0
[oJofoJoJoJofoJofofo oJofofoJofo] Reset=oxo000

L Px0 Both Edges
Px1 Both Edges
Px2 Both Edges
Px3 Both Edges

Px4 Both Edges
Px5 Both Edges

Px15 Both Edges

Px14 Both Edges ——
Px13 Both Edges Px6 Both Edges
Px12 Both Edges Px7 Both Edges
Px11 BothEdges — | Px8 Both Edges
Px10 Both Edges Px9 Both Edges

Figure 7-17. GPIO Set on Both Edges Registers

7-28 ADSP-BF59x Blackfin Processor Hardware Reference



General-Purpose Ports

GPIO Mask Interrupt Registers (PORTXIO_MASKA/B)

GPIO Mask Interrupt A Registers (PORTxIO_MASKA)

For all bits, 1 - Enable, 0 - Disable

15 14 13 12 11 10

9

8

7 6

5

4

3

2 1 0

fofofolofofofofofofoofofofo]o]o]

Reset = 0x0000

Enable Px15 Interrupt
A

Enable Px14 Interrupt A -~
Enable Px13 Interrupt A
Enable Px12 Interrupt A
Enable Px11 Interrupt A
Enable Px10 Interrupt A

Enable Px0 Interrupt A
Enable Px1 Interrupt A
Enable Px2 Interrupt A
Enable Px3 Interrupt A
Enable Px4 Interrupt A
Enable Px5 Interrupt A
Enable Px6 Interrupt A

Enable Px7 Interrupt A

Enable Px8 Interrupt A

Enable Px9 Interrupt A

Figure 7-18. GPIO Mask Interrupt A Registers

GPIO Mask Interrupt B Registers (PORTxIO_MASKB)

For all bits, 1 - Enable
15 14 13 12 11

10

9

8

7 6

5

4

3

2 1 0

fofofofodofofofofofofofofofofo]o]

Reset = 0x0000

Enable Px15

Interrupt B

Enable Px14 Interrupt B -
Enable Px13 Interrupt B ——
Enable Px12 Interrupt B
Enable Px11 Interrupt B

Enable Px10 Interrupt B

Enable Px0 Interrupt B
Enable Px1 Interrupt B
Enable Px2 Interrupt B
Enable Px3 Interrupt B
Enable Px4 Interrupt B
Enable Px5 Interrupt B
Enable Px6 Interrupt B

Enable Px7 Interrupt B

Enable Px8 Interrupt B
Enable Px9 Interrupt B

Figure 7-19. GPIO Mask Interrupt B Registers

GPIO Mask Interrupt Set Registers

ADSP-BF59x Blackfin Processor Hardware Reference

7-29



Memory-Mapped GPIO Registers

(PORTXIO_MASKA/B_SET)

GPIO Mask Interrupt A Set Registers (PORTxIO_MASKA_SET)

For all bits, 1 - Set

15 14 13 12 11 10

9

8

7 6

5 4

3

2

1

0

fofofofofofofoofofofofofofo]o]o]

Reset = 0x0000

\— Set PxO0 Interrupt A
Enable
Set Px1 Interrupt A
Enable
Set Px15 Interrupt A Set Px2 Interrupt A
Enable Enable
Set Px14 Interrupt A Set Px3 Interrupt A
Enable Enable
Set Px13 Interrupt A Set Px4 Interrupt A
Enable Enable
Set Px12 Interrupt A Set Px5 Interrupt A
Enable Enable
Set Px11 Interrupt A Set Px6 Interrupt A
Enable Enable
Set Px10 Interrupt A Set Px7 Interrupt A
Enable Enable
Set Px8 Interrupt A
Enable
Set Px9 Interrupt A
Enable

Figure 7-20. GPIO Mask Interrupt A Set Registers

7-30

ADSP-BF59x Blackfin Processor Hardware Reference



General-Purpose Ports

GPIO Mask Interrupt B Set Registers (PORTxIO_MASKB_SET)

For all bits, 1 - Set

Set Px15 Interrupt B
Enable

Set Px14 Interrupt B
Enable

Set Px13 Interrupt B
Enable

15 14 1312 1110 9 8 7 6 5 4 3 2 1 0
|o|o|o|o|0|o|o|o|o|o|o|o|o|o|0|o| Reset = 0x0000

\— Set Px0 Interrupt B
Enable
Set Px1 Interrupt B
Enable

Set Px2 Interrupt B
Enable

Set Px3 Interrupt B
Enable

Set Px4 Interrupt B
Enable

Set Px12 Interrupt B
Enable

Set Px5 Interrupt B
Enable

Set Px11 Interrupt B

Set Px6 Interrupt B
Enable

Enable
Set Px10 Interrupt B

Set Px7 Interrupt B
Enable

Enable

Set Px8 Interrupt B
Enable
Set Px9 Interrupt B
Enable

Figure 7-21. GPIO Mask Interrupt B Set Registers

ADSP-BF59x Blackfin Processor Hardware Reference 7-31



Memory-Mapped GPIO Registers

GPIO Mask Interrupt Clear Registers
(PORTXIO_MASKA/B_CLEAR)

GPIO Mask Interrupt A Clear Registers (PORTxIO_MASKA_CLEAR)

For all bits, 1 - Clear

Clear Px15 Interrupt A
Enable

Clear Px14 Interrupt A
Enable

15 14 13 12 11 10

9 8

7 6

5

4

3

2

1

0

fofofofodofofofofofofofofofofo]o]

Reset = 0x0000

Clear Px13 Interrupt A

Enable

Clear Px12 Interrupt A
Enable

Clear Px11 Interrupt A
Enable

Clear Px10 Interrupt A

Enable

Figure 7-22. GPIO Mask Interrupt A Clear Registers

\—Clear Px0 Interrupt A
Enable
Clear Px1 Interrupt A
Enable
Clear Px2 Interrupt A
Enable
Clear Px3 Interrupt A
Enable
Clear Px4 Interrupt A
Enable

Clear Px5 Interrupt A
Enable

Clear Px6 Interrupt A
Enable

Clear Px7 Interrupt A
Enable

Clear Px8 Interrupt A
Enable

Clear Px9 Interrupt A
Enable

7-32

ADSP-BF59x Blackfin Processor Hardware Reference



General-Purpose Ports

GPIO Mask Interrupt B Clear Registers (PORTxIO_MASKB_CLEAR)
For all bits, 1 - Clear

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

fofofofofofofofofofoofofofo]o]o]

Reset = 0x0000

\—Clear Px0 Interrupt B

Clear Px15 Interrupt B
Enable

Clear Px14 Interrupt B
Enable

Clear Px13 Interrupt B
Enable

Clear Px12 Interrupt B
Enable

Clear Px11 Interrupt B
Enable

Clear Px10 Interrupt B

Enable

Figure 7-23. GPIO Mask Interrupt B Clear Registers

Enable

Clear Px1 Interrupt B
Enable

Clear Px2 Interrupt B
Enable

Clear Px3 Interrupt B
Enable
Clear Px4 Interrupt B
Enable
Clear Px5 Interrupt B
Enable
Clear Px6 Interrupt B
Enable
Clear Px7 Interrupt B
Enable
Clear Px8 Interrupt B
Enable
Clear Px9 Interrupt B
Enable

ADSP-BF59x Blackfin Processor Hardware Reference

7-33



Memory-Mapped GPIO Registers

GPIO Mask Interrupt Toggle Registers
(PORTXIO_MASKA/B_TOGGLE)

GPIO Mask Interrupt A Toggle Registers (PORTxIO_MASKA_TOGGLE)
For all bits, 1 - Toggle

1514 1312 1110 9 8 7 6 5 4 3 2 1.0
[ofofofofofofofofofofofofofofofo]  Reset=oxoo00

\—Toggle PxO0 Interrupt A
Enable
Toggle Px1 Interrupt A
Toggle Px15 Enable
Interrupt A Enable T le Px2 Int tA
Toggle Px14 Ezgglz Xamerme
Interrupt A Enable T le Px3 Int t A
Toggle Px13 Interrupt A E?,g&: X nterrup
Enable — le Px4 Int tA
oggle Px4 Interru
Toggle Px12 Interrupt A Enggle P
Enabl
hable L Toggle Px5 Interrupt A
Toggle Px11 Interrupt A Enable
Enable Toggle Px6 Interrupt A
Toggle Px10 Interrupt A Enggle P
Enabl
nable Toggle Px7 Interrupt A
Enable
Toggle Px8 Interrupt A
Enable
Toggle Px9 Interrupt A
Enable

Figure 7-24. GPIO Mask Interrupt A Toggle Registers

7-34 ADSP-BF59x Blackfin Processor Hardware Reference



General-Purpose Ports

GPIO Mask Interrupt B Toggle Registers (PORTxIO_MASKB_TOGGLE)
For all bits, 1 - Toggle

15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0
|o|o|o|o|0|o|o|o|o|o|o|o|o|o|0|o| Reset = 0x0000

Toggle Px0 Interrupt B
Enable
Toggle Px1 Interrupt B
Toggle Px15 Enable
Interrupt B Enable Toggle Px2 Interrupt B
Toggle Px14 Enable
Interrupt B Enable L Toggle Px3 Interrupt B
Toggle Px13 Interrupt B Enable
Enable L Toggle Px4 Interrupt B
Toggle Px12 Interrupt B Enable
Enable L Toggle Px5 Interrupt B
Toggle Px11 Interrupt B Enable
Enable Toggle Px6 Interrupt B
Toggle Px10 Interrupt B Enable
Enable Toggle Px7 Interrupt B
Enable
Toggle Px8 Interrupt B
Enable
Toggle Px9 Interrupt B
Enable

Figure 7-25. GPIO Mask Interrupt B Toggle Registers

Programming Examples
Listing 7-1 provides examples for using the general-purpose ports.
Listing 7-1. General-Purpose Ports

/* set port f function enable register to GPIO (not peripheral)
*/

p0.1 = 10(PORTF_FER);
pO0.h = hi(PORTF_FER);
RO.h = 0x0000;

ro.1 = 0x0000;

wlp0] = r0;

ADSP-BF59x Blackfin Processor Hardware Reference 7-35



Programming Examples

/* set port f direction register to enable some GPIO as output,
remaining are input */

p0.1 = To(PORTFIO_DIR);

pO.h = hi(PORTFIO_DIR);

ro.h = 0x0000;

r0.1 = Ox0FCO;

wlp0]l = r0;

ssync;

/* set port f clear register */
p0.1 = To(PORTFIO_CLEAR);

pO0.h = hi(PORTFIO_CLEAR);

r0.1 = 0xFCO;
wlp0]l = r0;
ssync;

/* set port f input enable register to enable input drivers of
some GPIOs */

pO0.1 = To(PORTFIO_INEN);
pO.h = hi(PORTFIO_INEN);
ro.h = 0x0000;

ro.1 = 0x003C;

wlp0] = r0;

ssync;

/* set port f polarity register */

p0.1 = To(PORTFIO_POLAR);
pO.h = hi(PORTFIO_POLAR);
r0 = 0x00000;

wlp0] = r0;

ssync;

7-36 ADSP-BF59x Blackfin Processor Hardware Reference



8 GENERAL-PURPOSE TIMERS

This chapter describes the general-purpose (GP) timer module. Following
an overview and a list of key features is a description of operation and
functional modes of operation. The chapter concludes with a program-
ming model, consolidated register definitions, and programming
examples.

Specific Information for the ADSP-BF59x

For details regarding the number of GP timers for the ADSP-BF59x prod-
uct, please refer to the ADSP-BF592 Blackfin Processor Data Sheet.

For GP Timer interrupt vector assignments, refer to Table 4-3 on
page 4-17 in Chapter 4, “System Interrupts”.

To determine how each of the GP Timers is multiplexed with other func-
tional pins, refer to Table 7-1 on page 7-3 through Table 7-2 on page 7-4
in Chapter 7, “General-Purpose Ports”.

For a list of MMR addresses for each GP Timer, refer to Chapter A, “Sys-
tem MMR Assignments”.

GP timer behavior for the ADSP-BF59x that differs from the general
information in this chapter can be found at the end of this chapter in the
section “Unique Information for the ADSP-BF59x Processor” on

page 8-57

ADSP-BF59x Blackfin Processor Hardware Reference 8-1



Overview

Overview

The general-purpose timers support the following operating modes:
 Single-shot mode for interval timing and single pulse generation

* DPulse width modulation (PWM) generation with consistent update
of period and pulse width values

* External signal capture mode with consistent update of period and
pulse width values

e External event counter mode
Feature highlights are:
* Synchronous operation
* Consistent management of period and pulse width values
* Interaction with PPI module for video frame sync operation
* Autobaud detection for UART module
* Graceful bit pattern termination when stopping
» Support for center-aligned PWM patterns
* Error detection on implausible pattern values
* All read and write accesses to 32-bit registers are atomic
e Every timer has its dedicated interrupt request output
e Unused timers can function as edge-sensitive pin interrupts

The internal structure of the individual timers is illustrated by Figure 8-1,
which shows the details of timer 0 as a representative example. The other
timers have identical structure.

8-2 ADSP-BF59x Blackfin Processor Hardware Reference



General-Purpose Timers

<2:>| TIMERO_CONFIG |

LEADING EDGE

:>| TIMERO_PERIOD (WRITE)|<:/32
P
32 e

<2:| TIMERO_PERIOD (READ)|
32

TIMER 0
-

ENABLE TIMENO

LATCH | |  1ivpiso

I—PTRUNO

PERIOD
1 MATCH
| COMPARATOR | > _
> > ———» TOVF_ERR
SCLK -5 32;’ﬁf L INTERRUPT OVF_ERRO
»| CONTROL
TMRCLK 5 ! > ——————TIMILO
u TIMERO_COUNTER —— OVERFLOW
TACLKO —5 I —
TMRO T 32{&
| coMPARATOR | WIDTH MATCH| PIN
! »| CONTROL TMRO
5
<2:| TIMERO_WIDTH (READ)|

A A

e
32& ﬂ<——[
J:(>{ TIMERO_WIDTH (WRITE) |<2T

TRAILING EDGE

Figure 8-1. Internal Timer Structure

External Interface

EDGE
DETECTOR +«——TACIO

Every timer has a dedicated TMR pin. If enabled, the TMR pins output the
single-pulse or PWM signals generated by the timer. The TMR pins func-
tion as input in capture and counter modes. Polarity of the signals is

programmable.

When clocked internally, the clock source is the processor’s peripheral
clock (SCLK). Assuming the peripheral clock is running at 100 MHz, the

maximum period for the timer count is ((23%2-1) / 100 MHz) =

42.9 seconds.

ADSP-BF59x Blackfin Processor Hardware Reference

8-3



Description of Operation

Clock and capture input pins are sampled every SCLK cycle. The duration
of every low or high state must be at least one SCLK. Therefore, the maxi-
mum allowed frequency of timer input signals is SCLK/2.

Internal Interface

Timer registers are always accessed by the core through the 16-bit PAB
bus. Hardware ensures that all read and write operations from and to
32-bit timer registers are atomic.

Every timer has a dedicated interrupt request output that connects to the
system interrupt controller (SIC).

Description of Operation

The core of every timer is a 32-bit counter, that can be interrogated
through the read-only TIMER_COUNTER register. Depending on the mode of
operation, the counter is reset to either 0x0000 0000 or 0x0000 0001
when the timer is enabled. The counter always counts upward. Usually, it
is clocked by ScLK. In PWM mode it can be clocked by the alternate clock
input TACLK or, alternatively, the common timer clock input TMRCLK. In
counter mode, the counter is clocked by edges on the TMR input pin. The
significant edge is programmable.

After 2%2-1 clocks, the counter overflows. This is reported by the over-
flow/error bit TOVF_ERR in the TIMER_STATUS register. In PWM and
counter mode, the counter is reset by hardware when its content reaches
the values stored in the TIMER_PERIOD register. In capture mode, the
counter is reset by leading edges on the TMR or TACI input pin. If enabled,
these events cause the interrupt latch TIMIL in the TIMER_STATUS register
to be set and issue a system interrupt request. The TOVF_ERR and TIMIL
latches are sticky and should be cleared by software using W1C
(write-1-to-clear) operations to clear the interrupt request. The global

8-4

ADSP-BF59x Blackfin Processor Hardware Reference



General-Purpose Timers

TIMER_STATUS register is 32-bits wide. A single atomic 32-bit read can
report the status of all corresponding timers.

Before a timer can be enabled, its mode of operation is programmed in the
individual timer-specific TIMER_CONFIG register. Then, the timers are
started by writing a "1" to the representative bits in the global
TIMER_ENABLE register.

The TIMER_ENABLE register can be used to enable all timers simultaneously.
The register contains W1S (write-1-to-set) control bits, one for each
timer. Correspondingly, the TIMER_DISABLE register contains W1C con-
trol bits to allow simultaneous or independent disabling of the timers.
Either register can be read to check the enable status of the timers. A "1"
indicates that the corresponding timer is enabled. The timer starts count-
ing three SCLK cycles after the TIMEN bit is set.

While the PWM mode is used to generate PWM patterns, the capture
mode (WDTH_CAP) is designed to “receive” PWM signals. A PWM pattern is
represented by a pulse width and a signal period. This is described by the
TIMER_WIDTH and TIMER_PERIOD register pair. In capture mode these regis-
ters are read only. Hardware always captures both values. Regardless of
whether in PWM or capture mode, shadow buffers always ensure consis-
tency between the TIMER_WIDTH and TIMER_PERIOD values. In PWM mode,
hardware performs a plausibility check by the time the timer is enabled. If
there is an error, the type is reported by the TIMER_CONFIG register and sig-
nalled by the TOVF_ERR bit.

Interrupt Processing

Each timer can generate a single interrupt. The resulting interrupt signals
are routed to the system interrupt controller block for prioritization and
masking. The timer status (TIMER_STATUS) register latches the timer inter-
rupts to provide a means for software to determine the interrupt source.

ADSP-BF59x Blackfin Processor Hardware Reference 8-5



Description of Operation

Figure 8-2 shows the interrupt structure of the timers.

nviEn_wivin

COUNT = PERIOD
ILLEGAL
TIMER _PERIOD TRAILING
EDGE
COUNTER
OVERFLOW l LEADING
vy EDGE
\ A
PERIOD_CNT—»\ 1 0 10
Y A

PWM_OUT WDTH_CAP EXT_CLK PWM_OUT WDTH_CAP EXT_CLK
TMODE —> TMODE —>

INTERRUPT

ERROR EVENT EVENT

y
IRQ_ENA —g

Y PWM_OUT
SET TIMER
IRQ SYSTEM
TOVF_ERR TIMIL > INTERRUPT [—> PR%%EF?ESOR

CONTROLLER

A

RESET g Té
MMR WRITE TO t ‘ ?

TIMER_STATUS
TIMIL WRITE DATA

TOVF_ERR WRITE DATA

Figure 8-2. Timers Interrupt Structure

To enable interrupt generation, set the IRQ_ENA bit and unmask the inter-
rupt source in the IMASK and SIC_IMASK registers. To poll the TIMIL bit

8-6 ADSP-BF59x Blackfin Processor Hardware Reference



General-Purpose Timers

without interrupt generation, set IRQ_ENA but leave the interrupt masked
at the system level. If enabled by IRQ_ENA, interrupt requests are also gen-
erated by error conditions as reported by the TOVF_ERR bits.

The system interrupt controller enables flexible interrupt handling. All
timers may or may not share the same CEC interrupt channel, so that a
single interrupt routine services more than one timer. In PWM mode,
multiple timers may run with the same period settings and issue their
interrupt requests simultaneously. In this case, the service routine might
clear all TIMIL latch bits at once by writing 0x000F 000F to the
TIMER_STATUS register.

If interrupts are enabled, make sure that the interrupt service routine
(ISR) clears the TIMIL bit in the TIMER_STATUS register before the RTI
instruction executes. This ensures that the interrupt is not reissued.
Remember that writes to system registers are delayed. If only a few
instructions separate the TIMIL clear command from the RTT instruction,
an extra SSYNC instruction may be inserted. In EXT_CLK mode, reset the
TIMIL bit in the TIMER_STATUS register at the very beginning of the inter-
rupt service routine to avoid missing any timer events.

lllegal States

Every timer features an error detection circuit. It handles overflow situa-
tions but also performs pulse width vs. period plausibility checks. Errors
are reported by the TOVF_ERR bits in the TIMER_STATUS register and the
ERR_TYP bit field in the individual TIMER_CONFIG registers. Table 8-1 pro-
vides a summary of error conditions, using these terms:

* Startup. The first clock period during which the timer counter is
running after the timer is enabled by writing TIMER_ENABLE.

¢ Rollover. The time when the current count matches the value in
TIMER_PERIOD and the counter is reloaded with the value "1".

ADSP-BF59x Blackfin Processor Hardware Reference 8-7



Description of Operation

* Opverflow. The timer counter was incremented instead of doing a
rollover when it was holding the maximum possible count value of
O0xFFFF FFFF. The counter does not have a large enough range to
express the next greater value and so erroneously loads a new value
of 0x0000 0000.

* Unchanged. No new error.

e When ERR_TYP is unchanged, it displays the previously
reported error code or 00 if there has been no error since
this timer was enabled.

*  When TOVF_ERR is unchanged, it reads "0" if there has been
no error since this timer was enabled, or if software has per-
formed a W1C to clear any previous error. If a previous

error has not been acknowledged by software, TOVF_ERR
reads "1".

Software should read TOVF_ERR to check for an error. If TOVF_ERR is set,
software can then read ERR_TYP for more information. Once detected,
software should write "1" to clear TOVF_ERR to acknowledge the error.

The following table can be read as: “In mode __ at event __, if
TIMER_PERIOD is __ and TIMER_WIDTH is then ERR_TYP is __ and
TOVF_ERRis __.”

J—

Startup error conditions do not prevent the timer from starting.
Similarly, overflow and rollover error conditions do not stop the
timer. Illegal cases may cause unwanted behavior of the TMR pin.

8-8 ADSP-BF59x Blackfin Processor Hardware Reference



Table 8-1. Overview of Illegal States

General-Purpose Timers

(=}
o o
= =
[FN) — o
o = (= o<
| | > [
3 - o o 5 W
] 4 = = 2 3
E s3] — - ] —
PWM_OUT, Startup =0 Anything b#10 | Set
PERIOD_CNT = No b diti
X (No boundary condition 1 Anything b#10 Ser
1 tests performed on
TIMER_WIDTH) >, Anything No | No
change | change
Rollover =0 Anything b#10 | Set
==1 Anything b#11 Set
>0 == b#11 | Set
>, < TIMER_PERIOD |No | No
change | change
>2 > TIMER_PERIOD | b#11 | Set
Overflow, not possible | Anything | Anything b#01 | Set
unless there is also
another error, such as
TIMER_PERIOD ==
PWM_OUT, Startup Anything | == 0 b#01 | Set
PERIOD_CNT =
0 - This case is not detected at startup, but results in an
overflow error once the counter counts through its
entire range.
Anything | > 1 No No
change | change
Rollover Rollover is not possible in this mode.
Overflow, not possible | Anything | Anything b#01 | Set
unless there is also
another error, such as
TIMER_WIDTH ==

ADSP-BF59x Blackfin Processor Hardware Reference

8-9




Modes of Operation

Table 8-1. Overview of Illegal States (Continued)

(=]
o p
= =
[SN) — o
a = a o
| | > L
< = i i = N
E : = = = |3
E s3] — - ] —
WDTH_CAP Startup TIMER_PERIOD and TIMER_WIDTH are
read-only in this mode, no error possible.
Rollover TIMER_PERIOD and TIMER_WIDTH are
read-only in this mode, no error possible.
Overflow Anything | Anything b#01 | Set
EXT_CLK Startup == Anything b#10 | Set
>1 Anything No No
change | change
Rollover ==0 Anything b#10 | Set
>1 Anything No No
change | change
Overflow, not possible | Anything | Anything b#01 | Set
unless there is also
another error, such as
TIMER_PERIOD ==

Modes of Operation

The following sections provide a functional description of the gen-
eral-purpose timers in various operating modes.

Pulse Width Modulation (PWM_OUT) Mode

Use the PWM_0UT mode for PWM signal or single-pulse generation, for
interval timing or for periodic interrupt generation. Figure 8-3 illustrates
PWM_OUT mode.

8-10 ADSP-BF59x Blackfin Processor Hardware Reference



General-Purpose Timers

Setting the TMODE field to b#01 in the TIMER_CONFIG register enables
PWM_OUT mode. Here, the TMR pin is an output, but it can be disabled by
setting the OUT_DIS bit in the TIMER_CONFIG register.

In PWM_OUT mode, the bits PULSE_HI, PERIOD_CNT, IRQ_ENA, OUT_DIS,
CLK_SEL, EMU_RUN, and TOGGLE_HI enable orthogonal functionality. They
may be set individually or in any combination, although some combina-
tions are not useful (such as TOGGLE_HI = 1 with OUT_DIS = 1 or
PERIOD_CNT = 0).

< DATA BUS >
A [ [

\

TIMER_PERIOD TIMER_WIDTH
TMRCLK PWM_CLK
1 CLOCK RESET
TACLK >| TIMER_COUNTER |<—
SCLK—] 0
] I
%N y
TIN_SEL CLK_SEL
EQUAL? EQUAL?
YES TIMER_ENABLE D YES
ASSERT DEASSERT
b

PULSE_HI
TOGGLE_HI—»{ PWMOUT
OuT_DIS Loaic
INTERRUPT TMR
pin

PERIOD_CNT

Figure 8-3. Timer Flow Diagram, PWM_OUT Mode

ADSP-BF59x Blackfin Processor Hardware Reference 8-11



Modes of Operation

Once a timer has been enabled, the timer counter register is loaded with a
starting value. If CLK_SEL = 0, the timer counter starts at Ox1. If

CLK_SEL = 1, it is reset to 0x0 as in EXT_CLK mode. The timer counts
upward to the value of the timer period register. For either setting of
CLK_SEL, when the timer counter equals the timer period, the timer
counter is reset to 0x1 on the next clock.

In PWM_OUT mode, the PERIOD_CNT bit controls whether the timer generates
one pulse or many pulses. When PERIOD_CNT is cleared (PWM_OUT single
pulse mode), the timer uses the TIMER_WIDTH register, generates one assert-
ing and one deasserting edge, then generates an interrupt (if enabled) and
stops. When PERIOD_CNT is set (PWM_OUT continuous pulse mode), the
timer uses both the TIMER_PERIOD and TIMER_WIDTH registers and generates
a repeating (and possibly modulated) waveform. It generates an interrupt
(if enabled) at the end of each period and stops only after it is disabled. A
setting of PERIOD_CNT = O counts to the end of the width; a setting of
PERIOD_CNT = 1 counts to the end of the period.

The TIMER_PERIOD and TIMER_WIDTH registers are read-only in some
operation modes. Be sure to set the TMODE field in the TIMER_CONFIG
register to b#01 before writing to these registers.

Output Pad Disable

The output pin can be disabled in PWM_0UT mode by setting the OUT_DIS
bit in the TIMER_CONFIG register. The TMR pin is then three-stated regard-
less of the setting of PULSE_HI and TOGGLE_HI. This can reduce power
consumption when the output signal is not being used. The TMR pin can
also be disabled by the function enable and the multiplexer control
registers.

Single Pulse Generation

If the PERIOD_CNT bit is cleared, the PWM_0OUT mode generates a single pulse
on the TMR pin. This mode can also be used to implement a precise delay.

8-12 ADSP-BF59x Blackfin Processor Hardware Reference



General-Purpose Timers

The pulse width is defined by the TIMER_WIDTH register, and the
TIMER_PERIOD register is not used. See Figure 8-4.

At the end of the pulse, the timer interrupt latch bit TIMIL is set, and the
timer is stopped automatically. No writes to the TIMER_DISABLE register
are required in this mode. If the PULSE_HI bit is set, an active high pulse is
generated on the TMR pin. If PULSE_HI is not set, the pulse is active low.

EXAMPLE TIMER ENABLE AND AUTOMATIC DISABLE TIMING
(PWM_OUT MODE, PERIOD_CNT = 0)

SCLK | I l l I I l

TIMER_WIDTH 3
TIMER_COUNTER X X 1 X 5 X 3
TIMEN | |

TRUN , _

TMR, PULSE_HI=0 | |

TMR, PULSE_HI = 1 | |

f

WiS TO
TIMER_ENABLE

Figure 8-4. Timer Enable and Automatic Disable Timing

The pulse width may be programmed to any value from 1 to (2°-1),
inclusive.

Pulse Width Modulation Waveform Generation

If the PERIOD_CNT bit is set, the internally clocked timer generates rectan-
gular signals with well-defined period and duty cycle (PWM patterns).
This mode also generates periodic interrupts for real-time signal
processing.

ADSP-BF59x Blackfin Processor Hardware Reference 8-13



Modes of Operation

The 32-bit TIMER_PERIOD and TIMER_WIDTH registers are programmed with
the values required by the PWM signal.

When the timer is enabled in this mode, the TMR pin is pulled to a deas-
serted state each time the counter equals the value of the pulse width
register, and the pin is asserted again when the period expires (or when the
timer gets started).

To control the assertion sense of the TMR pin, the PULSE_HI bit in the cor-
responding TIMER_CONFIG register is used. For a low assertion level, clear
this bit. For a high assertion level, set this bit. When the timer is disabled
in PWM_0OUT mode, the TMR pin is driven to the deasserted level.

Figure 8-5 shows timing details.

EXAMPLE TIMER ENABLE TIMING (PWM_OUT MODE, PERIOD_CNT = 1)

e S A S A B

TIMER_PERIOD 4 X 4 X 4
TIMER_WIDTH 1 X 1 X 1
TIMER_COUNTER X X+ X2 Xa X a X1 X2 X 3 X
TIMEN |
TRUN |

I

TMR pin, PULSE_HI =0

TMR pin, PULSE_HI = 1

f

W1STO
TIMER_ENABLE

Figure 8-5. Timer Enable Timing

If enabled, a timer interrupt is generated at the end of each period. An
interrupt service routine must clear the interrupt latch bit (TIMIL) and
might alter period and/or width values. In PWM applications, the soft-
ware needs to update period and pulse width values while the timer is

8-14 ADSP-BF59x Blackfin Processor Hardware Reference



General-Purpose Timers

running. When software updates either the TIMER_PERIOD or TIMER_WIDTH
registers, the new values are held by special buffer registers until the period
expires. Then the new period and pulse width values become active simul-
taneously. Reads from TIMER_PERIOD and TIMER_WIDTH registers return the
old values until the period expires.

The TOVF_ERR status bit signifies an error condition in PWM_0UT mode. The
TOVF_ERR bit is set if TIMER_PERIOD = 0 or TIMER_PERIOD = 1 at startup, or
when the timer counter register rolls over. It is also set if the timer pulse
width register is greater than or equal to the timer period register by the
time the counter rolls over. The ERR_TYP bits are set when the TOVF_ERR bit
is set.

Although the hardware reports an error if the TIMER_WIDTH value equals
the TIMER_PERIOD value, this is still a valid operation to implement PWM
patterns with 100% duty cycle. If doing so, software must generally ignore
the TOVL_ERR flags. Pulse width values greater than the period value are
not recommended. Similarly, TIMER_WIDTH = 0 is not a valid operation.
Duty cycles of 0% are not supported.

To generate the maximum frequency on the TMR output pin, set the period
value to “2” and the pulse width to "1". This makes the pin toggle each
SCLK clock, producing a duty cycle of 50%. The period may be pro-
grammed to any value from 2 to (232 — 1), inclusive. The pulse width may
be programmed to any value from 1 to (period — 1), inclusive.

PULSE_HI Toggle Mode

The waveform produced in PWM_0UT mode with PERIOD_CNT = 1 normally
has a fixed assertion time and a programmable deassertion time (via the
TIMER_WIDTH register). When two or more timers are running synchro-

ADSP-BF59x Blackfin Processor Hardware Reference 8-15



Modes of Operation

nously by the same period settings, the pulses are aligned to the asserting
edge as shown in Figure 8-6.

| |
<—— PERIOD 1 —{

|
TOGGLE_HI=0
PULSE_HI=1 TMRO
ACTIVE
HIGH

TOGGLE_HI=0
PULSE_HI=1 TMR1
| ACTIVE
I HIGH

TOGGLE_HI = 0 '
PULSE_HI=1 TMR2 I

T ACTIVE

-

HIGH

TIMER
ENABLE

Figure 8-6. Example of Timers With Pulses Aligned to Asserting Edge

The TOGGLE_HI mode enables control of the timing of both the asserting
and deasserting edges of the output waveform produced. The phase
between the asserting edges of two timer outputs is programmable. The
effective state of the PULSE_HI bit alternates every period. The adjacent
active low and active high pulses, taken together, create two halves of a
symmetrical rectangular waveform. The effective waveform is active high
when PULSE_HI is set and active low when PULSE_HI is cleared. The value
of the TOGGLE_HI bit has no effect unless the mode is PWM_0UT and
PERIOD_CNT = 1.

In TOGGLE_HI mode, when PULSE_HI is set, an active low pulse is generated
in the first, third, and all odd-numbered periods, and an active high pulse
is generated in the second, fourth, and all even-numbered periods. When
PULSE_HI is cleared, an active high pulse is generated in the first, third,
and all odd-numbered periods, and an active low pulse is generated in the
second, fourth, and all even-numbered periods.

The deasserted state at the end of one period matches the asserted state at
the beginning of the next period, so the output waveform only transitions

8-16 ADSP-BF59x Blackfin Processor Hardware Reference



General-Purpose Timers

when Count = Pulse Width. The net result is an output waveform pulse
that repeats every two counter periods and is centered around the end of
the first period (or the start of the second period).

Figure 8-7 shows an example with three timers running with the same
period settings. When software does not alter the PWM settings at
run-time, the duty cycle is 50%. The values of the TIMER_WIDTH registers
control the phase between the signals.

WAVEFORM
PERIOD 1

WAVEFORM
PERIOD 2

TIMER TIMER TIMER TIMER

I I I
I I I
I I I
I I I
I I I
: PERIOD 1 : PERIOD 2 : PERIOD 3 : PERIOD 4 :
| | | | |
I I I
I I I
T T T
I I I
I I I
I I I
I I I
I I I

TOGGLE_HI = 1 I—I_I l—l‘|
PULSE HI=1 JTMRO : :
ACTIVE | ACTIVE | ACTIVE | ACTIVE
LOW | HIGH LOW | HIGH
I I
TOGGLE_Hi =1

PULSE_HI=1 TMR1 !
ACTIVE | ACTIVE

|
|
ACTIVE | ACTIVE
|
|

| | |
| Low HIGH | LOW | HIGH |
| | | |
TOGGLE_HI =1 | | |
PULSE HI=1  TMR2! I ! I !
| |
ACTIVE | ACTIVE | ACTIVE | ACTIVE |
LOW + HIGH 1 LOW 1 HIGH !
TIMER
ENABLE

Figure 8-7. Three Timers With Same Period Settings

ADSP-BF59x Blackfin Processor Hardware Reference 8-17



Modes of Operation

Similarly, two timers can generate non-overlapping clocks, by cen-
ter-aligning the pulses while inverting the signal polarity for one of the
timers (see Figure 8-8).

WAVEFORM | WAVEFORM |
PERIOD 1 | PERIOD 2 |

|

|

| > >
| | |
| TIMER TIMER | TIMER TIMER |
! PERIOD 1| PERIOD 2! PERIOD 3| PERIOD 4 |

| >| |

|

Ll 1

I I

TOGGLE_HI =1 I I
PULSE_HI=0 TMRO | | ! | !

T T

I I

I I

|
| ACTIVE ACTIVE ACTIVE ACTIVE
| HIGH Low HIGH LOW

|

|

|

TOGGLE_HI =1 | |
PULSE HI=1 TMR1 ! I ! I !

- T | T |

| ACTIVE | ACTIVE | ACTIVE | ACTIVE |
T LOW + HIGH | LOW | HIGH |

TIMER
ENABLE

Figure 8-8. Two Timers With Non-overlapping Clocks

When TOGGLE_HI = 0, software updates the TIMER_PERIOD and
TIMER_WIDTH registers once per waveform period. When TOGGLE_HI = 1,
software updates the TIMER_PERIOD and TIMER_WIDTH registers twice per
waveform. Period values are half as large. In odd-numbered periods, write
(Period — Width) instead of Width to the TIMER_WIDTH register in order to
obtain center-aligned pulses.

For example, if the pseudo-code when TOGGLE_HI = 0 is:

int period, width;

for (;3) |
period = generate_period(...)
width = generate_width(...)

waitfor (interrupt)

write (TIMER_PERIOD, period) ;

8-18 ADSP-BF59x Blackfin Processor Hardware Reference



General-Purpose Timers

write (TIMER_WIDTH, width)
}

Then when TOGGLE_HI = 1, the pseudo-code would be:

int period, width
int perl, per2, widl, wid2 ;

for (53)
period = generate_period(...)
width = generate_width(...)

perl = period/2 ;
widl width/2

per?2 = period/2 ;
wid2 width/2

waitfor (interrupt) ;

write (TIMER_PERIOD, perl)
write (TIMER_WIDTH, perl - widl) ;

waitfor (interrupt)

write (TIMER_PERIOD, per?2)
write (TIMER_WIDTH, wid2)

}

As shown in this example, the pulses produced do not need to be symmet-
ric (widl does not need to equal wid2). The period can be offset to adjust
the phase of the pulses produced (perl does not need to equal per2).

The TRUN bit in the TIMER_STATUS register is updated only at the end of
even-numbered periods in TOGGLE_HI mode. When TIMER_DISABLE is writ-

ADSP-BF59x Blackfin Processor Hardware Reference 8-19



Modes of Operation

ten to "1", the current pair of counter periods (one waveform period)
completes before the timer is disabled.

As when TOGGLE_HI = 0, errors are reported if the TIMER_PERIOD register is
either set to “0” or "1", or when the width value is greater than or equal to
the period value.

Externally Clocked PWM_OUT

By default, the timer is clocked internally by ScLK. Alternatively, if the
CLK_SEL bit in the TIMER_CONFIG register is set, the timer is clocked by
PWM_CLK. The PWM_CLK is normally input from the TACLK pin, but may be
taken from the common TMRCLK pin regardless of whether the timers are
configured to work with the PPI. Different timers may receive different
signals on their PWM_CLK inputs, depending on configuration. As selected
by the PERIOD_CNT bit, the PWM_OUT mode either generates pulse width
modulation waveforms or generates a single pulse with pulse width
defined by the TIMER_WIDTH register.

When CLK_SEL is set, the counter resets to 0x0 at startup and increments
on each rising edge of PUM_CLK. The TMR pin transitions on rising edges of
PWM_CLK. There is no way to select the falling edges of PWUM_CLK. In this
mode, the PULSE_HI bit controls only the polarity of the pulses produced.
The timer interrupt may occur slightly before the corresponding edge on
the TMR pin (the interrupt occurs on an SCLK edge, the pin transitions on a
later PUM_CLK edge). It is still safe to program new period and pulse width
values as soon as the interrupt occurs. After a period expires, the counter
rolls over to a value of 0x1.

The PWM_CLK clock waveform is not required to have a 50% duty cycle, but
the minimum PWM_CLK clock low time is one SCLK period, and the mini-
mum PWM_CLK clock high time is one SCLK period. This implies the
maximum PWM_CLK clock frequency is SCLK/2.

8-20 ADSP-BF59x Blackfin Processor Hardware Reference



General-Purpose Timers

The alternate timer clock inputs (TACLK) are enabled when a timer is in
PWM_OUT mode with CLK_SEL = 1 and TIN_SEL = 0, without regard to the
content of the multiplexer control and function enable registers.

Using PWM_OUT Mode With the PPI

Some timers may be used to generate frame sync signals for certain PPI
modes. For detailed instructions on how to configure the timers for use
with the PPI, refer to “Frame Synchronization in GP Modes” on

page 15-20.

Stopping the Timer in PWM_OUT Mode

In all PUM_OUT mode variants, the timer treats a disable operation (W1C to
TIMER_DISABLE) as a “stop is pending” condition. When disabled, it auto-
matically completes the current waveform and then stops cleanly. This
prevents truncation of the current pulse and unwanted PWM patterns at
the TMR pin. The processor can determine when the timer stops running by
polling for the corresponding TRUN bit in the TIMER_STATUS register to read
"0" or by waiting for the last interrupt (if enabled). Note the timer cannot
be reconfigured (TIMER_CONFIG cannot be written to a new value) until
after the timer stops and TRUN reads "0".

In PWM_OUT single pulse mode (PERIOD_CNT = 0), it is not necessary to write
TIMER_DISABLE to stop the timer. At the end of the pulse, the timer stops
automatically, the corresponding bit in TIMER_ENABLE (and
TIMER_DISABLE) is cleared, and the corresponding TRUN bit is cleared. See
Figure 8-4 on page 8-13. To generate multiple pulses, write a "1" to
TIMER_ENABLE, wait for the timer to stop, then write another "1" to
TIMER_ENABLE.

In continuous PWM generation mode (PWM_OUT, PERIOD_CNT = 1) software
can stop the timer by writing to the TIMER_DISABLE register. To prevent
the ongoing PWM pattern from being stopped in an unpredictable way,
the timer does not stop immediately when the corresponding "1" has been
written to the TIMER_DISABLE register. Rather, the write simply clears the

ADSP-BF59x Blackfin Processor Hardware Reference 8-21



Modes of Operation

enable latch and the timer still completes the ongoing PWM patterns
gracefully. It stops cleanly at the end of the first period when the enable
latch is cleared. During this final period the TIMEN bit returns "0", but the
TRUN bit still reads asa "1".

If the TRUN bit is not cleared explicitly, and the enable latch can be cleared
and re-enabled all before the end of the current period will continue to
run as if nothing happened. Typically, software should disable a PWM_0UT
timer and then wait for it to stop itself.

Figure 8-9 shows detailed timing.

EXAMPLE TIMER DISABLE TIMING (PWM_OUT MODE, PERIOD_CNT = 1)

o [ s

TIMER_PERIOD 7 X 7 X 7

TIMER_WIDTH 5 X 5 X 5

TMERCOUNTER 7 X 1 X 2 X 3 X 4 X 5 X 6 X 7

TIMEN |

TRUN |
TMR PIN, PULSE_HI =0 |
TMR PIN, PULSE_HI = 1 | |
1k
w1iCTO
TIMER_DISABLE

Figure 8-9. Timer Disable Timing

If necessary, the processor can force a timer in PUM_0UT mode to abort
immediately. Do this by first writing a "1" to the corresponding bit in
TIMER_DISABLE, and then writing a "1" to the corresponding TRUN bit in
TIMER_STATUS. This stops the timer whether the pending stop was waiting
for the end of the current period (PERIOD_CNT = 1) or the end of the cur-

8-22 ADSP-BF59x Blackfin Processor Hardware Reference



General-Purpose Timers

rent pulse width (PERIOD_CNT = 0). This feature may be used to regain
immediate control of a timer during an error recovery sequence.

Use this feature carefully, because it may corrupt the PWM pattern
generated at the TMR pin.

When a timer is disabled, the TIMER_COUNTER register retains its state;
when a timer is re-enabled, the timer counter is reinitialized based on the
operating mode. The TIMER_COUNTER register is read-only. Software cannot
overwrite or preset the timer counter value directly.

Pulse Width Count and Capture (WDTH_CAP) Mode

Use the WDTH_CAP mode, often simply called “capture mode,” to measure
pulse widths on the TMR or TACI input pins, or to “receive” PWM signals.
Figure 8-10 shows a flow diagram for WDTH_CAP mode.

In WDTH_CAP mode, the TMR pin is an input pin. The internally clocked
timer is used to determine the period and pulse width of externally applied
rectangular waveforms. Setting the TMODE field to b#10 in the
TIMER_CONFIG register enables this mode.

When enabled in this mode, the timer resets the count in the
TIMER_COUNTER register to 0x0000 0001 and does not start counting until
it detects a leading edge on the TMR pin.

When the timer detects the first leading edge, it starts incrementing.
When it detects a trailing edge of a waveform, the timer captures the cur-
rent 32-bit value of the TIMER_COUNTER register into the width buffer. At
the next leading edge, the timer transfers the current 32-bit value of the
TIMER_COUNTER register into the period buffer. The count register is reset
to 0x0000 0001 again, and the timer continues counting and capturing
until it is disabled.

In this mode, software can measure both the pulse width and the pulse
period of a waveform. To control the definition of leading edge and trail-

ADSP-BF59x Blackfin Processor Hardware Reference 8-23



Modes of Operation

<:: DATA BUS E:>
A A A

| TIMER_PERIOD TIMER_WIDTH [

A
SCLK RESET
—>| TIMER_COUNTER [<

PULSE_HI PULSE_HI
TMR TMR
PIN jV | PIN

LEADING TRAILING
EDGE EDGE
DETECT TIMER_ENABLE DETECT

L L JL

TOVF_ERR

PERIOD_CNT
E1RR

INTERRUPT
LOGIC

v

INTERRUPT

Figure 8-10. Timer Flow Diagram, WDTH_CAP Mode

ing edge of the TMR pin, the PULSE_HT bit in the TIMER_CONFIG register is
set or cleared. If the PULSE_HI bit is cleared, the measurement is initiated
by a falling edge, the content of the counter register is captured to the
pulse width buffer on the rising edge, and to the period buffer on the next
falling edge. When the PULSE_HT bit is set, the measurement is initiated by
a rising edge, the counter value is captured to the pulse width buffer on

the falling edge, and to the period buffer on the next rising edge.

8-24 ADSP-BF59x Blackfin Processor Hardware Reference



General-Purpose Timers

In WDTH_CAP mode, these three events always occur at the same time:
1. The TIMER_PERIOD register is updated from the period buffer.
2. The TIMER_WIDTH register is updated from the width buffer.
3. The TIMIL bit gets set (if enabled) but does not generate an error.

The PERIOD_CNT bit in the TIMER_CONFIG register controls the point in
time at which this set of transactions is executed. Taken together, these
three events are called a measurement report. The TOVF_ERR bit does not
get set at a measurement report. A measurement report occurs, at most,
once per input signal period.

The current timer counter value is always copied to the width buffer and
period buffer registers at the trailing and leading edges of the input signal,
respectively, but these values are not visible to software. A measurement
report event samples the captured values into visible registers and sets the
timer interrupt to signal that TIMER_PERIOD and TIMER_WIDTH are ready to
be read. When the PERIOD_CNT bit is set, the measurement report occurs
just after the period buffer captures its value (at a leading edge). When the
PERIOD_CNT bit is cleared, the measurement report occurs just after the
width buffer captures its value (at a trailing edge).

If the PERTOD_CNT bit is set and a leading edge occurred (see Figure 8-11),
then the TIMER_PERIOD and TIMER_WIDTH registers report the pulse period
and pulse width measured in the period that just ended. If the PERIOD_CNT
bit is cleared and a trailing edge occurred (see Figure 8-12), then the
TIMER_WIDTH register reports the pulse width measured in the pulse that
just ended, but the TIMER_PERIOD register reports the pulse period mea-
sured at the end of the previous period.

If the PERTOD_CNT bit is cleared and the first trailing edge occurred, then
the first period value has not yet been measured at the first measurement
report, so the period value is not valid. Reading the TIMER_PERIOD value in
this case returns "0", as shown in Figure 8-12. To measure the pulse width
of a waveform that has only one leading edge and one trailing edge, set

ADSP-BF59x Blackfin Processor Hardware Reference 8-25



Modes of Operation

SCLK

TMR PIN, PULSE_HI =0 I_
TMR PIN, PULSE_HI =1 l_
LD SR O 8 0 00 800000

TIMER_PERIOD BUFFER X X 0 X 4 x 8

TIMER_WIDTH BUFFER X

TIMER_WIDTH X

A
TIMER_PERIOD X X 0 X 4 XE
A

TIMIL |_ |_

TOVF_ERR

TIMEN

} }

STARTS J‘ MEASUREMENT MEASUREMENT
COUNTING REPORT REPORT

NOTE: FOR SIMPLICITY, THE SYNCHRONIZATION DELAY BETWEEN TMR PIN EDGES
AND BUFFER REGISTER UPDATES IS NOT SHOWN.

Figure 8-11. Example of Period Capture Measurement Report Timing
(WDTH_CAP mode, PERIOD_CNT = 1)

8-26 ADSP-BF59x Blackfin Processor Hardware Reference



General-Purpose Timers

SCLK | | | | |

TMR PIN, PULSE_HI = 0

TMR PIN, PULSE7r|—|—| I—I_
LCEUED SR 6 80 00000000800

X 'C 'C

TIMER_PERIOD BUFFER

X o € A X

TIMER_WIDTH BUFFER

TIMER_PERIOD X x 0 X 0 X 8 x 4

TIMER_WIDTH ZX 0 X3 X1 XZ
TIMIL [ [ [

TOVF_ERR

TIMEN

STARTS MEASUREMEN1f MEASUREMENH‘ MEASUREMEN‘Ij
COUNTING REPORT REPORT REPORT

NOTE: FOR SIMPLICITY, THE SYNCHRONIZATION DELAY BETWEEN TMR PIN EDGES AND BUFFER
REGISTER UPDATES IS NOT SHOWN.
Figure 8-12. Example of Width Capture Measurement Report Timing
(WDTH_CAP mode, PERIOD_CNT = 0)

PERIOD_CNT = 0. If PERIOD_CNT = 1 for this case, no period value is cap-
tured in the period buffer. Instead, an error report interrupt is generated
(if enabled) when the counter range is exceeded and the counter wraps

ADSP-BF59x Blackfin Processor Hardware Reference 8-27



Modes of Operation

around. In this case, both TIMER_WIDTH and TIMER_PERIOD read "0"
(because no measurement report occurred to copy the value captured in
the width buffer to TIMER_WIDTH). See the first interrupt in Figure 8-13.

@ When using the PERIOD_CNT = 0 mode described above to measure
the width of a single pulse, it is reccommended to disable the timer
after taking the interrupt that ends the measurement interval. If
desired, the timer can then be reenabled as appropriate in prepara-
tion for another measurement. This procedure prevents the timer
from free-running after the width measurement, and from logging
errors generated by the timer count overflowing.

A timer interrupt (if enabled) is generated if the TIMER_COUNTER register
wraps around from OxFFFF FFFF to "0" in the absence of a leading edge.
At that point, the TOVF_ERR bit in the TIMER_STATUS register and the
ERR_TYP bits in the TIMER_CONFIG register are set, indicating a count over-
flow due to a period greater than the counter’s range. This is called an
error report. When a timer generates an interrupt in WDTH_CAP mode,
either an error has occurred (an error report) or a new measurement is
ready to be read (a measurement report), but never both at the same time.
The TIMER_PERIOD and TIMER_WIDTH registers are never updated at the
time an error is signaled.

Refer to Figure 8-13 and Figure 8-14 for more information.

8-28 ADSP-BF59x Blackfin Processor Hardware Reference



General-Purpose Timers

SCLK | | |
14
14

TMR PIN, PULSE_HI = 0

TMR PIN, PULSE_HI = 1
14

0 2 0 Xz

TIMER_PERIOD BUFFER X

TIMER_WIDTH BUFFER X

R

TIMER_WIDTH X

X
X

TIMER_PERIOD X X 0 2 o
X

TIMIL |_ |_

14

TOVF_ERR @ |_

14
TIMEN
STARTS j ERROR j j

MEASUREMENT
COUNTING REPORT REPORT

NOTE: FOR SIMPLICITY, THE SYNCHRONIZATION DELAY BETWEEN TMR PIN EDGES AND BUFFER
REGISTER UPDATES IS NOT SHOWN.

Figure 8-13. Example Timing for Period Overflow Followed by Period
Capture (WDTH_CAP mode, PERIOD_CNT = 1)

ADSP-BF59x Blackfin Processor Hardware Reference 8-29



Modes of Operation

SCLK
14
14
TMR pin, PULSE_HI = 0

TMR pin, PULSE_| HI _ 1

TIMER_PERIOD BUFFER
X X 0 2 0 X4

TIMER_WIDTH BUFFER

xX 0 32 3

TIMER_PERIOD X X 0 o0& o

TIMER_WIDTH X X 0 32 3

TIMIL [ 2 [

TOVF_ERR p [

TIMEN ¢

STARTS j t MEASUREMENT t ERROR
COUNTING REPORT REPORT

NOTE: FOR SIMPLICITY, THE SYNCHRONIZATION DELAY BETWEEN TMR PIN EDGES AND BUFFER
REGISTER UPDATES IS NOT SHOWN.

Figure 8-14. Example Timing for Width Capture Followed by Period
Overflow (WDTH_CAP mode, PERIOD_CNT = 0)

8-30 ADSP-BF59x Blackfin Processor Hardware Reference



General-Purpose Timers

Both TIMIL and TOVF_ERR are sticky bits, and software must explicitly clear
them. If the timer overflowed and PERIOD_CNT = 1, neither the
TIMER_PERIOD nor the TIMER_WIDTH register were updated. If the timer
overflowed and PERIOD_CNT = 0, the TIMER_PERIOD and TIMER_WIDTH regis-
ters were updated only if a trailing edge was detected at a previous
measurement report.

Software can count the number of error report interrupts between mea-
surement report interrupts to measure input signal periods longer than

O0xFFFF FFFF. Each error report interrupt adds a full 232 51K counts to
the total for the period, but the width is ambiguous. For example, in
Figure 8-13 the period is 0x1 0000 0004 but the pulse width could be
either 0x0 0000 0002 or 0x1 0000 0002.

The waveform applied to the TMR pin is not required to have a 50% duty
cycle, but the minimum TMR pin low time is one SCLK period and the min-
imum TMR pin high time is one SCLK period. This implies the maximum
TMR pin input frequency is SCLK/2 with a 50% duty cycle. Under these
conditions, the WDTH_CAP mode timer would measure Period = 2 and

Pulse Width = 1.

Autobaud Mode

On some devices, in WDTH_CAP mode, some of the timers can provide auto-
baud detection for the Universal Asynchronous Receiver/Transmitter
(UART) interface(s). The TIN_SEL bit in the TIMER_CONFIG register causes
the timer to sample the TACI pin instead of the TMR pin when enabled for
WDTH_CAP mode. Autobaud detection can be used for initial bit rate negoti-
ations as well as for detection of bit rate drifts while the interface is in
operation.

ADSP-BF59x Blackfin Processor Hardware Reference 8-31



Modes of Operation

External Event (EXT_CLK) Mode

Use the EXT_CLK mode (sometimes referred to as the counter mode) to
count external events—that is, signal edges on the TMR pin (which is an
input in this mode). Figure 8-15 shows a flow diagram for EXT_CLK mode.

The timer works as a counter clocked by an external source, which can
also be asynchronous to the system clock. The current count in
TIMER_COUNTER represents the number of leading edge events detected.
Setting the TMODE field to b#11 in the TIMER_CONFIG register enables this
mode. The TIMER_PERIOD register is programmed with the value of the
maximum timer external count.

The waveform applied to the TMR pin is not required to have a 50% duty
cycle, but the minimum TMR low time is one SCLK period, and the mini-
mum TMR high time is one SCLK period. This implies the maximum TMR
pin input frequency is SCLK/2.

Period may be programmed to any value from 1 to (232 — 1), inclusive.

After the timer has been enabled, it resets the TIMER_COUNTER register to
0x0 and then waits for the first leading edge on the TMR pin. This edge
causes the TIMER_COUNTER register to be incremented to the value 0x1.
Every subsequent leading edge increments the count register. After reach-
ing the period value, the TIMIL bit is set, and an interrupt is generated.
The next leading edge reloads the TIMER_COUNTER register again with 0x1.
The timer continues counting until it is disabled. The PULSE_HT bit deter-
mines whether the leading edge is rising (PULSE_HI set) or falling
(PULSE_HI cleared).

The configuration bits TIN_SEL and PERIOD_CNT have no effect in this
mode. The TOVF_ERR and ERR_TYP bits are set if the TIMER_COUNTER register
wraps around from OxFFFF FFFF to "0" or if Period = "0" at startup or
when the TIMER_COUNTER register rolls over (from Count = Period to
Count = 0x1). The TIMER_WIDTH register is unused.

8-32 ADSP-BF59x Blackfin Processor Hardware Reference



General-Purpose Timers

< DATA BUS >
\ [

\

TIMER_PERIOD

RESET CLOCK
TIMER_COUNTER [*

] JL

I LEADING
PULSE_HI—| EDGE <— TMR pin
DETECT
Y
INTERRUPT
TIMER_ENABLE

Figure 8-15. Timer Flow Diagram, EXT_CLK Mode

'

Programming Model

The architecture of the timer block enables any of the timers within this
block to work individually or synchronously along with others as a group
of timers. Regardless of the operating mode, the programming model is
always straightforward. Because of the error checking mechanism, always
follow this order when enabling timers:

1. Set timer mode.
2. Write TIMER_WIDTH and TIMER_PERIOD registers as applicable.
3. Enable timer.

If this order is not followed, the plausibility check may fail because of
undefined width and period values, or writes to TIMER_WIDTH and
TIMER_PERIOD may result in an error condition, because the registers are
read-only in some modes. The timer may not start as expected.

ADSP-BF59x Blackfin Processor Hardware Reference 8-33



Timer Registers

If in PWM_OUT mode the PWM patterns of the second period differ from
the patterns of the first one, the initialization sequence above might
become:

1. Set timer mode to PWM_OUT.
Write first TIMER_WIDTH and TIMER_PERIOD value pair.

Enable timer.

D

Immediately write second TIMER_WIDTH and TIMER_PERIOD value
pair.

Hardware ensures that the buffered width and period values become active
when the first period expires.

Once started, timers require minimal interaction with software, which is

usually performed by an interrupt service routine. In PWM_0UT mode soft-
ware must update the pulse width and/or settings as required. In WDTH_CAP
mode it must store captured values for further processing. In any case, the
service routine should clear the TIMIL bits of the timers it controls.

Timer Registers

The timer peripheral module provides general-purpose timer functional-
ity. It consists of multiple identical timer units.

Each timer provides four registers:
e TIMER_CONFIG[15:0] — timer configuration register
e TIMER_WIDTHL31:0] — timer pulse width register
e TIMER_PERIOD[31:0] — timer period register

® TIMER_COUNTER[31:0] — timer counter register

8-34 ADSP-BF59x Blackfin Processor Hardware Reference



General-Purpose Timers

Additionally, three registers are shared between the timers within a block:
* TIMER_ENABLE[15:0] — timer enable register
* TIMER_DISABLE[15:0] — timer disable register
® TIMER_STATUS[31:0] — timer status register

The size of accesses is enforced. A 32-bit access to a TIMER_CONFIG register
or a 16-bit access to a TIMER_WIDTH, TIMER_PERIOD, or TIMER_COUNTER reg-
ister results in a memory-mapped register (MMR) error. Both 16- and
32-bit accesses are allowed for the TIMER_ENABLE, TIMER_DISABLE, and
TIMER_STATUS registers. On a 32-bit read of one of the 16-bit registers, the
upper word returns all Os.

Timer Enable Register (TIMER_ENABLE)

Figure 8-16 shows an example of the TIMER_ENABLE register for a product
with eight timers. The register allows simultaneous enabling of multiple
timers so that they can run synchronously. For each timer there is a single
W18 control bit. Writing a "1" enables the corresponding timer; writing a
"0" has no effect. The bits can be set individually or in any combination.
A read of the TIMER_ENABLE register shows the status of the enable for the
corresponding timer. A "1" indicates that the timer is enabled. All unused
bits return "0" when read.

ADSP-BF59x Blackfin Processor Hardware Reference 8-35



Timer Registers

Timer Enable Register (TIMER_ENABLE)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
|o |o |o |o |o |o |o |o Io |o |o |o |o |0 |o |0 |Reset=0x0000

TIMEN7? (Timer7 Enable) ‘
1 - Enable timer
Read as 1 when enabled

TIMENO (Timer0 Enable)
1 - Enable timer

Read as 1 when enabled

TIMENSG (Timer6 Enable) TIMEN1 (Timer1 Enable)
1 - Enable timer 1 - Enable timer

Read as 1 when enabled Read as 1 when enabled

TIMENS (Timer5 Enable) L———— TIMEN2 (Timer2 Enable)
1 - Enable timer 1 - Enable timer

Read as 1 when enabled Read as 1 when enabled

TIMEN4 (Timer4 Enable) TIMENS3 (Timer3 Enable)
1 - Enable timer 1 - Enable timer

Read as 1 when enabled Read as 1 when enabled

This diagram shows an example configuration for eight timers. Different products
have different numbers of timers.

Figure 8-16. Timer Enable Register

Timer Disable Register (TIMER_DISABLE)

Figure 8-17 shows an example of the TIMER_DISABLE register for a product
with eight timers. The register allows simultaneous disabling of multiple
timers. For each timer there is a single W1C control bit. Writing a "1"
disables the corresponding timer; writing a "0" has no effect. The bits can
be cleared individually or in any combination. A read of the
TIMER_DISABLE register returns a value identical to a read of the
TIMER_ENABLE register. A "1" indicates that the timer is enabled. All
unused bits return "0" when read.

8-36 ADSP-BF59x Blackfin Processor Hardware Reference



General-Purpose Timers

Timer Disable Register (TIMER_DISABLE)

15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0
|o|o|o|o|o|o|o|o|o|o|o|o|o|0|0|o|Reset=0x0000

TIMDIS7 (Timer7 Disable) —} L TIMDISO (Timer0 Disable)

1 - Disable timer 1 - Disable timer

Read as 1 if this timer is enabled Read as 1 if this timer is enabled
TIMDIS6 (Timer6 Disable) TIMDIS1 (Timer1 Disable)

1 - Disable timer 1 - Disable timer

Read as 1 if this timer is enabled Read as 1 if this timer is enabled
TIMDIS5 (Timer5 Disable) L TIMDIS2 (Timer2 Disable)

1 - Disable timer 1 - Disable timer

Read as 1 if this timer is enabled Read as 1 if this timer is enabled
TIMDIS4 (Timer4 Disable) TIMDIS3 (Timer3 Disable)

1 - Disable timer 1 - Disable timer

Read as 1 if this timer is enabled Read as 1 if this timer is enabled

This diagram shows an example configuration for eight timers. Differ-
ent products have different numbers of timers.

Figure 8-17. Timer Disable Register

In PWM_OUT mode, a write of a "1" to TIMER_DISABLE does not stop the cor-
responding timer immediately. Rather, the timer continues running and
stops cleanly at the end of the current period (if PERIOD_CNT = 1) or pulse
(if PERIOD_CNT = 0). If necessary, the processor can force a timer in
PWM_OUT mode to stop immediately by first writing a "1" to the corre-
sponding bit in TIMER_DISABLE, and then writing a "1" to the
corresponding TRUN bit in TIMER_STATUS. See “Stopping the Timer in
PWM_OUT Mode” on page 8-21.

In WDTH_CAP and EXT_CLK modes, a write of a "1" to TIMER_DISABLE stops
the corresponding timer immediately.

Timer Status Register (TIMER_STATUS)

The TIMER_STATUS register indicates the status of the timers and is used to
check the status of multiple timers with a single read. Status bits are sticky
and W1C. The TRUN bits can clear themselves, which they do when a

PWM_OUT mode timer stops at the end of a period. During a TIMER_STATUS

ADSP-BF59x Blackfin Processor Hardware Reference 8-37



Timer Registers

register read access, all reserved or unused bits return a "0". Figure 8-18
on page 8-39 shows an example of the TIMER_STATUS register for a product
with eight timers.

For detailed behavior and usage of the TRUN bit see “Stopping the Timer in
PWM_OUT Mode” on page 8-21. Writing the TRUN bits has no effect in
other modes or when a timer has not been enabled. Writing the TRUN bits
to "1" in PWM_OUT mode has no effect on a timer that has not first been

disabled.

Error conditions are explained in “Illegal States” on page 8-7.

8-38 ADSP-BF59x Blackfin Processor Hardware Reference



General-Purpose Timers

Timer Status Register (TIMER_STATUS)
All bits are W1C
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Io |0 |o |o Io |o |0 |o |o |o |o |0 Io |o |0 |0 | Reset = 0x0000 0000

TRUN?7 (Timer7

Slave Enable Status) TIMIL4 (Timer4 Interrupt)
Read as 1 if timer Indicates an interrupt request
running, W1C to abort in when IRQ_ENA is set
PWM_OUT mode TIMIL5 (Timer5 Interrupt)
TRUNG (Timer6 Slave Indicates an interrupt request
Enable Status) when IRQ_ENA is set

Read as 1 if timer running, W1C to TIMIL6 (Timer6 Interrupt)
abort in PWM_OUT mode Indicates an interrupt request
TRUNS (Timer5 Slave when IRQ_ENA is set
Enable Status) L TIMIL7 (Timer7 Interrupt)
Read as 1 if timer running, W1C Indicates an interrupt request
to abort in PWM_OUT mode when IRQ_ENA is set
TRUN4 (Timer4 Slave Enable - TOVF_ERR4 (Timer4
Status) Counter Overflow)

Read as 1 if timer running, W1C to abort Indicates that an error or an
in PWM_OUT mode overflow occurred
TOVF_ERR7 (Timer7 Counter Overflow) ———— | TOVF_ERRS5 (Timer5
Indicates that an error or an overflow occurred Counter Overflow)
TOVF_ERRS6 (Timer6é Counter Overflow) Indicates that an error or an
Indicates that an error or an overflow occurred overflow occurred

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
fofofolofofofofofofoofofofo]olo]

TRUNS (Timer3 -

Slave Enable Status) TIMILO (Tlmgro Interrupt)

Read as 1 if timer running, W1C Indicates an interrupt request

to abort in PWM_OUT mode when IRQ_ENA is set

TRUN2 (Timer2 Slave Enable TIMIL1 (Timer1 Interrupt)

Status) Indicates an interrupt request

Read as 1 if timer running, W1C to when IRQ_ENA is set

abort in PWM_OUT mode TIMIL2 (Timer2 Interrupt)

TRUN1 (Timer1 Slave Enable Status) | Indicates an interrupt request when

Read as 1 if timer running, W1C to abort IRQ_ENA is set

in PWM_OUT mode TIMIL3 (Timer3 Interrupt)

TRUNO (Timer0 Slave Enable Status) | Indicates an interrupt request when

Read as 1 if timer running, W1C to abort in IRQ_ENA is set

PWM_OUT mode '—TOVF_ERRO (Timer0 Counter Overflow)

TOVF_ERRS3 (Timer3 Counter Overflow) Indicates that an error or an overflow occurred
) L TOVF_ERR1 (Timer1 Counter Overflow)

Indicates that an error or an overflow occurred Indicates that an error or an overflow occurred

TOVF_ERR2 (Timer2 Counter Overflow)
Indicates that an error or an overflow occurred

This diagram shows an example configuration for eight timers. Different products have differ-
ent numbers of timers, therefore some of the bits may not be applicable to your device.

Figure 8-18. Timer Status Register

ADSP-BF59x Blackfin Processor Hardware Reference 8-39



Timer Registers

Timer Configuration Register (TIMER_CONFIG)

The operating mode for each timer is specified by its TIMER_CONFIG regis-
ter. The TIMER_CONFIG register, shown in Figure 8-19, may be written
only when the timer is not running. After disabling the timer in PWM_0UT
mode, make sure the timer has stopped running by checking its TRUN bit in
TIMER_STATUS before attempting to reprogram TIMER_CONFIG. The
TIMER_CONFIG registers may be read at any time. The ERR_TYP field is
read-only. It is cleared at reset and when the timer is enabled.

Each time TOVF_ERR is set, ERR_TYP[1:07 is loaded with a code that identi-
fies the type of error that was detected. This value is held until the next
error or timer enable occurs. For an overview of error conditions, see
Table 8-1 on page 8-9. The TIMER_CONFIG register also controls the behav-
ior of the TMR pin, which becomes an output in PWM_0UT mode

(TMODE = 01) when the 0UT_DIS bit is cleared.

When operating the PPI in GP output modes with internal frame
syncs, the CLK_SEL and the TIN_SEL bits for the timers involved
must be set to "1".

8-40 ADSP-BF59x Blackfin Processor Hardware Reference



General-Purpose Timers

Timer Configuration Register (TIMER_CONFIG)

1514 1312 11 10 9 8 7 6 5 4 3 2 1 0
|o|0|o|o|o|o|o|o|o|o|o|o|0|o|0|0|Reset=0x0000

ERR_TYP[1:0] (Error
Type) - RO

00 - No error

01 - Counter overflow error
10 - Period register programming error

11 - Pulse width register programming error
EMU_RUN (Emulation Behavior Select)

0 - Timer counter stops during emulation

1 - Timer counter runs during emulation
TOGGLE_HI (PWM_OUT PULSE_HI
Toggle Mode)

0 - The effective state of PULSE_HI
is the programmed state
1 - The effective state of PULSE_HI
alternates each period
CLK_SEL (Timer Clock Select)
0 - Use system clock SCLK for counter
1 - Use PWM_CLK to clock counter

OUT_DIS (Output Pad Disable)
0 - Enable TMR pad in PWM_OUT mode
1 - Disable pad in PWM_OUT mode

Figure 8-19. Timer Configuration Register

TMODE[1:0] (Timer Mode)
00 - Reset state - unused
01 - PWM_OUT mode

10 - WDTH_CAP mode

11 - EXT_CLK mode

PULSE_HI

0 - Negative action pulse

1 - Positive action pulse
PERIOD_CNT (Period
Count)

0 - Count to end of width

1 - Count to end of period
IRQ_ENA (Interrupt
Request Enable)

0 - Interrupt request disable
1 - Interrupt request enable

TIN_SEL (Timer Input

Select)

PWM_OUT Mode

0 - Clock from TACLK
input if CLK_SEL = 1

1 - Clock from TMRCLK
input if CLK_SEL = 1

WDTH_CAP Mode

0 - Sample TMR pin input

1 - Sample TACI input

Timer Counter Register (TIMER_COUNTER)

This read-only register retains its state when disabled. When enabled, the
TIMER_COUNTER register is reinitialized by hardware based on configuration
and mode. The TIMER_COUNTER register, shown in Figure 8-20, may
be read at any time (whether the timer is running or stopped), and it
returns an atomic 32-bit value. Depending on the operating mode, the
incrementing counter can be clocked by four different sources: SCLK, the
TMR pin, the alternative timer clock pin TACLK, or the common TMRCLK pin,
which is most likely used as the PPI clock (PPI_CLK).

ADSP-BF59x Blackfin Processor Hardware Reference 8-41



Timer Registers

While the processor core is being accessed by an external emulator debug-
ger, all code execution stops. By default, the TIMER_COUNTER register also
halts its counting during an emulation access in order to remain synchro-
nized with the software. While stopped, the count does not advance—in
PWM_OUT mode, the TMR pin waveform is “stretched”; in WDTH_CAP mode,
measured values are incorrect; in EXT_CLK mode, input events on the TMR
pin may be missed. All other timer functions such as register reads and
writes, interrupts previously asserted (unless cleared), and the loading of
TIMER_PERIOD and TIMER_WIDTH in WDTH_CAP mode remain active during an
emulation stop.

Some applications may require the timer to continue counting asynchro-
nously to the emulation-halted processor core. Set the EMU_RUN bit in
TIMER_CONFIG to enable this behavior.

8-42 ADSP-BF59x Blackfin Processor Hardware Reference



General-Purpose Timers

Timer Counter Register (TIMER_COUNTER)

31 30 20 28 27 26 25 24 23 22 21 20 19 18 17 16
Io |o |o |o Io |o |o |o Io |0 |0 |o Io |0 |0 |o I Reset = 0x0000 0001
|

‘ Timer Counter[31:16]

15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0
[ofofofofofofoofofofofofofo]o]r]
L |

Figure 8-20. Timer Counter Register

Timer Counter[15:0]

Timer Period (TIMER_PERIOD) and Timer
width (TIMER_WIDTH) Registers

When a timer is enabled and running, and the software writes new
values to the TIMER_PERIOD register and the TIMER_WIDTH register,
the writes are buffered and do not update the registers until the end
of the current period (when TIMER_COUNTER equals TIMER_WIDTH).

ADSP-BF59x Blackfin Processor Hardware Reference 8-43



Timer Registers

Usage of the TIMER_PERIOD register, shown in Figure 8-21, and the
TIMER_WIDTH register, shown in Figure 8-22, varies depending on the
mode of the timer:

e In PWM_OUT mode, both the TIMER_PERIOD and
TIMER_WIDTH register values can be updated “on-the-fly” since

the values change simultaneously.

e In WDTH_CAP mode, the timer period and timer pulse width
buffer values are captured at the appropriate time. The
TIMER_PERIOD and TIMER_WIDTH registers are then
updated simultaneously from their respective buffers. Both regis-
ters are read-only in this mode.

e In EXT_CLK mode, the TIMER_PERIOD register is writable and
can be updated “on-the-fly.” The TIMER_WIDTH register is not

used.

If new values are not written to the TIMER_PERIOD register or the
TIMER_WIDTH register, the value from the previous period is reused. Writes
to the 32-bit TIMER_PERIOD register and TIMER_WIDTH register are atomic; it
is not possible for the high word to be written without the low word also
being written.

Values written to the TIMER_PERIOD registers or TIMER_WIDTH registers are
always stored in the buffer registers. Reads from the TIMER_PERIOD or
TIMER_WIDTH registers always return the current, active value of period or
pulse width. Written values are not read back until they become active.
When the timer is enabled, they do not become active until after the
TIMER_PERIOD and TIMER_WIDTH registers are updated from their respective
buffers at the end of the current period. See Figure 8-1 on page 8-3.

When the timer is disabled, writes to the buffer registers are immediately
copied through to the TIMER_PERIOD or TIMER_WIDTH register so that they
will be ready for use in the first timer period. For example, to change the
values for the TIMER_PERIOD and/or TIMER_WIDTH registers in order to use a

8-44 ADSP-BF59x Blackfin Processor Hardware Reference



General-Purpose Timers

different setting for each of the first three timer periods after the timer is
enabled, the procedure to follow is:

1. Program the first set of register values.
Enable the timer.

Immediately program the second set of register values.

Lol

Wait for the first timer interrupt.
5. Program the third set of register values.
Each new setting is then programmed when a timer interrupt is received.

In PWM_0OUT mode with very small periods (less than 10 counts),
there may not be enough time between updates from the buffer
registers to write both the TIMER_PERIOD register and the
TIMER_WIDTH register. The next period may use one old value and
one new value. In order to prevent “pulse width = period” errors,
write the TIMER_WIDTH register before the TIMER_PERIOD register
when decreasing the values, and write the TIMER_PERIOD register
before the TIMER_WIDTH register when increasing the value.

Timer Period Register (TIMER_PERIOD)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Io |o |0 |o |o |o |o |0 |0 |o |o |o |0 |0 |o |0| Reset = 0x0000 0000
L |

‘ Timer Period[31:16]

15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0
lefofofofofofofofofofofofofofolo]

‘ Timer Period[15:0]

Figure 8-21. Timer Period Register

ADSP-BF59x Blackfin Processor Hardware Reference 8-45



Timer Registers

Timer Width Register (TIMER_WIDTH)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

fofofofodofofofofofofofofofofo]e]

15 14 13 12 11 10 9 8 7 6 5 4

2 1

3 0
[efofolofofofofofofofofodofo]o]o]
L |

Figure 8-22. Timer Width Register

Summary

Reset = 0x0000 0000

Timer Width[31:16]

Timer Width[15:0]

Table 8-2 summarizes control bit and register usage in each timer mode.

Table 8-2. Control Bit and Register Usage Chart

Bit / Register

PWM_OUT Mode

WDTH_CAP Mode

EXT_CLK Mode

TIMER_ENABLE

1 - Enable timer

1 - Enable timer

1 - Enable timer

0 - No effect 0 - No effect 0 - No effect
TIMER_DISABLE 1 - Disable timer at end | 1 - Disable timer 1 - Disable timer
of period 0 - No effect 0 - No effect
0 - No effect
TMODE b#01 b#10 b#11
PULSE_HI 1 - Generate high width| 1 - Measure high width| 1 - Count rising edges
0 - Generate low width | 0 - Measure low width | 0 - Count falling edges
PERIOD_CNT 1 - Generate PWM 1 - Interrupt after mea- | Unused
0 - Single width pulse | suring period
0 - Interrupt after mea-
suring width
IRQ_ENA 1 - Enable interrupt 1 - Enable interrupt 1 - Enable interrupt
0 - Disable interrupt 0 - Disable interrupt | O - Disable interrupt
8-46 ADSP-BF59x Blackfin Processor Hardware Reference




General-Purpose Timers

Table 8-2. Control Bit and Register Usage Chart (Continued)

Bit / Register PWM_OUT Mode WDTH_CAP Mode EXT_CLK Mode
TIN_SEL Depends on CLK_SEL: | 1 - Select TACI input | Unused
0 - Select TMR pin
If CLK_SEL =1, input
1 - Count TMRCLK
clocks
0 - Count TACLK
clocks
If CLK_SEL = 0,
Unused
OUT_DIS 1 - Disable TMR pin Unused Unused
0 - Enable TMR pin
CLK_SEL 1 - PWM_CLK clocks | Unused Unused
timer
0 - SCLK clocks timer
TOGGLE_HI 1 - One waveform Unused Unused
period every two
counter periods
0 - One waveform
period every one
counter period
ERR_TYP Reports b#00, b#01, Reports b#00 or b#01, | Reports b#00, b#01, or
b#10, or b#11, as as appropriate b#10, as appropriate
appropriate
EMU_RUN 0 - Halt during 0 - Halt during 0 - Halt during
emulation emulation emulation
1 - Count during 1 - Count during 1 - Count during
emulation emulation emulation
TMR Pin Depends on Depends on TIN_SEL: | Input
OUT_DIS: 1 - Unused
1 - Three-state 0 - Input
0 - Output
Period R/W: Period value RO: Period value R/W: Period value
Width R/W: Width value RO: Width value Unused

ADSP-BF59x Blackfin Processor Hardware Reference

8-47




Programming Examples

Table 8-2. Control Bit and Register Usage Chart (Continued)

Bit / Register

PWM_OUT Mode

WDTH_CAP Mode

EXT_CLK Mode

TOVEF_ERR set or
when counter equals
period and
PERIOD_CNT =1 or
when counter equals
width and
PERIOD_CNT =0

0 - Not set

TOVF_ERR set or
when counter captures
period and
PERIOD_CNT =1 or
when counter captures
width and
PERIOD_CNT =0

0 - Not set

Counter RO: Counts up on RO: Counts up on RO: Counts up on
SCLK or PWM_CLK | SCLK TMR pin event
TRUN Read: Timer slave Read: Timer slave Read: Timer slave
enable status enable status enable status
Write: Werite: Werite:
1 - Stop timer if dis- 1 - No effect 1 - No effect
abled 0 - No effect 0 - No effect
0 - No effect
TOVF_ERR Set at startup or roll- | Set if counter wraps Set if counter wraps or
over if period = 0 or 1 set at startup or roll-
Set at rollover if width over if period = 0
>= Period
Set if counter wraps
IRQ Depends on Depends on Depends on
[RQ_ENA: [RQ_ENA: IRQ_ENA:
1 - Set when 1 - Set when 1 - Set when counter

equals period or
TOVF_ERR set
0 - Not set

Programming Examples

Listing 8-1 configures the port control registers in a way that enables TMR

pins associated with Port G. This example assumes TMR1-7 are connected
to Port G bits 5-11.

Listing 8-1. Port Setup

timer_port_setup:

8-48

ADSP-BF59x Blackfin Processor Hardware Reference




General-Purpose Timers

[--sp]l = (r7:7, p5:5);
p5.h = hi(PORTG_FER);

p5.1 = To(PORTG_FER);

r7.1 = PG5|PG6|PG7|PG8|PGI|PGIO|PGLT;
wlpb] = r7;

p5.1 = To(PORTG_MUX);

r7.1 = PFTE;

wlpb] = r7;

(r7:7, p5:5) = [sp++];

rts;

timer_port_setup.end:

Listing 8-2 generates signals on the TMR4 and TMR5 outputs. By default,
timer 5 generates a continuous PWM signal with a duty cycle of 50%
(period = 0x40 SCLKs, width = 0x20 SCLKs) while the PWM signal gen-
erated by timer 4 has the same period but 25% duty cycle (width = 0x10
SCLKs).

If the preprocessor constant SINGLE_PULSE is defined, every TMR pin out-
puts only a single high pulse of 0x20 (timer 4) and 0x10 SCLKSs (timer 5)
duration.

In any case the timers are started synchronously and the rising edges are

aligned. That is, the pulses are left aligned.
Listing 8-2. Signal Generation

// ftdefine SINGLE_PULSE
timer45_signal_generation:
[--spl = (r7:7, p5:5);
p5.h = hi(TIMER_ENABLE);
p5.1 = To(TIMER_ENABLE);
fhifdef SINGLE_PULSE
r7.1 = PULSE_HI | PWM_OUT;
ffelse

ADSP-BF59x Blackfin Processor Hardware Reference 8-49



Programming Examples

r7.1 = PERIOD_CNT | PULSE_HI | PWM_OUT;
frendif

wlpb5 + TIMER5_CONFIG - TIMER_ENABLE] = r7;

wlp5 + TIMER4_CONFIG - TIMER_ENABLE] = r7;

r7 = 0x10 (z);

[p5 + TIMER5_WIDTH - TIMER_ENABLE] = r7;

r7 = 0x20 (z);

[p5 + TIMERA_WIDTH - TIMER_ENABLE] = r7;
fHifndef SINGLE_PULSE

r7 = 0x40 (z);

[p5 + TIMERS5_PERIOD - TIMER_ENABLE] = r7;

[p5 + TIMER4_PERIOD - TIMER_ENABLE] = r7;
ffendif

r7.1 = TIMENS5 | TIMEN4;

wlpb5] = r7;

(r7:7, p5:5) = [sptt];

rts;

timer45_signal_generation.end:

All subsequent examples use interrupts. Thus, Listing 8-3 illustrates how
interrupts are generated and how interrupt service routines can be regis-
tered. In this example, the timer 5 interrupt is assigned to the IVG12
interrupt channel of the CEC controller.

Listing 8-3. Interrupt Setup

timerb5_interrupt_setup:
[--spl = (r7:7, p5:5);
p5.h = hi(IMASK);
p5.1 = To(IMASK);
/* register interrupt service routine */
r7.h = hiCisr_timerb);
r7.1 = lo(isr_timerb);
[p5 + EVT12 - IMASK] = r7;
/* unmask IVGl2 in CEC */

8-50 ADSP-BF59x Blackfin Processor Hardware Reference



General-Purpose Timers

r7 = [p51;
bitset(r7, bitpos(EVT_IVG12));
[p5]1 = r7;
/* assign timer 5 IRQ (= IRQ37 in this example) to IVGl12 */
p5.h = hi(SIC_IAR4);
p5.1 = To(SIC_IAR4);
/*SIC_TIAR register mapping is processor dependent*/

r7.h = OxFF5F;
r7.1 = OxFFFF;
[p5] = r7;

/* enable timer 5 IRQ */
p5.h = hi(SIC_IMASK1);
p5.1 = To(SIC_IMASKI1);

/*SIC_IMASK register mapping is processor dependent*/
r7 = [p5];
bitset(r7, 5);

[p5] = r7;

/* enable interrupt nesting */
(r7:7, p5:5) = [sp++];
[--sp] = reti;
rts;

timerb_interrupt_setup.end:

The example shown in Listing 8-4 does not drive the TMR pin. It generates
periodic interrupt requests every 0x1000 SCLK cycles. If the preprocessor
constant SINGLE_PULSE was defined, timer 5 requests an interrupt only
once. Unlike in a real application, the purpose of the interrupt service rou-
tine shown in this example is just the clearing of the interrupt request and
counting interrupt occurrences.

Listing 8-4. Periodic Interrupt Requests
// ffdefine SINGLE_PULSE

timer5_interrupt_generation:
[--sp]l = (r7:7, p5:5);

ADSP-BF59x Blackfin Processor Hardware Reference 8-51



Programming Examples

p5.h hi(TIMER_ENABLE);
p5.1 To(TIMER_ENABLE);
f#ifdef SINGLE_PULSE

r7.1 = EMU_RUN | IRQ_ENA | OUT_DIS | PWM_OUT;
ffelse

r7.1 = EMU_RUN | IRQ_ENA | PERIOD_CNT | OUT_DIS | PWM_OUT;
ffendif

wlpb5 + TIMERS5_CONFIG - TIMER_ENABLE] = r7;
r7 = 0x1000 (z);

f##ifndef SINGLE_PULSE
[p5 + TIMERS5_PERIOD - TIMER_ENABLE] = r7;
r7 = 0x1 (z);

ffendif
[p5 + TIMERS_WIDTH - TIMER_ENABLE] = r7;
r7.1 = TIMENG;

wlpb] =

(r7:7, p5:5) = [sp++]1;
ro =0 (z);

rts;

timer5_interrupt_generation.end:
isr_timer5:
[--sp] = astat;

[--sp]l = (r7:7, p5:5);
p5.h = hi(TIMER_STATUS);
p5.1 To(TIMER_STATUS) ;
r7.h = hi(TIMIL5);

r7.1 = 10(TIMIL5);

[p5] = r7;

ro+= 1;

ssync;

(r7:7, pb:5) = [sptt];
astat = [sp++];
rti;

isr_timer5.end:

8-52 ADSP-BF59x Blackfin Processor Hardware Reference



General-Purpose Timers

Listing 8-5 illustrates how two timers can generate two non-overlapping
clock pulses as typically required for break-before-make scenarios. Both

timers are running in PWM_0UT mode with PERIOD_CNT = 1 and

PULSE_HI = 1.

Figure 8-23 explains how the signal waveform represented by the period P
and the pulse width W translates to timer period and width values.
Table 8-3 summarizes the register writes.

Table 8-3. Register Writes for Non-Overlapping Clock Pulses

Register Before Enable |After At IRQ1 At IRQ2
Enable
TIMER5_PERIOD P/2
TIMER5_WIDTH P/2 -W/2 W/2 P/2 -W/2 /2
TIMER4_PERIOD P P/2
TIMER4_WIDTH P-W/2 W/2 P/2 - W-2
ENABLE IRQ2

| |

| |

| |
TMR4 | |
Ipr2-wr2 | w2
|—

P/2

-

-

Figure 8-23. Non-Overlapping Clock Pulses

ADSP-BF59x Blackfin Processor Hardware Reference

8-53



Programming Examples

Since hardware only updates the written period and width values at the
end of periods, software can write new values immediately after the timers
have been enabled. Note that both timers’ period expires at exactly the
same times with the exception of the first timer 5 interrupt (at IRQ1)
which is not visible to timer 4.

Listing 8-5. Non-Overlapping Clock Pulses

/* signal period */
/* signal pulse width */
/* number of pulses before disable */

[--spl = (r7:1, pb:5);
= hi(TIMER_ENABLE);
= 1o(TIMER_ENABLE);

IRQ_ENA | PERIOD_CNT | TOGGLE_HI | PULSE_HI | PWM_OUT;
TIMER5_CONFIG - TIMER_ENABLE] = r7;
PERIOD_CNT | TOGGLE_HI | PULSE_HI | PWM_OUT;

+ TIMER4_CONFIG - TIMER_ENABLE] = r7;
/* calculate timers widths and period */

/* W2 */

/* P/2 */

/* P/2 - W/2 */
/* P - W/2 x/

values for initial period */
TIMER4_PERIOD - TIMER_ENABLE] = r0;
TIMER4_WIDTH - TIMER_ENABLE] = rb5;
TIMER5_PERIOD - TIMER_ENABLE] = r3;

jtdefine P 0x1000
jidefine W 0x0600
f#define N 4
timer45_toggle_hi:
p5.h
p5.1
/* config timers */
r7.1 =
wlpb +
r7.1 =
wlpb
ro.1 = 1o(P);
ro.h = hi(P);
ri.1 = 1o(W);
rl.h = hi(W);
re =rl > 1;
r3 =r0 > 1;
rd =r3 - r2;
r5 =r0 - r2;
/* write
[p5 +
[p5 +
[p5 +
[p5 +

TIMERS5_WIDTH - TIMER_ENABLE]

rd;

8-54

ADSP-BF59x Blackfin Processor Hardware Reference



General-Purpose Timers

/* start timers */
r7.1 = TIMENS5 | TIMEN4 ;

wlpb5 + TIMER_ENABLE - TIMER_ENABLE] = r7;
/* write values for second period */
[p5 + TIMER4_PERIOD - TIMER_ENABLE] = r3;

[p5 + TIMER5_WIDTH - TIMER_ENABLE] = r2;
/* r0 functions as signal period counter */
ro.h = hi(N * 2 - 1);
ro.1T = 1o(N * 2 - 1);
(r7:1, p5:5) = [sp++]1;
rts;
timer45_toggle_hi.end:
isr_timerb:
[--spl
[--spl

astat;
(r7:5, pb:5);
p5.h hi(TIMER_ENABLE);
p5.1 To(TIMER_ENABLE);
/* clear interrupt request */
r7.h hi(TIMIL5);
r7.1 1o0(TIMILS);
[p5 + TIMER_STATUS - TIMER_ENABLE] = r7;

/* toggle width values (width = period - width) */

r7 = [p5 + TIMERS5_PERIOD - TIMER_ENABLE];
ré [pb + TIMERS_WIDTH - TIMER_ENABLE];
r5 =r7 - r6;

[p5 + TIMERS_WIDTH - TIMER_ENABLE] = rb5;
r5 = [pb + TIMER4_WIDTH - TIMER_ENABLE];
r7 =r7 - rb;

cC r7 < 0;

if CC r7 = rb6;

[p5 + TIMERA_WIDTH - TIMER_ENABLE] = r7;

/* disable after a certain number of periods */

ro+= -1;
CC =r0 == 0;

ADSP-BF59x Blackfin Processor Hardware Reference

8-55



Programming Examples

r5.1 = 0;

r7.1 TIMDISS | TIMDIS4;

if ICC r7 = rb;

wlpb + TIMER_DISABLE - TIMER_ENABLE] = r7;
(r7:5, p5:5) = [sp++];

astat = [sp+t];

rti;

isr_timer5.end:

Listing 8-5 generates N pulses on both timer output pins. Disabling the
timers does not corrupt the generated pulse pattern anyhow.

Listing 8-6 configures timer 5 in WDTH_CAP mode. If looped back exter-
nally, this code might be used to receive N PWM patterns generated by
one of the other timers. Ensure that the PWM generator and consumer
both use the same PERIOD_CNT and PULSE_HI settings.

Listing 8-6. Timer Configured in WDTH_CAP Mode

.section Ll_data_a;
.align 4;
ffdefine N 1024
.var buffReceive[N*27;
.section L1_code;
timerb_capture:
[--sp]l = (r7:7, p5:5);
/* setup DAG2 */
r7.h hi(buffReceive);
r7.1 lo(buffReceive);
i2 = r7;
b2 = r7;
12 = length(buffReceive)*4;
/* config timer for high pulses capture */
p5.h hi(TIMER_ENABLE);
p5.1 To(TIMER_ENABLE);

8-56 ADSP-BF59x Blackfin Processor Hardware Reference



General-Purpose Timers

r7.1 = EMU_RUN|IRQ_ENA|PERIOD_CNT|PULSE_HI|WDTH_CAP;
wlpb + TIMER5_CONFIG - TIMER_ENABLE] = r7;
r7.1 = TIMENS;

wlp5 + TIMER_ENABLE - TIMER_ ENABLE] = r7;

(r7:7, p5:5) = [sp++]1;
rts;
timer5_capture.end:
isr_timerb:
[--sp] = astat;
[--sp]l = (r7:7, p5:5);
/* clear interrupt request first */

p5.h = hi(TIMER_STATUS);

p5.1 = To(TIMER_STATUS);

r7.h = hi(TIMIL5);

r7.1 = 1o(TIMIL5);

[p5] = r7;

r/7 = [pb + TIMERS5_PERIOD - TIMER_STATUS];
[i2++] = r7;

r7 = [pb + TIMERS_WIDTH - TIMER_STATUS]T;
Lig++] = r7;

ssync;

(r7:7, pb:5) = [sptt];
astat = [sp++];
rti;

isr_timer5.end:

Unique Information for the ADSP-BF59x

Processor

The ADSP-BF59x processor features one general-purpose timer module
that contains three identical 32-bit timers. Each timer can be individually
configured to operate in various modes. Although the timers operate com-

ADSP-BF59x Blackfin Processor Hardware Reference

8-57



Unique Information for the ADSP-BF59x Processor

pletely independently of each other, all of them can be started and stopped
simultaneously for synchronous operation.

Interface Overview

Figure 8-24 shows the ADSP-BF59x specific block diagram of the gen-

eral-purpose timer module.

PAB BLACKFIN
SIC CONTROLLER
A A A
- o o
N « -
<] (<] <]
< [ [
GP TIMERS

TIMER_STATUS |

W

TIMER_ENABLE

I
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
;
TIMER_DISABLE !
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

will wlll yo[[]
N - o
& i i
= = =
F [ F |« F [«
[ 4
NN% ‘-.-g ole
SEEREEE

| PORT CONTROL |

T ?EI]-{ll-__$ +___$_E|]____-[|] _________
0 W0 oo o o 4
w X - X - [
oo weo o oo 5'

oo o o =2
= = = 3
[ 4 [ o
< < <
=) =) =)
= = =
N N N
- - -
w w L
o o o

Figure 8-24. Timer Block Diagram

8-58 ADSP-BF59x Blackfin Processor Hardware Reference



General-Purpose Timers

External Interface

The TMRCLK input is common to all three timers. The PPI unit is clocked
by the same pin; therefore any of the timers can be clocked by PPI_CLK.
Since timer 0 and timer 1 are often used in conjunction with the PPI, they
are internally looped back to the PPI module for frame sync generation.

The timer signals TMRO and TMR1 are multiplexed with the PPI frame syncs
when the frame syncs are applied externally. PPI modes requiring only one
frame sync free up TMR1. For details, see the Parallel Peripheral Interface
chapter.

If the PPI frame syncs are applied externally, timer 0 and timer 1
are still fully functional and can be used for other purposes not
involving the TMRx pins. Timer 0 and timer 1 must not drive their
TMRO and TMR1 pins. If operating in PWM_0OUT mode, the OUT_DIS bit
in the TIMERO_CONFIG and TIMER1_CONFIG registers must be set.

ADSP-BF59x Blackfin Processor Hardware Reference 8-59



Unique Information for the ADSP-BF59x Processor

8-60 ADSP-BF59x Blackfin Processor Hardware Reference



9 CORE TIMER

This chapter describes the core timer. Following an overview, functional
description, and consolidated register definitions, the chapter concludes
with a programming example.

Specific Information for the ADSP-BF59x

For details regarding the number of core timers for the ADSP-BF59x
product, please refer to the ADSP-BF592 Blackfin Processor Data Sheet.

For Core Timer interrupt vector assignments, refer to Table 4-3 on
page 4-17 in Chapter 4, “System Interrupts”.

For a list of MMR addresses for each Core Timer, refer to Chapter A,
“System MMR Assignments”.

Core timer behavior for the ADSP-BF59x that differs from the general
information in this chapter can be found at the end of this chapter in the
section “Unique Information for the ADSP-BF59x Processor” on page 9-9

Overview and Features

The core timer is a programmable 32-bit interval timer which can gener-
ate periodic interrupts. Unlike other peripherals, the core timer resides

ADSP-BF59x Blackfin Processor Hardware Reference 9-1



Timer Overview

inside the Blackfin core and runs at the core clock (CCLK) rate. Core timer
features include:

* 32-bit timer with 8-bit prescaler
* Operates at core clock (CCLK) rate
* Dedicated high-priority interrupt channel

 Single-shot or continuous operation

Timer Overview

Figure 9-1 provides a block diagram of the core timer.

CORE REGISTER ACCESS BUS (RAB) ,

< va >

N 1

TSCALE TCNTL TPERIOD
Y
=
w |
@ 4
S| E COUNT REGISTER
= LOAD LOGIC
Y @ TIMER
TIMER ENABLE INTERRUPT
CCLK
~——»| AND PRESCALE [——| DEC TCOUNT ZERO >
LOGIC

Figure 9-1. Core Timer Block Diagram

External Interfaces

The core timer does not directly interact with any pins of the chip.

9-2 ADSP-BF59x Blackfin Processor Hardware Reference



Core Timer

Internal Interfaces

The core timer is accessed through the 32-bit register access bus (RAB).
The module is clocked by the core clock cCLK. The timer’s dedicated inter-
rupt request is a higher priority than requests from all other peripherals.

Description of Operation

The software should initialize the TCOUNT register before the timer is
enabled. The TCOUNT register can be written directly, but writes to the
TPERIOD register are also passed through to TCOUNT.

When the timer is enabled by setting the TMREN bit in the core timer con-
trol register (TCNTL), the TCOUNT register is decremented once every time
the prescaler TSCALE expires, that is, every TSCALE + 1 number of CCLK
clock cycles. When the value of the TCOUNT register reaches 0, an interrupt
is generated and the TINT bit is set in the TCNTL register.

If the TAUTORLD bit in the TCNTL register is set, then the TCOUNT register is
reloaded with the contents of the TPERIOD register and the count begins
again. If the TAUTORLD bit is not set, the timer stops operation.

The core timer can be put into low power mode by clearing the TMPWR bit
in the TCNTL register. Before using the timer, set the TMPWR bit. This
restores clocks to the timer unit. When TMPUR is set, the core timer may
then be enabled by setting the TMREN bit in the TCNTL register.

/ Hardware behavior is undefined if TMREN is set when TMPWR = 0.

Interrupt Processing

The timer’s dedicated interrupt request is a higher priority than requests
from all other peripherals. The request goes directly to the core event
controller (CEC) and does not pass through the system interrupt control-

ADSP-BF59x Blackfin Processor Hardware Reference 9-3



Core Timer Registers

ler (SIC). Therefore, the interrupt processing is also completely in the
CCLK domain.

The core timer interrupt request is edge-sensitive and cleared by
hardware automatically as soon as the interrupt is serviced.

The TINT bit in the TCNTL register indicates that an interrupt has been gen-
erated. Note that this is 7ot a W1C bit. Write a 0 to clear it. However, the
write is optional. It is not required to clear interrupt requests. The core
time module doesn’t provide any further interrupt enable bit. When the
timer is enabled, interrupts can be masked in the CEC controller.

Core Timer Regqisters

The core timer includes four core memory-mapped registers, the timer
control register (TCNTL), the timer count register (TCOUNT), the timer
period register (TPERIOD), and the timer scale register (TSCALE). As with all
core MMREs, these registers are always accessed by 32-bit read and write
operations.

9-4

ADSP-BF59x Blackfin Processor Hardware Reference



Core Timer

Core Timer Control Register (TCNTL)

The TCNTL register, shown in Figure 9-2, functions as control and status
register.

Core Timer Control Register (TCNTL)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
PXDX DX D DX DX X T XX X [ Jx ] Reset = undefined

15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0
[ENESENES ENESENES ESENENES CHENEAT

TINT TMPWR
Sticky status bit 0 - Puts the timer in low
0 - Timer has not generated an interrupt power mode

1 - Active state. Timer can be

1 - Timer has generated an interrupt >
enabled using the TMREN

TAUTORLD bit

0 - Disable auto-reload feature. When TCOUNT
reaches zero, the timer generates an interrupt and halts —— TMREN

1 - Enable auto-reload feature. When TCOUNT reaches zero Meaningful only when
and the timer generates an interrupt, TCOUNT is TMPWR = 1
automatically reloaded with the contents of TPERIOD 0 - Disable timer
and the timer continues to count 1 - Enable timer

Figure 9-2. Core Timer Control Register

Core Timer Count Register (TCOUNT)

The TCOUNT register, shown in Figure 9-3, decrements once every
TSCALE + 1 clock cycles. When the value of TCOUNT reaches 0, an interrupt
is generated and the TINT bit of the TCNTL register is set.

Values written to the TPERIOD register are automatically copied to the
TCOUNT register. Nevertheless, the TCOUNT register can be written directly.
In auto reload mode the value written to TCOUNT may differ from the
TPERIOD value to let the initial period be shorter or longer than following
periods. To do this, write to TPERIOD first and overwrite TCOUNT afterward.

ADSP-BF59x Blackfin Processor Hardware Reference 9-5



Core Timer Registers

Werites to TCOUNT are ignored once the timer is running.

Core Timer Count Register (TCOUNT)

31 30 20 28 27 26 25 24 23 22 21 20 19 18 17 16
|x|x|x |x|x |x |x |x|x|x |x |x|x|x|x|x| Reset = Undefined
|

Count Value[31:16]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RN EN CHENENED EYENENE) ENEREaE)

Count Value[15:0]
Figure 9-3. Core Timer Count Register

Core Timer Period Register (TPERIOD)

The TPERIOD register is shown in Figure 9-4. When auto-reload is enabled,
the TCOUNT register is reloaded with the value of the TPERIOD register when-
ever TCOUNT reaches 0. Writes to TPERIOD are ignored when the timer is
running.

Core Timer Period Register (TPERIOD)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x| Reset = Undefined
|

Period Value[31:16]

15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0
[ENESENES ENESENED ESENENEY ERESENEY
| |

Period Value[15:0]

Figure 9-4. Core Timer Period Register

9-6 ADSP-BF59x Blackfin Processor Hardware Reference



Core Timer

Core Timer Scale Register (TSCALE)

The TSCALE register is shown in Figure 9-5. The register stores the scaling
value that is one less than the number of cycles between decrements of
TCOUNT. For example, if the value in the TSCALE register is 0, the counter
register decrements once every CCLK clock cycle. If TSCALE is 1, the counter
decrements once every two cycles.

Core Timer Scale Register (TSCALE)

31 30 20 28 27 26 25 24 23 22 21 20 19 18 17 16
|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x| Reset = Undefined

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
ENESESEY ENENENES ENENENES ENENEREY

|
‘—Scale Value[7:0]

Figure 9-5. Core Timer Scale Register

Programming Examples

Listing 9-1 configures the core timer in auto-reload mode. Assuming a
CCLK of 500 MHz, the resulting period is 1 second. The initial period is
twice as long as the others.

Listing 9-1. Core Timer Configuration

#include <defBF527.h>/*ADSP-BF527 product is used as an example*/
.section L1_code;
.global _main;
_main:
/* Register service routine at EVT6 and unmask interrupt */
pl.1 10 (IMASK);
pl.h hi(IMASK) ;

ADSP-BF59x Blackfin Processor Hardware Reference 9-7



Programming Examples

r0.1 = lo(isr_core_timer);

r0.h = hi(isr_core_timer);

[pl + EVT6 - IMASK] = r0;

ro = [pll;

bitset(r0, bitpos(EVT_IVIMR));

[pl]l] = r0;
/* Prescaler = 50, Period = 10,000,000, First Period = 20,000,000
*/

pl.1 = To(TCNTL);

pl.h = hi(TCNTL);

ro =50 (z);

[pl + TSCALE - TCNTL] = rO;
ro.1 = 10(10000000);

r0.h = hi(10000000);

[pl + TPERIOD - TCNTL] = r0;
ro <<= 1;
[pl + TCOUNT - TCNTL] = r0;
/* R6 counts interrupts */
re =0 (z);
/* start in auto-reload mode */
r0 = TAUTORLD | TMPWR | TMREN (z);
[pl] = r0;
_main.forever:
jump _main.forever;
_main.end:
/* interrupt service routine simple increments R6 */
isr_core_timer:
[--sp] = astat;
rée+= 1;
astat = [sp++];
rti;
isr_core_timer.end:

9-8

ADSP-BF59x Blackfin Processor Hardware Reference



Core Timer

Unique Information for the ADSP-BF59x
Processor

None.

ADSP-BF59x Blackfin Processor Hardware Reference 9-9



Unique Information for the ADSP-BF59x Processor

9-10 ADSP-BF59x Blackfin Processor Hardware Reference



10 WATCHDOG TIMER

This chapter describes the watchdog timer. Following an overview, func-
tional description, and consolidated register definitions, the chapter
concludes with programming examples.

Specific Information for the ADSP-BF59x

For details regarding the number of watchdog timers for the ADSP-BF59x
product, please refer to the ADSP-BF592 Blackfin Processor Data Sheet.

For Watchdog Timer interrupt vector assignments, refer to Table 4-3 on
page 4-17 in Chapter 4, “System Interrupts”.

For a list of MMR addresses for each Watchdog Timer, refer to
Chapter A, “System MMR Assignments”.

Watchdog timer behavior for the ADSP-BF59x that differs from the gen-
eral information in this chapter can be found at the end of this chapter in
the section “Unique Information for the ADSP-BF59x Processor” on
page 10-10

Overview and Features

The processor includes a 32-bit timer that can be used to implement a
software watchdog function. A software watchdog can improve system
reliability by generating an event to the processor core if the watchdog
expires before being updated by software.

ADSP-BF59x Blackfin Processor Hardware Reference 10-1



Overview and Features

Watchdog timer key features include:
* 32-bit watchdog timer
 8-bit disable bit pattern
* System reset on expire option
e NMI on expire option
* General-purpose interrupt option

Typically, the watchdog timer is used to supervise stability of the system
software. When used in this way, software reloads the watchdog timer in a
regular manner so that the downward counting timer never expires (never
becomes 0). An expiring timer then indicates that system software might
be out of control. At this point a special error handler may recover the sys-
tem. For safety, however, it is often better to reset and reboot the system
directly by hardware control.

Especially in slave boot configurations, a processor reset cannot automati-
cally force the Blackfin device to be rebooted. In this case, the processor
may reset without booting again and may negotiate with the host device
by the time program execution starts. Alternatively, a watchdog event can
cause an NMI event. The NMI service routine may request the host device
reset and/or reboot the Blackfin processor.

The watchdog timer is often programmed to let the processor wake up
from sleep mode after a programmable period of time.

For easier debugging, the watchdog timer does not decrement
(even if enabled) when the processor is in emulation mode.

10-2 ADSP-BF59x Blackfin Processor Hardware Reference



Watchdog Timer

Interface Overview

Figure 10-1 provides a block diagram of the watchdog timer.

PAB

N\
16/,/
¢ I/ K——, WDEN
WDOG_CNT p— N N WDOG_CTL
e D
2|l ’
WDRO WDEV
- RELOAD @vare
4 READ N L
I RESET
SCLK ——» WDOG_STAT v EXPIRE EVENT
> conTROL [—> NMI
A V4 —— IRQ

Figure 10-1. Watchdog Timer Block Diagram

External Interface

The watchdog timer does not directly interact with any pins of the chip.

Internal Interface

The watchdog timer is clocked by the system clock SCLK. Its registers are
accessed through the 16-bit peripheral access bus (PAB). The 32-bit regis-
ters WDOG_CNT and WDOG_STAT must always be accessed by 32-bit read/write
operations. Hardware ensures that those accesses are atomic.

When the counter expires, one of three event requests can be generated.
Either a reset or an NMI request is issued to the core event controller

ADSP-BF59x Blackfin Processor Hardware Reference 10-3



Description of Operation

(CEC) or a general-purpose interrupt request is passed to the system inter-

rupt controller (SIC).

Description of Operation

If enabled, the 32-bit watchdog timer counts downward every SCLK cycle.
If it becomes 0, one of three event requests can be issued to either the
CEC or the SIC. Depending on how the WDEV bit field in the WDOG_CTL
register is programmed, the event that is generated may be a reset, a
non-maskable interrupt, or a general-purpose interrupt.

The counter value can be read through the 32-bit WDOG_STAT register. The
WDOG_STAT register cannot, however, be written directly. Rather, software
writes the watchdog period value into the 32-bit WDOG_CNT register before
the watchdog is enabled. Once the watchdog is started, the period value
cannot be altered.

To start the watchdog timer:

1. Set the count value for the watchdog timer by writing the count
value into the watchdog count register (WDOG_CNT). Since the
watchdog timer is not enabled yet, the write to the WDOG_CNT regis-
ters automatically pre-loads the WDOG_STAT register as well.

2. In the watchdog control register (WDOG_CTL), select the event to be
generated upon timeout.

3. Enable the watchdog timer in WDOG_CTL. The watchdog timer then
begins counting down, decrementing the value in the WDOG_STAT
register.

If software does not service the watchdog in time, WDOG_STAT continues
decrementing until it reaches 0. Then, the programmed event is gener-
ated. The counter stops decrementing and remains at zero. Additionally,
the WDRO latch bit in the WDOG_CTL register is set and can be interrogated by
software in case event generation is not enabled.

10-4 ADSP-BF59x Blackfin Processor Hardware Reference



Watchdog Timer

When the watchdog is programmed to generate a reset, it resets the pro-
cessor core and peripherals. If the NOBOOT bit in the SYSCR register was set
by the time the watchdog resets the part, the chip is not rebooted. This is
recommended behavior in slave boot configurations. The reset handler
may evaluate the RESET_WDOG bit in the software reset register SWRST to
detect a reset caused by the watchdog. For details, see the System Reset and
Booting chapter.

To prevent the watchdog from expiring, software services the watchdog by
performing dummy writes to the WDOG_STAT register. The values written
are ignored, but the write commands cause the WDOG_STAT register to be
reloaded from the WDOG_CNT register.

If the watchdog is enabled with a zero value loaded to the counter and the
WDRO bit was cleared, the WDRO bit of the watchdog control register is set
immediately and the counter remains at zero without further decrements.
If, however, the WDRO bit was set by the time the watchdog is enabled, the
counter decrements to OxFFFF FFFF and continues operation.

Software can disable the watchdog timer only by writing a 0xAD value to
the WDEN field in the WDOG_CTL register.

Register Definitions

The watchdog timer is controlled by three registers.

Watchdog Count (WDOG_CNT) Register

The WDOG_CNT register, shown in Figure 10-2, holds the 32-bit unsigned
count value. The WDOG_CNT register must always be accessed with 32-bit
read/writes.

A valid write to the WDOG_CNT register also preloads the watchdog counter.
For added safety, the WDOG_CNT register can be updated only when the

ADSP-BF59x Blackfin Processor Hardware Reference 10-5



Register Definitions

watchdog timer is disabled. A write to the WDOG_CNT register while the
timer is enabled does not modify the contents of this register.

Watchdog Count Register (WDOG_CNT)

31 30 20 28 27 26 25 24 23 22 21 20 19 18 17 16

|o|o|o|o|o|o|o|o|o|o|o|o|o|o|o|0|Reset=0x00000000
L |
1514 1312 1110 9 8 7 6 5 4 3 2 1 0
fofofoJofofofofofofofofofofofo]o]
|

Watchdog Count[31:16]

Watchdog Count[15:0]
Figure 10-2. Watchdog Count Register

Watchdog Status (WDOG_STAT) Register

The 32-bit WDOG_STAT register, shown in Figure 10-3, contains the current
count value of the watchdog timer. Reads to WDOG_STAT return the current
count value. Values cannot be stored directly in WDOG_STAT, but are instead
copied from WDOG_CNT. This can happen in two ways.

e While the watchdog timer is disabled, writing the WDOG_CNT register
pre-loads the WDOG_STAT register.

* While the watchdog timer is enabled, but not rolled over yet,
writes to the WDOG_STAT register load it with the value in WDOG_CNT.

Enabling the watchdog timer does not automatically reload
WDOG_STAT from WDOG_CNT.

10-6 ADSP-BF59x Blackfin Processor Hardware Reference



Watchdog Timer

The WDOG_STAT register is a 32-bit unsigned system MMR that must be
accessed with 32-bit reads and writes.

Watchdog Status Register (WDOG_STAT)

31 30 20 28 27 26 25 24 23 22 21 20 19 18 17 16
|o Io Io Io Io Io Io Io Io |0 Io |0 |0 |0 |0 |0 | Reset = 0x0000 0000
| |

| Watchdog Status[31:16]

15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0
[ofofofofofofofofofofofofofofo]o]
| ]

| Watchdog Status[15:0]

Figure 10-3. Watchdog Status Register

Watchdog Control (WDOG_CTL) Register

The WD0OG_CTL register, shown in Figure 10-4, is a 16-bit system MMR
used to control the watchdog timer.

The watchdog event (WDEV[1:01) bit field is used to select the event that is
generated when the watchdog timer expires. Note that if the general-pur-
pose interrupt option is selected, the SIC_IMASK register that holds the
watchdog timer mask bit should be appropriately configured to unmask
that interrupt. If the generation of watchdog events is disabled, the watch-
dog timer operates as described, except that no event is generated when
the watchdog timer expires.

The watchdog enable (WDEN[7:01) bit field is used to enable and disable
the watchdog timer. Writing any value other than the disable key (0xAD)
into this field enables the watchdog timer. This multibit disable key mini-
mizes the chance of inadvertently disabling the watchdog timer.

Software can determine whether the watchdog has expired by interrogat-
ing the WDRO status bit of the WDOG_CTL register. This is a sticky bit that is

ADSP-BF59x Blackfin Processor Hardware Reference 10-7



Programming Examples

set whenever the watchdog timer count reaches 0. It can be cleared only by
writing a “1” to the bit when the watchdog has been disabled first.

Watchdog Control Register (WDOG_CTL)

15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0
[ ToTo T Jo [+ [o [ [o T o o o] reset-ovopo
| |

I— WDEV[1:0]

WDRO - Wi1C
0 - Watchdog timer has not expired 00 - Generate reset event
1 - Watchdog timer has expired 01 - Generate NMI

10 - Generate GP interrupt
11 - Disable event
generation

WDEN][7:0]

0xAD - Counter disabled
All other values - Counter
enabled

Figure 10-4. Watchdog Control Register

Programming Examples

Listing 10-1 shows how to configure the watchdog timer so that it resets
the chip when it expires. At startup, the code evaluates whether the recent
reset event has been caused by the watchdog. Additionally, the example
sets the NOBOOT bit to prevent the memory from being rebooted.

Listing 10-1. Watchdog Timer Configuration

#include <defBF527.h>/*ADSP-BF527 product is used as an example*/
j#define WDOGPERIOD 0x00200000

.section L1_code;

.global _reset;

_reset:

/* optionally, test whether reset was caused by watchdog */
p0.h=hi(SWRST);

10-8 ADSP-BF59x Blackfin Processor Hardware Reference



Watchdog Timer

p0.1=10(SWRST);
ré wlp0]l (z);
cc bittst(r6, bitpos(RESET_WDOG));
if I1CC jump _reset.no_watchdog_reset;
/* optionally, warn at system level or host device here */
_reset.no_watchdog_reset:
/* optionally, set NOBOOT bit to avoid reboot in case */
p0.h=hi(SYSCR);
p0.1=10(SYSCR);
r0 = wlp0J(z);
bitset(r0,bitpos(NOBOOT));
wlp0] = r0;

/* start watchdog timer, reset if expires */

pO.h = hi(WDOG_CNT);

p0.1T = To(WDOG_CNT);

ro.h = hi(WDOGPERIOD);
r0.1 = 1o(WDOGPERIOD);
[p0] = r0;

pO.1 = To(WDOG_CTL) ;

r0.1 = WDEN | WDEV_RESET;
wlp0] = r0;

Jjump _main;
_reset.end:

The subroutine shown in Listing 10-2 can be called by software to service
the watchdog. Note that the value written to the WDOG_STAT register does
not matter.

Listing 10-2. Service Watchdog

service_watchdog:
[--sp]l = pb5;
p5.h = hi(WDOG_STAT);

ADSP-BF59x Blackfin Processor Hardware Reference 10-9



Unique Information for the ADSP-BF59x Processor

p5.1 = To(WDOG_STAT);
[p5] = r0;

pb = [sp++];

rts;

service_watchdog.end:

Listing 10-3 is an interrupt service routine that restarts the watchdog.

Note that the watchdog must be disabled first.
Listing 10-3. Watchdog Restarted by Interrupt Service Routine

isr_watchdog:
[--sp] = astat;
[--sp]l = (p5:5, r7:7);
p5.h = hi(WDOG_CTL);
p5.1 = To(WDOG_CTL);

r7.1 = WDDIS;

wlp5] = r7;

bitset(r7, bitpos(WDRO));
wlpb] = r7;

r7 = [p5 + WDOG_CNT - WDOG_CTLI;
[p5 + WDOG_CNT - WDOG_CTL] = r7;
r7.1 = WDEN | WDEV_GPI;
wlpb] = r7;
(p5:5, r7:7) = [sp++];
astat = [sp++];
rti;
isr_watchdog.end:

Unique Information for the ADSP-BF59x

Processor

None.

10-10 ADSP-BF59x Blackfin Processor Hardware Reference



11 UART PORT CONTROLLERS

This chapter describes the universal asynchronous receiver/transmitter
(UART) module. Following an overview and a list of key features is a
description of operation. The chapter concludes with a programming
model, consolidated register definitions, and programming examples.

Specific Information for the ADSP-BF59x

For details regarding the number of UARTS for the ADSP-BF59x prod-
uct, please refer to the ADSP-BF592 Blackfin Processor Data Sheet.

For UART DMA channel assignments, refer to Table 5-7 on page 5-107
in Chapter 5, “Direct Memory Access”.

For UART interrupt vector assignments, refer to Table 4-3 on page 4-17
in Chapter 4, “System Interrupts”.

To determine how each of the UARTS is multiplexed with other func-
tional pins, refer to Table 7-1 on page 7-3 through Table 7-2 on page 7-4
in Chapter 7, “General-Purpose Ports”.

For a list of MMR addresses for each UART, refer to Chapter A, “System
MMR Assignments”.

UART behavior for the ADSP-BF59x that differs from the general infor-
mation in this chapter can be found at the end of this chapter in the
section “Unique Information for the ADSP-BF59x Processor” on

page 11-42

ADSP-BF59x Blackfin Processor Hardware Reference 11-1



Overview

Overview

The UART module is a full-duplex peripheral compatible with PC-style
industry-standard UARTS, sometimes called serial controller interfaces
(SCI). UARTS convert data between serial and parallel formats. The serial
communication follows an asynchronous protocol that supports various
word length, stop bits, bit rate, and parity generation options.

Features

Each UART includes these features:

5 — 8 data bits

1 or 2 stop bits (1%2 in 5-bit mode)

Even, odd, and sticky parity bit options

3 interrupt outputs for reception, transmission, and status
Independent DMA operation for receive and transmit
SIR IrDA operation mode

Internal loop back

The UART is logically compliant to EIA-232E, EIA-422, EIA-485 and
LIN standards, but usually requires an external transceiver device to meet
electrical requirements. In [rDA® (Infrared Data Association) mode, the

UART meets the half-duplex IrDA SIR (9.6/115.2 Kbps rate) protocol.

11-2

ADSP-BF59x Blackfin Processor Hardware Reference



UART Port Controllers

Interface Overview

Figure 11-1 on page 11-3 shows a simplified block diagram of a UART
module and how it interconnects to the Blackfin architecture and to the
outside world.

|
BLACKFIN

- -

UART_IIR ++

UART_DLH UART_IER

|
| SIC CONTROLLER |
|
T1 1 '
|
|
> DMA CONTROLLER |
|

[<7 W] <}

] m

<1 < c| ¥ s '
L x| X o |
o = w |
8 8| UART |
7] |
|
|
|
|
|

[

UART_DLL

_:I UART_THR |_>| TSR |_.
“1 UART_RBR <—| RSR |<-

UART_LSR

X

=
'
o
a
e

TRANSCEIVER

RX |

UART_GCTL
UART_LCR

UART_SCR

UART_MCR

I
il

Figure 11-1. UART Block Diagram

External Interface

Each UART features an RX and a TX pin. These two pins usually connect
to an external transceiver device that meets the electrical requirements of

ADSP-BF59x Blackfin Processor Hardware Reference 11-3



Interface Overview

full duplex (for example, EIA-232, EIA-422, 4-wire EIA-485) or half
duplex (for example, 2-wire EIA-485, LIN) standards.

The RX and TX pins do not need to be used together. If only receive or
transmit functionality of a UART module is needed, the unused pin may
be used for an alternate function, depending on the port multiplexing
scheme of a specific processor. For more details on functionality multi-

plexed with the UART pins, see Chapter 7, “General-Purpose Ports”.

Modem status and control functionality is not supported by the
UART modules, but may be implemented using GPIO pins.

Internal Interface

UARTSs are DMA-capable peripherals with support for separate TX and
RX DMA master channels. They can be used in either DMA or pro-
grammed non-DMA mode of operation. The non-DMA mode requires
software management of the data flow using either interrupts or polling.
The DMA method requires minimal software intervention as the DMA
engine itself moves the data. Each UART has its own separate transmit
and receive DMA channels. For more information on DMA, see the
Direct Memory Access chapter.

All UART registers are eight bits wide. They connect to the peripheral
bus. However, some registers share their address as controlled by the DLAB
bit in the UART_LCR register. The UART_RBR and UART_THR registers also
connect to the DAB bus

A hardware-assisted autobaud detection mechanism is accomplished by
coupling a specific GP Timer with a specific UART. For information on
GP Timer - UART pairings for autobaud detection, see General-Purpose
Ports chapter.

11-4 ADSP-BF59x Blackfin Processor Hardware Reference



UART Port Controllers

Description of Operation

The following sections describe the operation of the UART.

UART Transfer Protocol

UART communication follows an asynchronous serial protocol, consisting
of individual data words. A word has 5 to 8 data bits.

All data words require a start bit and at least one stop bit. With the
optional parity bit, this creates a 7- to 12-bit range for each word. The for-
mat of received and transmitted character frames is controlled by the line

control register (UART_LCR). Data is always transmitted and received least
significant bit (LSB) first.

Figure 11-2 on page 11-6 shows a typical physical bitstream measured on
one of the TX pins.

Aside from the standard UART functionality, the UART also supports
half-duplex serial data communication via infrared signals, according to
the recommendations of the Infrared Data Association (IrDA). The physi-
cal layer known as IrDA SIR (9.6/115.2 Kbps rate) is based on
return-to-zero-inverted (RZI) modulation. Pulse position modulation is
not supported.

Using the 16x data rate clock, RZI modulation is achieved by inverting
and modulating the non-return-to-zero (NRZ) code normally transmitted
by the UART. On the receive side, the 16x clock is used to determine an

ADSP-BF59x Blackfin Processor Hardware Reference 11-5



Description of Operation

[rDA pulse sample window, from which the RZI-modulated NRZ code is

recovered.
DATA BITS STOP BIT(S)
A
!
u DO D1|D2 Damosyo_e‘m
Pt f
START BIT LSB PARITY BIT (OPTIONAL, ODD OR EVEN)

Figure 11-2. Bitstream on a TX Pin Transmitting an “S” Character (0x53)

IrDA support is enabled by setting the IREN bit in the UART_GCTL register.
The IrDA application requires external transceivers.

UART Transmit Operation

Receive and transmit paths operate independently except that the bit rate
and the frame format are identical for both transfer directions.

Transmission is initiated by writes to the UART_THR register. If no
former operation is pending, the data is immediately passed from the
UART_THR register to the internal TSR register where it is shifted out at
a bit rate equal to SCLK/(16 x Divisor) (see “Bit Rate Generation” on
page 11-13 for information about the divisor) with start, stop, and parity
bits appended as defined the UART_LCR register. The least significant
bit (LSB) is always transmitted first. This is bit 0 of the value written to
UART_THR.

Werites to the UART_THR register clear the THRE flag. Transfers of data from
UART_THR to the transmit shift registers (TSR) set this status flag in
UART_LSR again.

When enabled by the ETBEI bit in the UART_IER register, a 0 to 1 transition
of the THRE flag requests an interrupt on the dedicated TXREQ output. This
signal is routed through the DMA controller. If the associated DMA chan-

11-6 ADSP-BF59x Blackfin Processor Hardware Reference



UART Port Controllers

nel is enabled, the TXREQ signal functions as a DMA request, otherwise the
DMA controller simply forwards it to the system interrupt controller

(SIC).

The UART_THR register and the internal TSR register can be seen as a
two-stage transmit buffer. When data is pending in either one of these reg-
isters, the TEMT flag is low. As soon as the data has left the TSR register, the
TEMT bit goes high again and indicates that all pending transmit operation
has finished. At that time it is safe to disable the UCEN bit or to three-state
off-chip line drivers.

UART Receive Operation

The receive operation uses the same data format as the transmit configura-
tion, except that one valid stop bit is always sufficient. That is, the STB bit
has no impact to the receiver.

After detection of the start bit, the received word is shifted into the inter-
nal shift register (RSR) at a bit rate of SCLK/(16 x Divisor) . Once the
appropriate number of bits (including one stop bit) is received, the con-
tent of the RSR register is transferred to the UART_RBR registers, shown in
Figure 11-11 on page 11-27. Finally, the data ready (DR) bit and the status
flags are updated in the UART_LSR register, to signal data reception, parity,
and also error conditions, if required.

The RSR and the UART_RBR registers can be seen as almost a two-stage
receive buffer. If the stop bit of a second byte is received before software
reads the first byte from the UART_RBR register, an overrun error is reported
and the first byte is overwritten.

If enabled by the ERBFI bit in the UART_IER register, a O to 1 transition of
the DR flag requests an interrupt on the dedicated RXREQ output. This sig-
nal is routed through the DMA controller. If the associated DMA channel
is enabled, the RXREQ signal functions as a DMA request, otherwise the
DMA controller simply forwards it to the system interrupt controller.

ADSP-BF59x Blackfin Processor Hardware Reference 11-7



Description of Operation

If errors are detected during reception, an interrupt can be requested to a
separate error interrupt output. This error request goes directly to the sys-
tem interrupt controller. However, it is hard-wired with the error requests
of other modules. The error handler routine may need to interrogate mul-
tiple modules as to whether they requested the event. Error requests must
be enabled by the ELST bit in the UART_IER register. The following error
situations are detected. Every error has an indicating bit in the UART_LSR
register.

e QOverrun error (0E bit)

* Parity error (PE bit)

* Framing error/Invalid stop bit (FE bit)
e Break indicator (BI bit)

Reception is started when a falling edge is detected on the RX input pin.
The receiver attempts to see a start bit. For better immunity against noise
and hazards on the line, the receiver oversamples every bit 16 times and
does a majority decision based on the middle three samples. The data is
shifted immediately into the internal RSR register. After the 9th sample of
the first stop bit is processed, the received data is copied to the UART_RBR
register and the receiver recovers itself for further data.

The sampling clock, equal to 16 times the bit rate, samples the data bits
close to their midpoint. Because the receiver clock is usually asynchronous
to the transmitter’s data rate, the sampling point may drift relative to the
center of the data bits. The sampling point is synchronized again with
each start bit, so the error accumulates only over the length of a single
word. A receive filter removes spurious pulses of less than two times the
sampling clock period.

11-8 ADSP-BF59x Blackfin Processor Hardware Reference



UART Port Controllers

IrDA Transmit Operation

To generate the IrDA pulse transmitted by the UART, the normal NRZ
output of the transmitter is first inverted if the TPOLC bit is cleared, so a 0
is transmitted as a high pulse of 16 UART clock periods and a 1 is trans-
mitted as a low pulse for 16 UART clock periods. The leading edge of the
pulse is then delayed by six UART clock periods. Similarly, the trailing
edge of the pulse is truncated by eight UART clock periods. This results in
the final representation of the original 0 as a high pulse of only 3 clock
periods out of 16 clock periods in the cycle. The pulse is centered around
the middle of the bit time, as shown in Figure 11-3. The final IrDA pulse
is fed to the off-chip infrared driver.

I
) I
NRZ ! 0 !
I
I
INVERTED /

N\
A VR R A

Figure 11-3. IrDA Transmit Pulse

This modulation approach ensures a pulse width output from the UART
of three cycles high out of every 16 UART clock cycles. As shown in
Table 11-1 on page 11-14, the error terms associated with the bit rate gen-
erator are very small and well within the tolerance of most infrared
transceiver specifications.

IrDA Receive Operation

The IrDA receiver function is more complex than the transmit function.
The receiver must discriminate the IrDA pulse and reject noise. To do

ADSP-BF59x Blackfin Processor Hardware Reference 11-9



Description of Operation

this, the receiver looks for the IrDA pulse in a narrow window centered
around the middle of the expected pulse.

Glitch filtering is accomplished by counting 16 system clocks from the
time an initial pulse is seen. If the pulse is absent when the counter
expires, it is considered a glitch. Otherwise, it is interpreted as a 0. This is
acceptable because glitches originating from on-chip capacitive cross-cou-
pling typically do not last for more than a fraction of the system clock
period. Sources outside of the chip and not part of the transmitter can be
avoided by appropriate shielding. The only other source of a glitch is the
transmitter itself. The processor relies on the transmitter to perform
within specification. If the transmitter violates the specification, unpre-
dictable results may occur. The 4-bit counter adds an extra level of
protection at a minimal cost. Note that because the system clock can
change across systems, the longest glitch tolerated is inversely proportional
to the system clock frequency.

The receive sampling window is determined by a counter that is clocked at
the 16x bit-time sample clock. The sampling window is re-synchronized
with each start bit by centering the sampling window around the start bit.

11-10 ADSP-BF59x Blackfin Processor Hardware Reference



UART Port Controllers

The polarity of receive data is selectable, using the IRPOL bit. Figure 11-4
on page 11-11 gives examples of each polarity type.

e IRPOL = 0 assumes that the receive data input idles 0 and each
active 1 transition corresponds to a UART NRZ value of 0.

e IRPOL = 1 assumes that the receive data input idles 1 and each
active 0 transition corresponds to a UART NRZ value of 0.

RECEIVED 1

IrDA
PULSE
IRPOL =1

1

1

1

1

1

1

1

1

RECEIVED !
IrDA :
PULSE X
IRPOL =0

SAMPLING
WINDOW

PULSE
DETECT
OR

i\

[

OUTPUT

[

[

RECOVERED A
NRZINPUT | | 0

Figure 11-4. IrDA Receiver Pulse Detection

1
1
1
1
1
1
1
1
1
1
1
1
| 1
16/16 8/16 16416
1
1
1
1
1
I
1
1
1
1
1
|
[
1
1
1

Interrupt Processing

Each UART module has three interrupt outputs. One is dedicated for
transmission, one for reception, and the third is used to report line status.
As shown in Figure 11-1 on page 11-3, the transmit and receive requests
are routed through the DMA controller. The status request goes directly
to the system interrupt controller after being ORed with interrupt signals
from other modules.

ADSP-BF59x Blackfin Processor Hardware Reference 11-11



Description of Operation

If the associated DMA channel is enabled, the request functions as a DMA
request. If the DMA channel is disabled, it simply forwards the request to
the system interrupt controller. Note that a DMA channel must be associ-
ated with the UART module to enable TX and RX interrupts. Otherwise,
the transmit and receive requests cannot be forwarded. Refer to the
description of the peripheral map registers in the Direct Memory Access
chapter.

Transmit interrupts are enabled by the ETBET bit in the UART_IER register.
If set, the transmit request is asserted when the THRE bit in the UART_LSR
register transitions from 0 to 1, indicating that the TX buffer is ready for
new data.

Note that the THRE bit resets to 1. When the ETBET bit is set in the
UART_IER register, the UART module immediately issues an interrupt or
DMA request. In this way, no special handling of the first character is
required when transmission of a string is initiated. Simply set the ETBEI
bit and let the interrupt service routine load the first character from mem-
ory and write it to the UART_THR register in the normal manner.
Accordingly, the ETBEI bit can be cleared if the string transmission has
completed. For more information, see “DMA Mode” on page 11-18.

The THRE bit is cleared by hardware when new data is written to the
UART_THR register. These writes also clear the TX interrupt request. How-
ever, they also initiate further transmission. If software doesn’t want to
continue transmission, the TX request can alternatively be cleared by
either clearing the ETBEI bit or by reading the UART_IIR register.

Receive interrupts are enabled by the ERBFI bit in the UART_IER register. If
set, the receive request is asserted when the DR bit in the UART_LSR register
transitions from 0 to 1, indicating that new data is available in the
UART_RBR register. When software reads the UART_RBR, hardware clears the
DR bit again. Reading UART_RBR also clears the RX interrupt request.

Status interrupts are enabled by the ELSI bit in the UART_IER register. If
set, the status interrupt request is asserted when any error bit in the

11-12 ADSP-BF59x Blackfin Processor Hardware Reference



UART Port Controllers

UART_LSR register transitions from 0 to 1. Refer to “UART Line Status
(UART_LSR) Register” on page 11-25 for details. Reading the UART_LSR
register clears the error bits destructively. These reads also clear the status
interrupt request.

For legacy reasons, the UART_IIR registers still reflect the UART interrupt
status. Legacy operation may require bundling all UART interrupt sources
to a single interrupt channel and servicing them all by the same software
routine. This can be established by globally assigning all UART interrupts
to the same interrupt priority, by using the system interrupt controller.

If either the line status interrupt or the receive data interrupt has
been assigned a lower interrupt priority by the system interrupt
controller, a deadlock condition can occur. To avoid this, always
assign the lowest priority of the enabled UART interrupts to the
UART_THR empty event.

Bit Rate Generation

The UART clock is enabled by the UCEN bit in the UART_GCTL register.

The bit rate is characterized by the system clock (SCLK) and the 16-bit
divisor. The divisor is split into the UART_DLL and the UART_DLH registers.
These registers form a 16-bit divisor. The bit clock is divided by 16 so
that:

bit rate = SCLK/(16 x divisor)
divisor = 65536 when UART_DLL = UART_DLH =0

ADSP-BF59x Blackfin Processor Hardware Reference 11-13



Description of Operation

Table 11-1 provides example divide factors required to support most stan-

dard baud rates.

Table 11-1. UART Bit Rate Examples With 100 MHz SCLK

Bit Rate DL Actual % Error
2400 2604 2400.15 0.006
4800 1302 4800.31 0.007
9600 651 9600.61 0.006
19200 326 19171.78 0.147
38400 163 38343.56 0.147
57600 109 57339.45 0.452
115200 54 115740.74 0.469
921600 7 892857.14 3.119
6250000 1 6250000 -

Careful selection of SCLK frequencies, that is, even multiples of
desired bit rates, can result in lower error percentages.

Note that the UART module is clocked 16 times faster than the bit clock.

This is required to oversample bits on reception and to generate RZI code
in IrDA mode.

Autobaud Detection

At the chip level, the UART RX pin is routed to the alternate capture
input (TACIx) of a general purpose timer. When working in WDTH_CAP
mode this timer can be used to automatically detect the bit rate applied to

the RX pin by an external device. For more information, see Chapter 7,
« »
General-Purpose Ports”.

The capture capabilities of the timers are often used to supervise the bit
rate at runtime. If the Blackfin UART talks to a device supplied by a weak

11-14 ADSP-BF59x Blackfin Processor Hardware Reference



UART Port Controllers

clock oscillator that drifts over time, the Blackfin can re-adjust its UART
bit rate dynamically.

Often, autobaud detection is used for initial bit rate negotiations. In this
case, the Blackfin processor is most likely a slave device waiting for the
host to send a predefined autobaud character (see below). This is the sce-
nario used for UART booting. In this scenario, the UART clock enable bit
UCEN should not be enabled while autobaud detection is performed. This
prevents the UART from starting reception with incorrect bit rate match-
ing. Alternatively, the UART can be disconnected from the RX pin by
setting the LOOP_ENA bit.

A software routine can detect the pulse widths of serial stream bit cells.
Because the sample base of the timers is synchronous with the UART
operation—all derived from SCLk—the pulse widths can be used to calcu-

late the baud rate divider for the UART.
divisor = TIMER_WIDTH/(16 x number of captured UART bits)

In order to increase the number of timer counts and therefore the resolu-
tion of the captured signal, it is recommended not to measure just the
pulse width of a single bit, but to enlarge the pulse of interest over more
bits. Traditionally, a NULL character (ASCII 0x00) was used in autobaud

detection, as shown in Figure 11-5.

S 0 1 2 3 4 5 6 7 STOP

I I
: FRAME WIDTH \
1 1

Figure 11-5. Autobaud Detection Character 0x00

Because the example frame in Figure 11-5 encloses 8 data bits and 1 start
bit, apply the formula:

divisor = TIMER_WIDTH/(16 x 9)

ADSP-BF59x Blackfin Processor Hardware Reference 11-15



Programming Model

Real UART RX signals often have asymmetrical falling and rising edges,
and the sampling logic level is not exactly in the middle of the signal volt-
age range. At higher bit rates, such pulse width-based autobaud detection
might not return adequate results without additional analog signal condi-
tioning. Measuring signal periods works around this issue and is strongly
recommended.

For example, predefine ASCII character “@” (0x40) as the autobaud
detection character and measure the period between two subsequent fall-
ing edges. As shown in Figure 11-6, measure the period between the
falling edge of the start bit and the falling edge after bit 6. Since this
period encloses eight bits, apply the formula:

divisor = TIMER_PERIOD>>7

S o0 1 2 3 4 5 6 7 STOP

I I
: PERIOD :
1 1

Figure 11-6. Autobaud Detection Character 0x40

An example is provided in Listing 11-2 on page 11-34.

Programming Model

The following sections describe a programming model for the UART.

Non-DMA Mode

In non-DMA mode, data is moved to and from the UART by the proces-
sor core. To transmit a character, load it into UART_THR. Received data can
be read from UART_RBR. The processor must write and read one character
at time.

11-16 ADSP-BF59x Blackfin Processor Hardware Reference



UART Port Controllers

To prevent any loss of data and misalignments of the serial datastream, the
UART_LSR register provides two status flags for handshaking—THRE and DR.

The THRE flag is set when UART_THR is ready for new data and cleared when
the processor loads new data into UART_THR. Writing UART_THR when it is
not empty overwrites the register with the new value and the previous
character is never transmitted.

The DR flag signals when new data is available in UART_RBR. This flag is
cleared automatically when the processor reads from UART_RBR. Reading
UART_RBR when it is not full returns the previously received value. When
UART_RBR is not read in time, newly received data overwrites UART_RBR and
the 0OE flag is set.

With interrupts disabled, these status flags can be polled to determine
when data is ready to move. Note that because polling is processor inten-
sive, it is not typically used in real-time signal processing environments.
Be careful if transmit and receive are served by different software threads,
because read operations on the UART_LSR and UART_IIR registers are
destructive. Polling the SIC_ISR register without enabling the interrupts
by SIC_MASK is an alternate method of operation to consider. Software can
write up to two words into the UART_THR register before enabling the
UART clock. As soon as the UCEN bit is set, those two words are sent.

Alternatively, UART writes and reads can be accomplished by interrupt
service routines. Separate interrupt lines are provided for UART TX,
UART RX, and UART error/status. The independent interrupts can be
enabled individually by the UART_IER register.

The ISRs can evaluate the status bit field within the UART_IIR register to
determine the signalling interrupt source. If more than one source is sig-
nalling, the status field displays the one with the highest priority.
Interrupts also must be assigned and unmasked by the processor’s inter-
rupt controller. The ISRs must clear the interrupt latches explicitly. See
Figure 11-13 on page 11-30.

ADSP-BF59x Blackfin Processor Hardware Reference 11-17



Programming Model

DMA Mode

In this mode, separate receive (RX) and transmit (TX) DMA channels
move data between the UART and memory. The software does not have
to move data, it just has to set up the appropriate transfers either through
the descriptor mechanism or through autobuffer mode.

DMA channels provide a 4-deep FIFO, resulting in total buffer capabili-
ties of 6 words at both the transmit and receive sides. In DMA mode, the
latency is determined by the bus activity and arbitration mechanism and

not by the processor loading and interrupt priorities.

DMA interrupt routines must explicitly write “1” to the corresponding
DMA_IRQ_STATUS registers to clear the latched request of the pending
interrupt.

The UART’s DMA is enabled by first setting up the system DMA control
registers and then enabling the UART ERBFI and/or ETBEI interrupts in
the UART_IER register. This is because the interrupt request lines double as
DMA request lines. Depending on whether DMA is enabled or not, upon
receiving these requests, the DMA control unit either generates a direct
memory access or passes the UART interrupt on to the system interrupt
handling unit. The UART’s error interrupt goes directly to the system
interrupt handling unit, bypassing the DMA unit completely.

For transmit DMA, it is recommended that the SYNC bit in the DMA_CONFIG
register be set. With this bit set, the interrupt generation is delayed until
the entire DMA FIFO has been drained to the UART module. The
UART TX DMA interrupt service routine is allowed to start another
DMA sequence or to clear the ETBEI control bit only when the SYNC bit is
set.

If another DMA is started while data is still pending in the UART trans-
mitter, there is no need to pulse the ETBEI bit to initiate the second DMA.
If, however, the recent byte has already been loaded into the TSR registers

11-18 ADSP-BF59x Blackfin Processor Hardware Reference



UART Port Controllers

(that is, the THRE bit is set), then the ETBEI bit must be cleared and set
again to let the second DMA start.

In DMA transmit mode, the ETBEI bit enables the peripheral request to
the DMA FIFO. The strobe on the memory side is still enabled by the
DMAEN bit. If the DMA count is less than the DMA FIFO depth, which
is 4, then the DMA interrupt might be requested before the ETBEI bit is
set. If this is not wanted, set the SYNC bit in the DMA_CONFIG register.

Regardless of the SYNC setting, the DMA stream has not left the
UART transmitter completely at the time the interrupt is gener-
ated. If the UART clock was disabled without additional polling of
the TEMT bit, transmission may abort in the middle of the stream—
causing data loss.

The UART’s DMA supports 8-bit and 16-bit operation, but not 32-bit

operation. Sign extension is not supported.

Mixing Modes

Especially on the transmit side, switching from DMA mode to non-DMA
operation on the fly requires some thought. By default, the interrupt tim-
ing of the DMA is synchronized with the memory side of the DMA
FIFOs. The TX DMA completion interrupt is generated after the last byte
has been copied from the memory into the DMA FIFO. The TX DMA
interrupt service routine is not yet permitted to start other DMA
sequences or to switch to non-DMA transmission. The interrupt is
requested by the time the DMA_DONE bit is set. The DMA_RUN bit, however,
remains set until the data has completely left the TX DMA FIFO.

Therefore, when planning to switch from DMA to non-DMA of opera-
tion, always set the SYNC bit in the DMA_CONF1G word of the last descriptor
or work unit before handing over control to non-DMA mode. Then, after
the interrupt occurs, software can write new data into the UART_THR regis-
ter as soon as the THRE bit permits. If the SYNC bit cannot be set, software
can poll the DMA_RUN bit instead.

ADSP-BF59x Blackfin Processor Hardware Reference 11-19



UART Registers

When switching from non-DMA to DMA operation, take care that the
very first DMA request is issued properly. If the DMA is enabled while the
UART is still transmitting, no precaution is required. If, however, the
DMA is enabled after the TEMT bit became high, the ETBET bit should be

pulsed to initiate DMA transmission.

UART Registers

The processor provides a set of PC-style industry-standard control and
status registers for each UART. These memory-mapped registers (MMRs)
are byte-wide registers that are mapped as half words with the most signif-

icant byte zero filled. Table 11-2 on page 11-20 provides an overview of
the UART registers.

Consistent with industry-standard devices, multiple registers are mapped
to the same address location. The UART_DLH and UART_DLL registers share
their addresses with the UART_THR registers, the UART_RBR registers, and the
UART_IER registers. The DLAB bit in the UART_LCR register controls which
set of registers is accessible at a given time. Software must use 16-bit word
load/store instructions to access these registers.

Transmit and receive channels are both buffered. The UART_THR registers
buffer the transmit shift register (TSR) and the UART_RBR registers buffer

the receive shift register (LSR). The shift registers are not directly accessible
by software.

Table 11-2. UART Register Overview

Name Address |DLAB |Operation Reset |Function
Offset |Bit Value
Setting
UART_RBR 0x0000 | O R 0x00 | Receive buffer register
UART_THR | 0x0000 |0 w 0x00 | Transmit holding register
UART_DLL | 0x0000 |1 R/W 0x01 | Divisor latch low byte

11-20 ADSP-BF59x Blackfin Processor Hardware Reference



UART Port Controllers

Table 11-2. UART Register Overview

Name Address |DLAB |Operation Reset |Function
Offset  |Bit Value
Setting
UART_IER 0x0004 |0 R/IW 0x00 | Interrupt enable register
UART_DLH | 0x0004 |1 R/W 0x00 | Divisor latch high byte
UART_IIR 0x0008 | X R 0x01 | Interrupt identification register

Read operations
are destructive

UART_LCR 0x000C | X R/W 0x00 | Line control register
UART_MCR | 0x0010 |X R/W 0x00 | Modem control register
UART_LSR 0x0014 | X R 0x60 | Line status register

Read operations
are destructive

UART_SCR 0x001C | X R/IW 0x00 | Scratch register

UART_GCTL | 0x0024 | X R/IW 0x00 | Global control register

ADSP-BF59x Blackfin Processor Hardware Reference 11-21



UART Registers

UART Line Control (UART_LCR) Register

The UART_LCR register, shown in Figure 11-7, controls the format of
received and transmitted character frames.

UART Line Control Register (UART_LCR)

15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0
|o|o|o|o|o|o|o|o|o|oIololoIolololﬁeset=0x0000

DLAB (Divisor Latch Access) —— WLS[1:0] (Word Length Select)
0 - Enables access to UART_THR, 00 - 5-bit word
UART_RBR, and UART_IER 01 - 6-bit word
1 - Enables access to UART_DLL 10 - 7-bit word
and UART_DLH 11 - 8-bit word
SB (Set Break) —— STB (Stop Bits)
0 - No force ) 0 - 1 stop bit
1 - Force TX pin to 0 1 - 2 stop bits for non-5-bit
STP (Stick Parity) word length or 1 1/2 stop

Forces parity to defined value if set and PEN = 1 bits for 5-bit word length

EPS = 0, parity transmitted and checked as 1 —
EPS = 1, parity transmitted and checked as 0 PEN (Parity Enable)

EPS (Even Parity Select) 0 - Parity not transmitted or

) hecked
0 - Odd parity when PEN = 1 and STP = 0 ¢ ) )
1 - Even parity 1 - Transmit and check parity

Figure 11-7. UART Line Control Register

The 2-bit WLS field determines whether the transmitted and received
UART word consists of 5, 6, 7 or 8 data bits.

The STB bit controls how many stop bits are appended to transmitted
data. When STB = 0, one stop bit is transmitted. If WLS is non zero, STB = 1
instructs the transmitter to add one additional stop bit, two stop bits in
total. If WLS = 0 and 5-bit operation is chosen, STB = 1 forces the transmit-
ter to append one additional half bit, 1% stop bits in total. Note that this
bit does not impact data reception—the receiver is always satisfied with
one stop bit.

11-22 ADSP-BF59x Blackfin Processor Hardware Reference



UART Port Controllers

The PEN bit inserts one additional bit between the most significant data bit
and the first stop bit. The polarity of this so-called parity bit depends on
data and the STP and EPS control bits. Both transmitter and receiver calcu-
late the parity value. The receiver compares the received parity bit with
the expected value and issues a parity error if they don’t match. If PEN is
cleared, the STP and the EPS bits are ignored.

The STP bit controls whether the parity is generated by hardware based on
the data bits or whether it is set to a fixed value. If STP = 0 the hardware
calculates the parity bit value based on the data bits. Then, the EPS bit
determines whether odd or even parity mode is chosen. If EPS = 0, odd
parity is used. That means that the total count of Togical-1 data bits
including the parity bit must be an odd value. Even parity is chosen by
STP = 0 and EPS = 1. Then, the count of 1ogical-1 bits must be a even
value. If the STP bit is set, then hardware parity calculation is disabled. In
this case, the sent and received parity equals the inverted EPS bit. The
example in Table 11-3 summarizes polarity behavior assuming 8-bit data
words (WLS = 3).

Table 11-3. UART Parity

PEN STP EPS Data (hex) Data (binary, LSB Parity
first)
0 X X X X None
1 0 0 0x60 0000 0110 1
1 0 0 0x57 1110 1010 0
1 0 1 0x60 0000 0110 0
1 0 1 0x57 1110 1010 1
1 1 0 X X 1
1 1 1 X X 0

If set, the SB bit forces the TX pin to low asynchronously, regardless of
whether or not data is currently transmitted. It functions even when the

ADSP-BF59x Blackfin Processor Hardware Reference 11-23



UART Registers

UART clock is disabled. Since the TX pin normally drives high, it can be
used as a flag output pin, if the UART is not used.

The DLAB bit controls whether the UART_RBR, UART_THR and UART_IER regis-
ters are accessible by the peripheral bus (DLAB = 0) or the divisor latch
registers UART_DLH and UART_DLL alternatively (DLAB = 1).

UART Modem Control (UART_MCR) Register

The UART_MCR register controls the UART port, as shown in Figure 11-8.
Even if modem functionality is not supported, the UART_MCR register is
available in order to support the loopback mode.

UART Modem Control Register (UART_MCR)

15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0
|o|o|o|o|o|o|o|o|o|o|o|o|o|o|o|oIReset:Oxoooo

LOOP_ENA (Loopback mode enable)
Disconnects RX pin from RSR register

Figure 11-8. UART Modem Control Registers

Loopback mode disconnects the receiver’s input from the RX pin, but
redirects it to the transmit output internally.

11-24 ADSP-BF59x Blackfin Processor Hardware Reference



UART Port Controllers

UART Line Status (UART_LSR) Register

The UART_LSR register contains UART status information as shown in
Figure 11-9.

UART Line Status Register (UVART_LSR)

read only
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
fofofofofofofofofoft [+]ofofofofo] Reset=oxooe0
L DR (Data Ready)
0 - No new data
1 - UART_RBR holds
new data
TEMT (TSR and UART_THR Empty) OE (Overrun Error)
0 - Full 0 - No overrun
1 - Both empty 1 - UART_RBR overwritten
THRE (UART_THR Empty) before read
0 - UART_THR not empty \——— PE (Parity Error)
1 - UART_THR empty 0 - No parity error
Bl (Break Interrupt) 1 - Parity error
0 - No break interrupt —— FE (Framing Error)
1 - Break interrupt; this 0 - No error
indicates RX was held low 1 - Invalid stop bit error
for more than the maximum
word length

Figure 11-9. UART Line Status Register

The DR bit indicates that data is available in the receiver and can be read
from the UART_RBR register. The bit is set by hardware when the receiver
detects the first valid stop bit. It is cleared by hardware when the UART_RBR
register is read.

The 0OF bit indicates that a start bit condition has been detected, but the
internal receive shift register (RSR) and the receive buffer (UART_RBR)
already contain data. New data overwrites the content of the buffers. To
avoid overruns read the UART_RBR register in time. The 0F bit cleared when
the UART_LSR register is read.

The PE bit indicates that the received parity bit does not match the
expected value. The PE bit is set simultaneously with the DR bit. The PE bit

ADSP-BF59x Blackfin Processor Hardware Reference 11-25



UART Registers

cleared when the UART_LSR register is read. Invalid parity bits can be simu-
lated by setting the FPE bit in the UART_GCTL register.

The FE bit indicates that the first stop bit has been sampled low. It is
cleared by hardware when the UART_RBR register is read. Invalid stop bits
can be simulated by setting the FFE bit in the UART_GCTL register.

The BI bit indicates that the first stop bit has been sampled low and the
entire data word, including parity bit, consists of low bits only. It is
cleared by hardware when the UART_RBR register is read.

Because of the destructive nature of these read operations, special
care should be taken. For more information, see the Memory chap-
ter of the ADSP-BF59x Blackfin Processor Hardware Reference.

The THRE bit indicates that the UART transmit channel is ready for new
data and software can write to UART_THR. Writes to UART_THR clear the THRE
bit. It is set again when data is passed from UART_THR to the internal TSR
register.

The TEMT bit indicates that both the UART_THR register and the internal TSR
register are empty. In this case the program is permitted to write to the
UART_THR register twice without losing data. The TEMT bit can also be used
as an indicator that pending UART transmission has been completed. At
that time it is safe to disable the UCEN bit or to three-state the off-chip line
driver.

UART Transmit Holding (UART_THR) Register

The write-only UART_THR register, shown in Figure 11-10, is mapped to
the same address as the read-only UART_RBR and UART_DLL registers. To
access UART_THR, the DLAB bit in UART_LCR must be cleared. When the DLAB

11-26 ADSP-BF59x Blackfin Processor Hardware Reference



UART Port Controllers

bit is cleared, writes to this address target the UART_THR register, and reads
from this address return the UART_RBR register.

UART Transmit Holding Register (UART_THR)
write only

1514 1312 11 10 9 8 7 6 5 4 3 2 1 0
I0|0|0 |0 I0|0|0|0|o|o Iolololololol Reset = 0x0000
| |

\—Transmit Hold[7:0]

Figure 11-10. UART Transmit Holding Register

UART Receive Buffer (UART_RBR) Register

The read-only UART_RBR register, shown in Figure 11-11, is mapped to the
same address as the write-only UART_THR and UART_DLL registers. To access
UART_RBR, the DLAB bit in UART_LCR must be cleared. When the DLAB bit is
cleared, writes to this address target the UART_THR register, while reads
from this address return the value in the UART_RBR register.

UART Receive Buffer Register (UART_RBR)
read only

1514 1312 11 10 9 8 7 6 5 4 3 2 1 0
|0|0|0 |0 Io |o |o |0 olo Iolololololol Reset = 0x0000
]

\— Receive Buffer[7:0]

Figure 11-11. UART Receive Buffer Register

UART Interrupt Enable (UART_IER) Register

The UART_IER register, shown in Figure 11-12 on page 11-28, is used to
enable requests for system handling of empty or full states of UART data
registers. Unless polling is used as a means of action, the ERBFI and/or
ETBEI bits in this register are normally set.

ADSP-BF59x Blackfin Processor Hardware Reference 11-27



UART Registers

Setting this register without enabling system DMA causes the UART to
notify the processor of data inventory state by means of interrupts. For

proper operation in this mode, system interrupts must be enabled, and

appropriate interrupt handling routines must be present. For backward

compatibility, the UART_IIR still reflects the correct interrupt status.

Each UART features three separate interrupt channels to handle
data transmit, data receive, and line status events independently,
regardless of whether DMA is enabled or not. On some processors,
the status interrupt channels from multiple UARTs may be ORed
prior to being connected to the system interrupt controller. See
Chapter 4, “System Interrupts” for more information.

With system DMA enabled, the UART uses DMA to transfer data to or
from the processor. Dedicated DMA channels are available to receive and
transmit operation. Line error handling can be configured completely
independently from the receive/transmit setup.

The UART_IER registers are mapped to the same address as the UART_DLH
registers. To access UART_IER, the DLAB bit in UART_LCR must be cleared.

UART Interrupt Enable Register (UART_IER)

1514 1312 11 10 9 8 7 6 5 4 3 2 1 0
|0|0|0 |0|0 |0|0|o|o|o |0|0|0|o|0|0| Reset = 0x0000

ERBFI (Enable Receive
Buffer Full Interrupt)

0 - No interrupt

ELSI (Enable RX Status Interrupt) 1 - Generate %X interrupt if
0 - No interrupt DR bit in UART_LSR is
1 - Generate line status interrupt if set

any of UART_LSR[4:1]is set ETBEI (Enable Transmit
Buffer Empty Interrupt)
0 - No interrupt
1 - Generate TX interrupt if

THRE bit in UART_LSR is
set

Figure 11-12. UART Interrupt Enable Register

11-28 ADSP-BF59x Blackfin Processor Hardware Reference



UART Port Controllers

The UART’s DMA is enabled by first setting up the system DMA control
registers and then enabling the UART ERBFI and/or ETBEI interrupts in
the UART_IER register. This is because the interrupt request lines double as
DMA request lines. Depending on whether DMA is enabled or not, upon
receiving these requests, the DMA control unit either generates a direct
memory access or passes the UART interrupt on to the system interrupt
handling unit. However, UART’s error interrupt goes directly to the sys-
tem interrupt handling unit, bypassing the DMA unit completely.

The ELST bit enables interrupt generation on an independent interrupt
channel when any of the following conditions are raised by the respective
bit in the UART_LSR register:

* Receive overrun error (0F)
* Receive parity error (PE)
* Receive framing error (FE)

* Break interrupt (B1)

UART Interrupt Identification (UART_IIR) Register

The UART_IIR register conveys interrupt status within the UART. When
cleared, the NINT bit signals that an interrupt is pending. The STATUS field
indicates the highest priority pending interrupt. The receive line status has
the highest priority; the UART_THR empty interrupt has the lowest priority.
In the case where both interrupts are signaling, the UART_IIR reads 0x06.

ADSP-BF59x Blackfin Processor Hardware Reference 11-29



UART Registers

When a UART interrupt is pending, the interrupt service routine needs to
clear the interrupt latch explicitly. Figure 11-13 shows how to clear any of
the three latches.

UART Interrupt Identification Register (UART_IIR)
read only
514 13 12 11 10 9

1 8 76 5 4 3 2 1 0
Io|o|o|o|o|o|o|o|o|o |o|o|o|o|o|1| Reset = 0x0001

NINT (Pending interrupt)
0 - Interrupt pending
STATUS[1:0] 1 - No interrupt pending
00 - Reserved
01 - UART_THR empty. Write UART_THR or read UART_IIR to clear

interrupt request.
10 - Receive data ready. Read UART_RBR to clear interrupt request.
11 - Receive line status. Read UART_LSR to clear interrupt request.

Figure 11-13. UART Interrupt Identification Register

The TX interrupt request is cleared by writing new data to the UART_THR
register or by reading the UART_IIR register. Please note the special role of
the UART_TIR register read in the case where the service routine does not
want to transmit further data.

If software stops transmission, it must read the UART_IIR register to reset
the interrupt request. As long as the UART_IIR register reads 0x04 or 0x06
(indicating that another interrupt of higher priority is pending), the
UART_THR empty latch cannot be cleared by reading UART_TIR.

Because of the destructive nature of these read operations, special

care should be taken. For more information, see the Memory chap-
ter of the ADSP-BF59x Blackfin Processor Hardware Reference.

UART Divisor Latch
(UART_DLL and UART_DLH) Registers

The UART_DLL register is mapped to the same address as the UART_THR and
UART_RBR registers. The UART_DLH register is mapped to the same address as

11-30 ADSP-BF59x Blackfin Processor Hardware Reference



UART Port Controllers

the UART_IER register. The DLAB bit in UART_LCR must be set before the
UART_DLL and UART_DLH registers, shown in Figure 11-14, can be accessed.

UART Divisor Latch Low Byte Register (UART_DLL)
15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0

Io |0 |o |o Io |o |o |o Iolo Io Io Io Io Io |1 I Reset = 0x0001
| |

\— Divisor Latch Low Byte[7:0]

UART Divisor Latch High Byte Register (UART_DLH)

15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0
|o|o|o|o|o|o|o|o|o|o |o|o|o|o|o|o| Reset = 0x0000
| |

\— Divisor Latch High Byte[15:8]

Figure 11-14. UART Divisor Latch Registers

Note the 16-bit divisor formed by UART_DLH and UART_DLL resets to
0x0001, resulting in the highest possible clock frequency by
default. If the UART is not used, disabling the UART clock saves
power. The UART_DLH and UART_DLL registers can be programmed
by software before or after setting the UCEN bit.

ADSP-BF59x Blackfin Processor Hardware Reference 11-31



UART Registers

UART Scratch (UART_SCR) Register

The 8-bit UART_SCR register, shown in Figure 11-15, is used for gen-
eral-purpose data storage and does not control the UART hardware in any
way. The contents are reset to 0x00.

UART Scratch Register (UART_SCR)

1514 1312 11 10 9 8 7 6 5 4 3 2 1 0
|o|o|o|0|0|o|o|o|o|o |o|0|o|o|o|o| Reset = 0x0000

L |
L Scratch[7:0]

Figure 11-15. UART Scratch Register

UART Global Control (UART_GCTL) Register

The UART_GCTL register, shown in Figure 11-16, contains the enable bit for
internal UART clocks and for the IrDA mode of operation of the UART.

UART Global Control Register (UART_GCTL)

1514 1312 11 10 9 8 7 6 5 4 3 2 1 0
|0|0|0|0|0|0|o|olo|o |o|0|0|0|0|0| Reset = 0x0000

UCEN (UART Controller Enable)
0 - Disable UART

FFE (Force Framing Error on Transmit) 1 - Enable UART

0 - Normal operation

1 - Force error IREN (Enable IrDA Mode)
) ) 0 - Disable IrDA

FPE (Force Parity Error on Transmit) 1 - Enable IrDA

0 - Normal operation
1 - Force error

TPOLC (IrDA TX Polarity Change)

. 0 - Serial line idles low
RPOLC (IrDA RX Polarity Change) 1 - Serial line idles high

0 - Serial line idles low
1 - Serial line idles high

Figure 11-16. UART Global Control Register

11-32 ADSP-BF59x Blackfin Processor Hardware Reference



UART Port Controllers

The UCEN bit enables the UART clocks. It also resets the state machine and
control registers when cleared.

This bit has been introduced to save power if the UART is not used.
When porting code, be sure to enable this bit.

The IrDA TX polarity change bit and the IrDA RX polarity change bit are
effective only in IrDA mode. The two force error bits, FPE and FFE, are
intended for test purposes. They are useful for debugging software, espe-
cially in loopback mode.

Programming Examples

The subroutine in Listing 11-1 shows a typical UART initialization
sequence.

Listing 11-1. UART Initialization

/**************************************************************

* Configures UART in 8 data bits, no parity, 1 stop bit mode.
* Input parameters: r0 holds divisor latch value to be

* written into

* DLH:DLL registers.

* p0 contains the UART_GCTL register address
* Return values: none

*************************************************************/

uart_init:
[--spl = r7;
r7 = UCEN (z); /* First of all, enable UART clock */
w[pO+UARTO_GCTL-UARTO_GCTL] = r7;
r7 = DLAB (z); /* to set bit rate */
w[pO+UARTO_LCR-UARTO_GCTL] = r7; /* set DLAB bit first */
wlpO+UARTO_DLL-UARTO_GCTL] = r0; /* write lower byte to DLL */
r7 =r0 >> 8;

ADSP-BF59x Blackfin Processor Hardware Reference 11-33



Programming Examples

w[pO+UARTO_DLH-UARTO_GCTL] = r7; /* write upper byte to DLH */
r7 = STB | WLS(8) (z); /* clear DLAB again and config to */
w[pO+UARTO_LCR-UARTO_GCTL] = r7;

/* 8 bits, no parity, 2 stop bits */
r7 = [sp++l;
rts;

uart_init.end:

The subroutine in Listing 11-2 performs autobaud detection similarly to

UART boot.

Listing 11-2. UART Autobaud Detection Subroutine

/***************************************************************

*

*

*

*

*

*

*

Assuming 8 data bits, this functions expects a '@’

(ASCIT 0x40) character

on the UART RX pin. A Timer performs the autobaud detection.

Input parameters: p0O contains the UART_GCTL register address
pl contains the TIMER_CONFIG register

address

Return values: r0 holds timer period value (equals 8 bits)

***************************************************************/

uart_autobaud:

[--sp]l = (r7:5,p5:5);

r5.h = hi(TIMERO_CONFIG); /* for generic timer use calculate
*/
r5.1 = To(TIMERO_CONFIG); /* specific bits first */
r7 = pl;
r7 =r7 - rb;
r7 >>= 4; /* r7 holds the 'x' of TIMERXx_CONFIG now */
rb5 = TIMENO (z);
r5 <<= r7; /* r5 holds TIMENX/TIMDISx now */
r6 = TRUNO | TOVL_ERRO | TIMILO (z);
re <<= r7;
CC = r7 <= 3;
11-34 ADSP-BF59x Blackfin Processor Hardware Reference



*/

UART Port Controllers

r7 = re << 12;
if ICC r6 = r7; /* r6 holds TRUNx | TOVL_ERRx | TIMILx */

pb.h = hi(TIMER_STATUS);
p5.1 = To(TIMER_STATUS);
wlp5 + TIMER_DISABLE - TIMER_STATUS] = r5; /* disable Timer x

[p5 + TIMER_STATUS - TIMER_STATUS] = ré6;

/* clear pending latches */

/* period capture, falling edge to falling edge */
r7 = TIN_SEL | IRQ_ENA | PERIOD_CNT | WDTH_CAP (z);
wlpl + TIMERO_CONFIG - TIMERO_CONFIG] = r7;
w[pb+TIMER_ENABLE-TIMER_STATUS] = rb5;

uart_autobaud.wait: /* wait for timer event */
r7 = wlp5 + TIMER_STATUS - TIMER_STATUS] (z);
r7 =r7 & rb;
CC =r7 ==

*/

if CC jump uart_autobaud.wait;
wlpb + TIMER_DISABLE - TIMER_STATUS] = rb5; /* disable Timer x

[p5 + TIMER_STATUS - TIMER_STATUS] = ré6;
/* clear pending latches */
/* Save period value to RO */
r0 = [pl + TIMERO_PERIOD - TIMERO_CONFIGI];
/* delay processing as autobaud character is still ongoing */
r7 = OUT_DIS | IRQ_ENA | PERIOD_CNT | PWM_OUT (z);
wlpl + TIMERO_CONFIG - TIMERO_CONFIG] = r7;
wlpb + TIMER_ENABLE - TIMER_STATUS] = rb5;

uart_autobaud.delay:

r7 = wlpb + TIMER_STATUS - TIMER_STATUS] (z);
r7 =r7 & rb;
CC =r7 ==

if CC jump uart_autobaud.delay;
wlpb + TIMER_DISABLE - TIMER_STATUS] = rb;
[p5 + TIMER_STATUS - TIMER_STATUS] = r6;

ADSP-BF59x Blackfin Processor Hardware Reference 11-35



Programming Examples

(r7:5,p5:5) = [sp++];
rts;
uart_autobaud.end:

The parent routine in Listing 11-3 performs autobaud detection, using as
an example a processor whose TIMER4 is mapped to UARTO for this pur-
pose. Note also that this example assumes the processor's UARTO pins are

mapped to PORT G (PG7 and PGS).
Listing 11-3. UART Autobaud Detection Parent Routine

pO0.1 = To(PORTG_FER);
/* function enable on UARTO pins PG7 and PG8 */

pO.h = hi(PORTG_FER);

r0 = PG7 | PG8 (z2)

wlp0] = r0;

p0.1 = To(PORTG_MUX);

p0.h = hi(PORTG_MUX) ;

ro.1 = 0x0020;

r0.h = 0x0000;

wlpO] = r0;

p0.1 = To(UARTO_GCTL); /* select UART 0 */
pO.h = hi(UARTO_GCTL);

pl.1 = To(TIMER4_CONFIG); /* select TIMER 4 */
pl.h = hi(TIMER4_CONFIG);

call uart_autobaud;
rQ >>=7; /* divide PERIOD value by (16 x 8) */
call uart_init;

The subroutine in Listing 11-4 on page 11-37 transmits a character by
polling operation.

11-36 ADSP-BF59x Blackfin Processor Hardware Reference



UART Port Controllers

Listing 11-4. UART Character Transmission

/*******************************************************

* Transmit a single byte by polling the THRE bit.
* Input parameters: r0O holds the character to be transmitted
* p0 contains UART_GCTL register address
* Return values: none
*******************************************************/
uart_putc:
[--sp]l = r7;
uart_putc.wait:
r7 w[pO+UARTO_LSR-UARTO_GCTL] (z);
CC = bittst(r7, bitpos(THRE));
if ICC jump uart_putc.wait;
w[pO+UARTO_THR-UARTO_GCTL] = r0; /* write initiates transfer
*/
r7 = [sp++];
rts;

uart_putc.end:

Use the routine shown in Listing 11-5 to transmit a C-style string that is
terminated by a null character.

Listing 11-5. UART String Transmission

/**************************************************************

* Transmit a null-terminated string.
* Input parameters: pl points to the string
* p0 contains UART_GCTL register address

* Return values: none
*************************************************************/

uart_puts:
[--sp] = rets;
[--sp]l = r0;

uart_puts.loop:

ADSP-BF59x Blackfin Processor Hardware Reference 11-37



Programming Examples

ro
cC
if CC jump uart_puts.exit;

blpl++]l (z);
rg ==

call uart_putc;
Jjump uart_puts.loop;
uart_puts.exit:

ro = [sp++];
rets = [sp++];
rts;

uart_puts.end:

Note that polling the UARTO_LSR register for transmit purposes may clear
the receive error latch bits. It is, therefore, not recommended to poll
UARTO_LSR for transmission this way while data is being received. In that
case, write a polling loop that reads UART_LSR once and then evaluates a//
status bits of interest, as shown in Listing 11-6.

Listing 11-6. UART Polling Loop

uart_Tloop:
r7 = wlpO+UARTO_LSR-UARTO_GCTL] (z);
cc bittst(r7, bitpos(DR));
if 1CC jump uart_loop.transmit;

rée = wlpO+UARTO_RBR-UARTO_GCTL] (z);
r5 = BI | OE | FE | PE (2);

rb5 =rb & r7;

CC = r5 ==

if ICC jump uart_loop.error;

blpl++] = r6; /* store byte */

uart_loop.transmit:
CC = bittst(r7, bitpos(THRE));
if 1CC jump uart_Tloop;
r5 = blp2++] (z); /* Toad next byte */
wlpO+UARTO_THR-UARTO_GCTL] = rb5;
jump uart_Toop;

11-38 ADSP-BF59x Blackfin Processor Hardware Reference



UART Port Controllers

uart_Tloop.error:

jump uart_Toop;

In non-DMA interrupt operation, the three UART interrupt request lines
may or may not be ORed together in the system interrupt controller. If

they had three different service routines, they may look as shown in
Listing 11-7.

Listing 11-7. UART Non-DMA Interrupt Operation

isr_uart_rx:
[--sp] = astat;

[--spl = r7;

r7 = w[pO+UARTO_RBR-UARTO_GCTL] (z);
blpd++] = r7;

ssync;

r7 = [sp++]l;

astat = [sp++];

rti;

isr_uart_rx.end:
isr_uart_tx:
[--sp] = astat;

[--sp]l = r7;
r7 = blp3++] (z);
CC =r7 ==

if CC Jjump isr_uart_tx.final;
w[pO+UARTO_THR-UARTO_GCTL] = r7;

r7 = [sp++];
astat = [sp++];
ssync;

rti;

isr_uart_tx.final:
r7 = wlpO+UARTO_IER-UARTO_GCTL] (z);
/* clear TX interrupt enable */

ADSP-BF59x Blackfin Processor Hardware Reference

11-39



Programming Examples

bitclr(r7, bitpos(ETBEI)); /* ensure this sequence is not */
w[pO+UARTO_TER-UARTO_GCTL] = r7;
/* interrupted by other IER accesses */

ssync;

r7 = [sp++1;
astat = [sp++];
rti;

isr_uart_tx.end:
isr_uart_error:
[--sp] = astat;

[--sp]l =1r7;

r7 = wlpO+UARTO_LSR-UARTO_GCTL] (z);
/* read clears interrupt request */
/* do something with the error */

r7 = Lsp++1;

astat = [sp++];

ssync;

rti;

isr_uart_error.end:

Listing 11-8 transmits a string by DMA operation, waits until DMA com-
pletes and sends an additional string by polling. Note the importance of
the SYNC bit.

Listing 11-8. UART Transmission SYNC Bit Use

.section data;
.byte sHello[]
.byte sWorld[]
.section program;

"Hello Blackfin User',13,10,0;
"How is 1ife?',13,10,0;

pl.1

= Jo(IMASK);
pl.h = hi(IMASK);
r0.1 = lo(isr_uart_tx); /* register service routine */
r0.h = hi(isr_uart_tx); /*Assume UARTO TX defaults to IVG10*/

11-40 ADSP-BF59x Blackfin Processor Hardware Reference



/*
/*

/*
/*

UART Port Controllers

r0 = [pl + IMASK - IMASKI]; /* unmask interrupt in CEC */
bitset(r0, bitpos(EVT_IVG10));

[pl] = r0;

pl.1 = To(SIC_IMASKO);
pl.h = hi(SIC_IMASKO);
unmask interrupt in SIC */

(assume SIC_IMASKO for this example)*/

ro.1 = 0x0080;

r0.h = 0x0000;

[pl] = r0;

[--sp]l = reti; /* enable nesting of interrupts */

p5.1 = To(DMA9_CONFIG);

setup DMA in STOP mode */

(assume DMA channel 9 for this example)*/
p5.h = hi(DMA9_CONFIG);

r7.1 lo(sHello);

r7.h hi(sHello);
[p5+DMA9_START_ADDR-DMA9_CONFIG] = r7;

r7 = length(sHello) (z);

r7+= -1; /* do not send trailing null character */
w[p5+DMA9_X_COUNT-DMA9_CONFIG] = r7;

r7 =1;

wlp5+DMA9_X_MODIFY-DMA9_CONFIG] = r7;

r7 = FLOW_STOP | WDSIZE_8 | DI_EN | SYNC | DMAEN (z);

wlpb] = r7;

pO0.1 = To(UARTO_GCTL); /* select UART 0 */

pO.h = hi(UARTO_GCTL);

r0 = ETBEI (z); /* enable and issue first request */
w[pO+UARTO_IER-UARTO_GCTL] = r0;

waitddma: /* just one way to synchronize with the service rou-
tine */

r0 = wlp5+DMA9_TRQ_STATUS-DMA9_CONFIG] (z);
CC = bittst(r0,bitpos(DMA_RUN));
if CC jump waitddma;

ADSP-BF59x Blackfin Processor Hardware Reference 11-41



Unique Information for the ADSP-BF59x Processor

pl.T=1o(sWorld);
pl.h=hi(sWorld);
call uart_puts;
forever: jump forever;
isr_uart_tx:
[--sp] = astat;
[--sp]l = r7;
r7 = DMA_DONE (z); /* WIC interrupt request */
w[p5+DMA9_TIRQ_STATUS-DMA9_CONFIG] = r7;

r7 = 0; /* pulse ETBEI for general case */
wlpO+UARTO_IER-UARTO_GCTL] = r7;

ssync;

r7 = [sp++];

astat = [sp++];

rti;

isr_uart_tx.end:

Unique Information for the ADSP-BF59x
Processor

None.

11-42 ADSP-BF59x Blackfin Processor Hardware Reference



12 TWO WIRE INTERFACE
CONTROLLER

This chapter describes the two wire interface (TWI) port. Following an
overview and a list of key features is a description of operation and func-
tional modes of operation. The chapter concludes with a programming
model, consolidated register definitions, and programming examples.

Specific Information for the ADSP-BF59x

For details regarding the number of TWIs for the ADSP-BF59x product,
please refer to the ADSP-BF592 Blackfin Processor Data Sheet.

For TWI interrupt vector assignments, refer to Table 4-3 on page 4-17 in
Chapter 4, “System Interrupts”.

To determine how each of the TWIs is multiplexed with other functional
pins, refer to Table 7-1 on page 7-3 through Table 7-2 on page 7-4 in
Chapter 7, “General-Purpose Ports”.

For a list of MMR addresses for each TWI, refer to Chapter A, “System
MMR Assignments”.

TWI behavior for the ADSP-BF59x that differs from the general informa-
tion in this chapter can be found at the end of this chapter in the section
“Unique Information for the ADSP-BF59x Processor” on page 12-59.

ADSP-BF59x Blackfin Processor Hardware Reference 12-1



Overview

Overview

The TWI controller allows a device to interface to an inter IC bus as spec-
ified by the Philips I>C Bus Specification version 2.1 dated January 2000.

The TWI is fully compatible with the widely used I*C bus standard. It
was designed with a high level of functionality and is compatible with
multi-master, multi-slave bus configurations. To preserve processor band-
width the TWI controller can be set up with transfer initiated interrupts
only to service FIFO buffer data reads and writes. Protocol related inter-
rupts are optional.

The TWI externally moves 8-bit data while maintaining compliance with

the I2C bus protocol. The TWI controller includes these features:

Simultaneous master and slave operation on multiple device
systems

Support for multi-master bus arbitration

7-bit addressing

100K bits/second and 400K bits/second data rates

General call address support

Master clock synchronization and support for clock low extension
Separate multiple-byte receive and transmit FIFOs

Low interrupt rate

Individual override control of data and clock lines in the event of

bus lock-up

12-2

ADSP-BF59x Blackfin Processor Hardware Reference



Two Wire Interface Controller

Input filter for spike suppression

Serial camera control bus support as specified in the OmniVision

Serial Camera Control Bus (SCCB) Functional Specification version
2.1.

Interface Overview

Figure 12-1 provides a block diagram of the TWI controller. The interface
is essentially a shift register that serially transmits and receives data bits,

one bit at a time at the SCL rate, to and from other TWI devices. The SCL
signal synchronizes the shifting and sampling of the data on the serial data

pln.
SDA scL
[
| TWI INTERFACE LOGIC
e — - - - = ;
| i | ApDREss CLOCK
! ' | compare PRESCALER | | ARBITRATION | K= GENERATION
)
\
\i
Tx SHIFT REG Rx SHIFT REG
2-DEEP FIFO 2-DEEP FIFO
Tx REG Rx REG
T l L PAB
A /

Figure 12-1. TWI Block Diagram

ADSP-BF59x Blackfin Processor Hardware Reference 12-3



Interface Overview

External Interface

The SDA (serial data) and SCL (serial clock) signals are open drain and as
such require pull-up resistors.

Serial Clock Signal (SCL)

In slave mode this signal is an input and an external master is responsible

for providing the clock.

In master mode the TWI controller must set this signal to the desired fre-
quency. The TWI controller supports the standard mode of operation (up
to 100 KHz) or fast mode (up to 400 KHz).

The TWI control register (TWI_CONTROL) is used to set the PRESCALE value
which gives the relationship between the system clock (SCLK) and the TWI
controller’s internally timed events. The internal time reference is derived
from SCLK using a prescaled value.

PRESCALE = fgcpx/10MHz

The PRESCALE value is the number of system clock (SCLK) periods used in
the generation of one internal time reference. The value of PRESCALE must
be set to create an internal time reference with a period of 10 MHz. It is
represented as a 7-bit binary value.

Serial Data Signal (SDA)

This is a bidirectional signal on which serial data is transmitted or received
depending on the direction of the transfer.

12-4 ADSP-BF59x Blackfin Processor Hardware Reference



Two Wire Interface Controller

TWI Pins

Table 12-1 shows the pins for the TWI. Two bidirectional pins externally

interface the TW1I controller to the I2C bus. The interface is simple and
no other external connections or logic are required.

Table 12-1. TWI Pins

Pin Description
SDA In/Out TWI serial data, high impedance reset value.
SCL In/Out TWI serial clock, high impedance reset value.

Internal Interfaces

The peripheral bus interface supports the transfer of 16-bit wide data and
is used by the processor in the support of register and FIFO buffer reads
and writes.

The register block contains all control and status bits and reflects what can
be written or read as outlined by the programmer’s model. Status bits can
be updated by their respective functional blocks.

The FIFO buffer is configured as al-byte-wide 2-deep transmit FIFO
buffer and a 1-byte-wide 2-deep receive FIFO bulffer.

The transmit shift register serially shifts its data out externally off chip.
The output can be controlled for generation of acknowledgements or it
can be manually overwritten.

The receive shift register receives its data serially from off chip. The
receive shift register is 1 byte wide and data received can either be trans-
ferred to the FIFO buffer or used in an address comparison.

The address compare block supports address comparison in the event the
TWI controller module is accessed as a slave.

ADSP-BF59x Blackfin Processor Hardware Reference 12-5



Description of Operation

The prescaler block must be programmed to generate a 10 MHz time ref-
erence relative to the system clock. This time base is used for filtering of
data and timing events specified by the electrical data sheet (See the Phil-
ips Specification), as well as for SCL clock generation.

The clock generation module is used to generate an external SCL clock
when in master mode. It includes the logic necessary for synchronization
in a multi-master clock configuration and clock stretching when config-
ured in slave mode.

Description of Operation

The following sections describe the operation of the TWI interface.

TWI Transfer Protocols

The TWI controller follows the transfer protocol of the Philips I2C Bus
Specification version 2.1 dated January 2000. A simple complete transfer is
diagrammed in Figure 12-2.

| S | 7-BIT ADDRESS | RW | ACK| 8-BIT DATA |ACK | P |

S = START
P = STOP
ACK = ACKNOWLEDGE

Figure 12-2. Basic Data Transfer
To better understand the mapping of TWI controller register contents to

a basic transfer, Figure 12-3 details the same transfer as above noting the
corresponding TWI controller bit names. In this illustration, the TWI

12-6 ADSP-BF59x Blackfin Processor Hardware Reference



Two Wire Interface Controller

controller successfully transmits one byte of data. The slave has acknowl-

edged both address and data.

| S | MADDRI[6:0] |MDIR |ACK | XMITDATAB8[7:0] |ACK | P |

S = START
P = STOP

ACK = ACKNOWLEDGE

Figure 12-3. Data Transfer With Bit Illustration

Clock Generation and Synchronization

The TWI controller implementation only issues a clock during master
mode operation and only at the time a transfer has been initiated. If arbi-
tration for the bus is lost, the serial clock output immediately three-states.
If multiple clocks attempt to drive the serial clock line, the TWI controller
synchronizes its clock with the other remaining clocks. This is shown in
Figure 12-4.

HIGH Low
COUNT COUNT
S E—

SECOND MASTER

CLOCK

SCL
RESULT

Figure 12-4. TWI Clock Synchronization

ADSP-BF59x Blackfin Processor Hardware Reference 12-7



Description of Operation

The TWI controller’s serial clock (SCL) output follows these rules:

* Once the clock high (CLKHI) count is complete, the serial clock out-
put is driven low and the clock low (CLKLOW) count begins.

*  Once the clock low count is complete, the serial clock line is
three-stated and the clock synchronization logic enters into a delay
mode (shaded area) until the SCL line is detected at a logic 1 level.
At this time the clock high count begins.

Bus Arbitration

The TWI controller initiates a master mode transmission (MEN) only when
the bus is idle. If the bus is idle and two masters initiate a transfer, arbitra-
tion for the bus begins. This is shown in Figure 12-5.

SCL (BUS) ™7

TWI CONTROLLER |

I
DATA | \:_/ \

SECOND MASTER
DATA

SDA (BUS)

ARBITRATION
\ | / \ LOST |
| L/

| START |

Figure 12-5. TWI Bus Arbitration

The TWI controller monitors the serial data bus (SDA) while ScL is high
and if SDA is determined to be an active logic 0 level while the TWI con-
troller’s data is a logic 1 level, the TWI controller has lost arbitration and
ends generation of clock and data. Note arbitration is not performed only
at serial clock edges, but also during the entire time SCL is high.

12-8 ADSP-BF59x Blackfin Processor Hardware Reference



Two Wire Interface Controller

Start and Stop Conditions

Start and stop conditions involve serial data transitions while the serial
clock is a logic 1 level. The TWI controller generates and recognizes these
transitions. Typically start and stop conditions occur at the beginning and
at the conclusion of a transmission with the exception repeated start
“combined” transfers, as shown in Figure 12-6.

SCL (BUS) [ 1
I
I

SDA (BUS) |

Figure 12-6. TWI Start and Stop Conditions
The TWI controller’s special case start and stop conditions include:
e TWI controller addressed as a slave-receiver

If the master asserts a stop condition during the data phase of a
transfer, the TWI controller concludes the transfer (SCOMP).

e TWI controller addressed as a slave-transmitter

If the master asserts a stop condition during the data phase of a
transfer, the TWI controller concludes the transfer (SCOMP) and
indicates a slave transfer error (SERR).

e TWI controller as a master-transmitter or master-receiver

If the stop bit is set during an active master transfer, the TWI con-
troller issues a stop condition as soon as possible avoiding any error
conditions (as if data transfer count had been reached).

ADSP-BF59x Blackfin Processor Hardware Reference 12-9



Functional Description

General Call Support

The TWI controller always decodes and acknowledges a general call
address if it is enabled as a slave (SEN) and if general call is enabled (GEN).
general call addressing (0x00) is indicated by the GCALL bit being set and
by nature of the transfer the TWI controller is a slave-receiver. If the data
associated with the transfer is to be NAK’ed, the NAK bit can be set.

If the TWI controller is to issue a general call as a master-transmitter the
appropriate address and transfer direction can be set along with loading
transmit FIFO data.

Fast Mode

Fast mode essentially uses the same mechanics as standard mode of opera-
tion. It is the electrical specifications and timing that are most affected.
When fast mode is enabled (FAST) the following timings are modified to
meet the electrical requirements.

* Serial data rise times before arbitration evaluation (t,)

* Stop condition set-up time from serial clock to serial data
(tsu;sTO)

* Bus free time between a stop and start condition (tgyf)

Functional Description

The following sections describe the functional operation of the TWI.

12-10 ADSP-BF59x Blackfin Processor Hardware Reference



Two Wire Interface Controller

General Setup

General setup refers to register writes that are required for both slave
mode operation and master mode operation. General setup should be per-
formed before either the master or slave enable bits are set.

e Program the TWI_CONTROL register to enable the TWI controller
and set the prescale value. Program the prescale value to the binary
representation of fg-p x/10MHz

All values should be rounded up to the next whole number. The TWI_ENA
bit enable must be set. Note once the TWI controller is enabled a bus
busy condition may be detected. This condition should clear after tgyp

has expired assuming no additional bus activity has been detected.

Slave Mode

When enabled, slave mode operation supports both receive and transmit
data transfers. It is not possible to enable only one data transfer direction
and not acknowledge (NAK) the other. This is reflected in the following
setup.

1. Program TWI_SLAVE_ADDR. The appropriate 7 bits are used in deter-
mining a match during the address phase of the transfer.

2. Program TWI_XMT_DATA8 or TWI_XMT_DATA16. These are the initial
data values to be transmitted in the event the slave is addressed and
a transmit is required. This is an optional step. If no data is written
and the slave is addressed and a transmit is required, the serial
clock (scL) is stretched and an interrupt is generated until data is
written to the transmit FIFO.

3. Program TWI_INT_MASK. Enable bits are associated with the desired
interrupt sources. As an example, programming the value 0x000F
results in an interrupt output to the processor in the event that a

ADSP-BF59x Blackfin Processor Hardware Reference 12-11



Functional Description

valid address match is detected, a valid slave transfer completes, a

slave transfer has an error, a subsequent transfer has begun yet the
previous transfer has not been serviced.

4. Program TWI_SLAVE_CTL. Ultimately this prepares and enables slave
mode operation. As an example, programming the value 0x0005
enables slave mode operation, requires 7-bit addressing, and indi-

cates that data in the transmit FIFO buffer is intended for slave
mode transmission.

Table 12-2 shows what the interaction between the TWTI controller and
the processor might look like using this example.

Table 12-2. Slave Mode Setup Interaction

TWI Controller Master Processor

Interrupt: SINIT — Slave transfer in progress. Acknowledge: Clear interrupt source bits.

Interrupt: RCVFULL — Receive buffer is full. | Read receive FIFO buffer.

Acknowledge: Clear interrupt source bits.

Interrupt: SCOMP — Slave transfer complete. | Read receive FIFO buffer.

Acknowledge: Clear interrupt source bits.

Master Mode Clock Setup

Master mode operation is set up and executed on a per-transfer basis. An
example of programming steps for a receive and for a transmit are given

separately in following sections. The clock setup programming step listed
here is common to both transfer types.

e Program TWI_CLKDIV. This defines the clock high duration and
clock low duration.

12-12 ADSP-BF59x Blackfin Processor Hardware Reference



Two Wire Interface Controller

Master Mode Transmit

Follow these programming steps for a single master mode transmit:

1. Program TWI_MASTER_ADDR. This defines the address transmitted
during the address phase of the transfer.

2. Program TWI_XMT_DATA8 or TWI_XMT_DATA16. This is the initial data
transmitted. It is considered an error to complete the address phase

of the transfer and not have data available in the transmit FIFO
buffer.

3. Program TWI_FIFO_CTL. Indicate if transmit FIFO buffer interrupts
should occur with each byte transmitted (8-bits) or with each two
bytes transmitted (16-bits).

4. Program TWI_INT_MASK. Enable bits associated with the desired
interrupt sources. As an example, programming the value 0x0030
results in an interrupt output to the processor in the event that the
master transfer completes, and the master transfer has an error.

5. Program TWI_MASTER_CTL. Ultimately this prepares and enables
master mode operation. As an example, programming the value
0x0201 enables master mode operation, generates a 7-bit address,
sets the direction to master-transmit, uses standard mode timing,
and transmits 8 data bytes before generating a Stop condition.

Table 12-3 shows what the interaction between the TWI controller and
the processor might look like using this example.

Table 12-3. Master Mode Transmit Setup Interaction

TWI Controller Master Processor

Interrupt: XMTEMPTY - Transmit buffer is | Write transmit FIFO buffer.
empty. Acknowledge: Clear interrupt source bits.

ADSP-BF59x Blackfin Processor Hardware Reference 12-13



Functional Description

Table 12-3. Master Mode Transmit Setup Interaction (Continued)

TWI Controller Master Processor
Interrupt: MCOMP — Master transfer com- Acknowledge: Clear interrupt source bits.
plete.

Master Mode Receive

Follow these programming steps for a single master mode receive:

1. Program TWI_MASTER_ADDR. This defines the address transmitted
during the address phase of the transfer.

2. Program TWI_FIFO_CTL. Indicate if receive FIFO buffer interrupts
should occur with each byte received (8-bits) or with each two
bytes received (16-bits).

3. Program TWI_INT_MASK. Enable bits associated with the desired
interrupt sources. For example, programming the value 0x0030
results in an interrupt output to the processor in the event that the
master transfer completes, and the master transfer has an error.

4. Program TWI_MASTER_CTL. Ultimately this prepares and enables
master mode operation. As an example, programming the value
0x0205 enables master mode operation, generates a 7-bit address,
sets the direction to master-receive, uses standard mode timing,
and receives 8 data bytes before generating a Stop condition.

12-14 ADSP-BF59x Blackfin Processor Hardware Reference




Two Wire Interface Controller

Table 12-4 shows what the interaction between the TWI controller and
the processor might look like using this example.

Table 12-4. Master Mode Receive Setup Interaction

TWI Controller Master Processor

Interrupt: RCVFULL — Receive buffer is full. | Read receive FIFO bulffer.

Acknowledge: Clear interrupt source bits.

Interrupt: MCOMP — Master transfer com-
plete.

Acknowledge: Clear interrupt source bits.
Read receive FIFO buffer.

Repeated Start Condition

In general, a repeated start condition is the absence of a stop condition
between two transfers. The two transfers can be of any direction type.
Examples include a transmit followed by a receive, or a receive followed by

a transmit. The following sections guide the programmer in developing a
service routine.

Transmit/Receive Repeated Start Sequence

Figure 12-7 shows a repeated start data transmit followed by a data receive
sequence.

| S |7-BIT ADDRESS|R/W| ACK 8-BIT DATA | ACK| S |7-BIT ADDRESS |RIW| ACK | 8-BIT DATA ACK | P

XMTSERV INTERRUPT

RCVSERV INTERRUPT

MCOMP INTERRUPT MCOMP INTERRUPT

SHADING INDICATES SLAVE HAS THE BUS

Figure 12-7. Transmit/Receive Data Repeated Start

ADSP-BF59x Blackfin Processor Hardware Reference 12-15



Functional Description

The following tasks are performed at each interrupt.

XMTSERV interrupt

This interrupt was generated due to a FIFO access. Since this is the
last byte of this transfer, FIFO_STATUS indicates the transmit FIFO
is empty. When read, DCNT would be zero. Set the RSTART bit to
indicate a repeated start and set the MDIR bit if the following trans-
fer will be a data receive.

MCOMP interrupt

This interrupt was generated because all data has been transferred
(DCNT = 0). If no errors were generated, a start condition is initi-
ated. Clear the RSTART bit and program the DCNT with the desired
number of bytes to receive.

RCVSERV interrupt

This interrupt is generated due to the arrival of a byte in the receive
FIFO. Simple data handling is all that is required.

MCOMP interrupt

The transfer is complete.

12-16

ADSP-BF59x Blackfin Processor Hardware Reference



Two Wire Interface Controller

Receive/Transmit Repeated Start Sequence

Figure 12-8 on page 12-17 illustrates a repeated start data receive followed
by a data transmit sequence.

| S |7-BIT ADDRESS|RIW| ACK | 8-BIT DATA NACK| S |7-BIT ADDRESS |RIW| ACK 8-BIT DATA | ACK| P
/
RCVSERV INTERRUPT XMTSERV INTERRUPT \
MCOMP INTERRUPT MCOMP INTERRUPT

SHADING INDICATES SLAVE HAS THE BUS

Figure 12-8. Receive/Transmit Data Repeated Start

The tasks performed at each interrupt are:

RCVSERV interrupt

This interrupt is generated due to the arrival of a data byte in the
receive FIFO. Set the RSTART bit to indicate a repeated start and
clear the MDIR bit if the following transfer will be a data transmit.

MCOMP interrupt

This interrupt has occurred due to the completion of the data
receive transfer. If no errors were generated, a start condition is ini-
tiated. Clear the RSTART bit and program the DCNT with the desired
number of bytes to transmit.

XMTSERV interrupt

This interrupt is generated due to a FIFO access. Simple data han-
dling is all that is required.

MCOMP interrupt

ADSP-BF59x Blackfin Processor Hardware Reference 12-17



Functional Description

The transfer is complete.

There is no timing constraint to meet the above conditions—the
user can program the bits as required. Refer to “Clock Stretching
During Repeated Start Condition” on page 12-21 for more on how
the controller stretches the clock during Repeated Start transfers.

Clock Stretching

Clock stretching is an added functionality of the TWI controller in Master
Mode operation. This new behavior utilizes self-induced stretching of the

12C clock while waiting on servicing interrupts. Stretching is done auto-
matically by the hardware and no programming is required for this.

The TWI Controller as Master supports three modes of clock stretching:
“Clock Stretching During FIFO Underflow” on page 12-18, “Clock
Stretching During FIFO Overflow” on page 12-20 and “Clock Stretching
During Repeated Start Condition” on page 12-21.

Clock Stretching During FIFO Underflow

During a master mode transmit, an interrupt is generated at the instant
the transmit FIFO becomes empty. At this time, the most recent byte
begins transmission. If the XMTSERYV interrupt is not serviced, the con-
cluding “acknowledge” phase of the transfer will be stretched. Stretching
of the clock continues until new data bytes are written to the transmit
FIFO (TWI_XMT_DATA8 or TWI_XMT_DATA16). No other action is required to
release the clock and continue the transmission. This behavior continues
until the transmission is complete (DCNT = 0) at which time the transmis-

12-18 ADSP-BF59x Blackfin Processor Hardware Reference



Two Wire Interface Controller

sion is concluded (MCOMP) as shown in Figure 12-9 and described in

Table 12-5.

ACK WITH
| s |ADDRESS|RN\I|ACK| DATA |ACK| DATA |'STRETCH | DATA |
RCVSTAT[1:0]
00 X o/ X 11 X 0o X
TWI_RCV_DATA IS READ AT THIS TIME AND
CLOCK STRETCHING IS RELEASED.
1
1/ ACKNOWLEDGE WITH STRETCH
scL

ACKNOWLEDGE "STRETCH" BEGINS SOON AFTER SCL FALL.

Figure 12-9. Clock Stretching during FIFO Underflow

ADSP-BF59x Blackfin Processor Hardware Reference 12-19



Functional Description

Table 12-5. FIFO Underflow Case

TWI Controller

Processor

Interrupt: XMTSERV — Transmit FIFO buffer
is empty.

Acknowledge: Clear interrupt source bits.
Write transmit FIFO buffer.

Interrupt: MCOMP — Master transmit com-
plete (DCNT= 0x00).

Acknowledge: Clear interrupt source bits.

Clock Stretching During FIFO Overflow

During a master mode receive, an interrupt is generated at the instant the
receive FIFO becomes full. It is during the acknowledge phase of this
received byte that clock stretching begins. No attempt is made to initiate
the reception of an additional byte. Stretching of the clock continues until
the data bytes previously received are read from the receive FIFO buffer
(TWI_RCV_DATA8, TWI_RCV_DATA16). No other action is required to release
the clock and continue the reception of data. This behavior continues
until the reception is complete (DCNT = 0x00) at which time the reception
is concluded (MCOMP) as shown in Figure 12-10 and described in

Table 12-6.

12-20 ADSP-BF59x Blackfin Processor Hardware Reference




Two Wire Interface Controller

ACKWITH
| S |ADDRESS|R/W|ACK| DATA |ACK| DATA STRETCH | DATA |

RCVSTAT[1:0]

00 X 0/ X 1 X o0 X

TWI_RCV_DATA IS READ AT THIS TIME AND
CLOCK STRETCHING IS RELEASED.

1
| ACKNOWLEDGE WITH STRETCH

SCL

ACKNOWLEDGE "STRETCH" BEGINS SOON AFTER SCL FALL.

Figure 12-10. Clock Stretching During FIFO Overflow

Table 12-6. FIFO Overflow Case

TWI Controller Processor

Interrupt: RCVSERV — Receive FIFO buffer is | Acknowledge: Clear interrupt source bits.
full. Read receive FIFO buffer.

Interrupt: MCOMP — Master receive complete. | Acknowledge: Clear interrupt source bits.

Clock Stretching During Repeated Start Condition

The repeated start feature in I°C protocol requires transitioning between
two subsequent transfers. With the use of clock stretching, the task of
managing transitions becomes simpler and becomes common to all trans-

fer types.

Once an initial TWI master transfer has completed (transmit or receive)
the clock will initiate a stretch during the repeated start phase between

ADSP-BF59x Blackfin Processor Hardware Reference 12-21



Functional Description

transfers. Concurrent with this event the initial transfer will generate a
transfer complete interrupt (MCOMP) to signify the initial transfer has
completed (DCNT = 0). This initial transfer is handled without any special
bit setting sequences or timings. The clock stretching logic described
above applies here. With no system related timing constraints the subse-
quent transfer (receive or transmit) is setup and activated. This sequence
can be repeated as many times as required to string a series of repeated
start transfers together. This is shown in Figure 12-11 and described in
Table 12-7.

12-22 ADSP-BF59x Blackfin Processor Hardware Reference



Two Wire Interface Controller

MCOMP IS SET AT THIS TIME INDICATING
INITIAL TRANSFER HAS COMPLETED.

| s |ADDRESS|RIW|ACK| DATA |ACK RSTART/ |ADDRES% ACP1 DATA |ACK|

STRETCH
DCNT[7:0]
0x01 X ox00 / X 0x80 ox7F
MDIR (DIRECTION) AND DCNT ARE
WRITTEN AT THIS TIME.
CLOCK STRETCHING
IS RELEASED.
1
' REPEATED START WITH STRETCH
scL

REPEATED START "STRETCH" BEGINS SOON AFTER SCL FALL
DUE TO DCNT=0X00 AND RSTART.

Figure 12-11. Clock Stretching during Repeated Start Condition

Table 12-7. Repeated Start Case

TWI Controller Processor

Interrupt: MCOMP — Initial transmit has com-
pleted and DCNT = 0x00.

Acknowledge: Clear interrupt source bits.

Write TWI_MASTER_CTL, setting MDIR
Note: transfer in progress, RSTART previously | (receive), clearing RSTART, and setting new
set. DCNT value (nonzero).

Interrupt: RCVSERV — Receive FIFO is full.

Acknowledge: Clear interrupt source bits.
Read receive FIFO buffer.

Interrupt: MCOMP — Master receive complete.

Acknowledge: Clear interrupt source bits.

ADSP-BF59x Blackfin Processor Hardware Reference 12-23



Programming Model

Programming Model

Figure 12-12 and Figure 12-13 illustrate the programming model for the
TWI.

WRITE TO TWI_CONTROL TO SET
PRESCALE AND ENABLE THE TWI

'

WRITE TO TWI_SLAVE_ADDR

!

WRITE TO TWI_XMT_DATA REGISTER
TO PRE-LOAD THE TX FIFO

'

WRITE TO TWI_FIFO_CTL TO SELECT WHETHER
1 OR 2 BYTES GENERATE INTERRUPTS

{

WRITE TO TWI_INT_MASK TO UNMASK
TWI EVENTS TO GENERATE INTERRUPTS

'

WRITE TO TWI_SLAVE_CTL TO
ENABLE SLAVE FUNCTIONALITY

'

> WAIT FOR INTERRUPTS

RCVSERV

XMTSERV

READ DATA FROM
TWI_RCV_DATA
REGISTER

'

WRITE TWI_INT_STAT
TO CLEAR INTERRUPT

WRITE DATA INTO
TWI_XMT_DATA
REGISTER

!

WRITE TWI_INT_STAT
TO CLEAR INTERRUPT

INTERRUPT
SOURCE

WRITE TWI_INT_STAT TO CLEAR INTERRUPT

:

DONE

Figure 12-12. TWI Slave Mode

12-24 ADSP-BF59x Blackfin Processor Hardware Reference



Two Wire Interface Controller

WRITE TO TWI_CONTROL TO SET
PRESCALE AND ENABLE THE TWI

v

WRITE TO TWI_CLK_DIV

v

WRITE TO TWI_MASTER_ADDR WITH THE
ADDRESS OF THE TARGETED DEVICE

v

WRITE TO TWI_FIFO_CTL TO SELECT WHETHER
1 OR 2 BYTES GENERATE INTERRUPTS

v

WRITE TO TWI_INT_MASK TO UNMASK
TWI EVENTS TO GENERATE INTERRUPTS

l

WRITE TWI_MASTER_CTL WITH COUNT,

TRANSMIT | WRITETWI_MASTER_CTL WITH COUNT,

MDIR SET, AND MEN SET. THIS

STARTS THE TRANSFER

RECEIVE
-

'

WAIT FOR INTERRUPTS

INTERRUPT
SOURCE

TRANSFER
DIRECTION

MDIR CLEARED, AND MEN SET.THIS
STARTS THE TRANSFER

'

WAIT FOR INTERRUPTS

MCOMP

WRITE TWI_INT_STAT

MCOMP

7

INTERRUPT
SOURCE

-t

XMTSERV

\

READ DATA FROM
TWI_RCV_DATA
REGISTER

!

TO CLEAR INTERRUPT

:

DONE

WRITE DATA INTO
TWI_XMT_DATA
REGISTER

v

WRITE TWI_INT_STAT
TO CLEAR INTERRUPT

'

READ TWI_MASTER_STAT TO GET ERROR CAUSE

]

WRITE TWI_INT_STAT
TO CLEAR INTERRUPT

HANDLE ERROR AS APPROPRIATE AND W1C THE
CORRESPONDING BIT INTWI_MASTER_STAT

v

WRITE TWI_INT_STAT TO CLEAR MERR BIT

v

WAIT FOR INTERRUPTS

Figure 12-13. TWI Master Mode

ADSP-BF59x Blackfin Processor Hardware Reference

12-25




Register Descriptions

Register Descriptions

The TWI controller has 16 registers described in the following sections.
Figure 12-14 through Figure 12-31 on page 12-48 illustrate the registers.

TWI CONTROL Register (TWI_CONTROL)

The TWI_CONTROL register is used to enable the TWI module as well as to
establish a relationship between the system clock (SCLK) and the TWI con-
troller’s internally timed events. The internal time reference is derived
from SCLK using a prescaled value.

PRESCALE = g/ 10MHz

SCCB compatibility is an optional feature and should not be used in an

I2C bus system. This feature is turned on by setting the SCCB bit in the
TWI_CONTROL register. When this feature is set all slave asserted acknowl-
edgement bits are ignored by this master. This feature is valid only during
transfers where the TWI is mastering an SCCB bus. Slave mode transfers
should be avoided when this feature is enabled because the TWI controller
always generates an acknowledge in slave mode.

For either master and/or slave mode of operation, the TWI controller is
enabled by setting the TWI_ENA bit in the TWI_CONTROL register. It is recom-
mended that this bit be set at the time PRESCALE is initialized and remain
set. This guarantees accurate operation of bus busy detection logic.

The PRESCALE field of the TWI_CONTROL register specifies the number of
system clock (SCLK) periods used in the generation of one internal time

12-26 ADSP-BF59x Blackfin Processor Hardware Reference



Two Wire Interface Controller

reference. The value of PRESCALE must be set to create an internal time ref-
erence with a period of 10 MHz. It is represented as a 7-bit binary value.

TWI Control Register (TWI_CONTROL)

1514 1312 11 10 9 8 7 6 5 4 3 2 1 0
Io|o|o|o[o|o|o|o|o|o|0|o|o|o|0|0|Reset=0x0000

| |
SCCB (SccB Compatibility)g PRESCALE[6:0]
0 - Master transfers are not SCCB (SCLK Prescaie Value)
compatible

1 - Master transfers are SCCB compati-
ble. All slave-asserted acknowledgement
bits are ignored by this master.

TWI_ENA (TWI Enable)

0 - TWI is disabled
1-TWI is enabled

Figure 12-14. TWI Control Register

SCL Clock Divider Register (TWI_CLKDIV)

The clock signal SCL is an output in master mode and an input in slave
mode.

During master mode operation, the TWI_CLKDIV register values are used to
create the high and low durations of the serial clock (scL). Serial clock fre-
quencies can vary from 400 KHz to less than 20 KHz. The resolution of
the clock generated is 1/10 MHz or 100 ns.

CLKDIV = TWI scL period / 10 MHz time reference

For example, for an scL of 400 KHz (period = 1/400 KHz = 2500 ns) and
an internal time reference of 10 MHz (period = 100 ns):

CLKDIV = 2500 ns / 100 ns = 25

For an scL with a 30% duty cycle, then CLKLOW = 17 and CLKHI = 8. Note
that CLKLOW and CLKHI add up to CLKDIV.

ADSP-BF59x Blackfin Processor Hardware Reference 12-27



Register Descriptions

The CLKHI field of the TWI_CLKDIV register specifies the number of 10
MH?z time reference periods the serial clock (SCL) waits before a new clock
low period begins, assuming a single master. It is represented as an 8-bit
binary value.

The cLKLOW field of the TWI_CLKDIV register specifies the number of inter-
nal time reference periods the serial clock (scL) is held low. It is
represented as an 8-bit binary value.

SCL Clock Divider Register (TWI_CLKDIV)

1514 1312 1110 9 8 7 6 5 4 3 2 1 0
Io |o |0 |0 Io |o |o |o Io |o |o |o Io |0 |o |o I Reset = 0x0000
| Il |
CLKHI[7:0] | L cikLowrr:o]

Figure 12-15. SCL Clock Divider Register

TWI Slave Mode Control Register (TWI_SLAVE_CTL)

The TWI_SLAVE_CTL register controls the logic associated with slave mode
operation. Settings in this register do not affect master mode operation
and should not be modified to control master mode functionality.

TWI Slave Mode Control Register (TWI_SLAVE_CTL)

1514 1312 1110 9 8 7 6 5 4 3 2 1 0
|o|o|o|o|o|o|o|o|o|o|o|o|o|o|o|0|Reset=0x0000

GEN (General Call Enable)—l ‘

NAK

L SEN (Slave Enable)

STDVAL (Slave Transmit
Data Valid)

Figure 12-16. TWI Slave Mode Control Register

12-28 ADSP-BF59x Blackfin Processor Hardware Reference



Two Wire Interface Controller

Additional information for the TWI_SLAVE_CTL register bits includes:
e General call enable (GEN)

General call address detection is available only when slave mode is

enabled.
[0] General call address matching is not enabled.

[1] General call address matching is enabled. A general call slave
receive transfer is accepted. All status and interrupt source bits
associated with transfers are updated.

* NAK (NAK)

[0] Slave receive transfers generate an ACK at the conclusion of a
data transfer.

[1] Slave receive transfers generate a data NAK (not acknowledge)
at the conclusion of a data transfer. The slave is still considered to

be addressed.
e Slave transmit data valid (STDVAL)

[0] Data in the transmit FIFO is for master mode transmits and is
not allowed to be used during a slave transmit, and the transmit
FIFO is treated as if it is empty.

[1] Data in the transmit FIFO is available for a slave transmission.
e Slave enable (SEN)

[0] The slave is not enabled. No attempt is made to identify a valid
address. If cleared during a valid transfer, clock stretching ceases,
the serial data line is released, and the current byte is not
acknowledged.

[1] The slave is enabled. Enabling slave and master modes of oper-
ation concurrently is allowed.

ADSP-BF59x Blackfin Processor Hardware Reference 12-29



Register Descriptions

TWI Slave Mode Address Register
(TWI_SLAVE_ADDR)

The TWI_SLAVE_ADDR register holds the slave mode address, which is the
valid address that the slave-enabled TW1I controller responds to. The TWI
controller compares this value with the received address during the
addressing phase of a transfer.

TWI Slave Mode Address Register (TWI_SLAVE_ADDR)

15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0
Io|o|o|o|o|o|o|o|o|o |o|o|0|o|o|o| Reset = 0x0000

SADDRI6:0] (Slave Mode
Address)

Figure 12-17. TWI Slave Mode Address Register

TWI Slave Mode Status Register (TWI_SLAVE_STAT)

TWI Slave Mode Status Register (TWI_SLAVE_STAT)

1514 1312 1110 9 8 7 6 5 4 3 2 1 0
|o|o|o |o |o |o |o |o|o|o |o|o|o|o|o|o| Reset = 0x0000

GCALL (General Call) - RO | SDIR (Slave Transfer
Direction) - RO

Figure 12-18. TWI Slave Mode Status Register

During and at the conclusion of register slave mode transfers, the
TWI_SLAVE_STAT register holds information on the current transfer. Gener-

12-30 ADSP-BF59x Blackfin Processor Hardware Reference



Two Wire Interface Controller

ally slave mode status bits are not associated with the generation of
interrupts. Master mode operation does not affect slave mode status bits.

* General call (GCALL)
This bit self clears if slave mode is disabled (SEN = 0).

[0] At the time of addressing, the address was not determined to be
a general call.

[1] At the time of addressing, the address was determined to be a
general call.

* Slave transfer direction (SDIR)
This bit self clears if slave mode is disabled (SEN = 0).

[0] At the time of addressing, the transfer direction was determined
to be slave receive.

[1] At the time of addressing, the transfer direction was determined
to be slave transmit.

ADSP-BF59x Blackfin Processor Hardware Reference 12-31



Register Descriptions

TWI Master Mode Control Register
(TWI_MASTER_CTL)

The TWI_MASTER_CTL register controls the logic associated with master
mode operation. Bits in this register do not affect slave mode operation
and should not be modified to control slave mode functionality.

TWI Master Mode Control Register (TWI_MASTER_CTL)

15 14 13 12 11 10 9 7 6 4 3 2 10
Iolololololololololo Iolololololol Reset = 0x0000

SCLOVR (Serial MEN (Master Mode Enable)

Clock Override) MDIR (Master Transfer

SDAOVR (Serial Direction)

Data Override) FAST (Fast Mode)

DCNT[7:0] (Data STOP (Issue Stop
Condition)

Transfer Count)

RSTART (Repeat Start)

Figure 12-19. TWI Master Mode Control Register

Additional information for the TWI_MASTER_CTL register bits includes:
* Serial clock override (SCLOVR)

This bit can be used when direct control of the serial clock line is
required. Normal master and slave mode operation should not
require override operation.

[0] Normal serial clock operation under the control of master
mode clock generation and slave mode clock stretching logic.

[1] Serial clock output is driven to an active 0 level overriding all
other logic. This state is held until this bit is cleared.

e Serial data (SDA) override (SDAOVR)

12-32 ADSP-BF59x Blackfin Processor Hardware Reference



Two Wire Interface Controller

This bit can be used when direct control of the serial data line is
required. Normal master and slave mode operation should not
require override operation.

[0] Normal serial data operation under the control of the transmit
shift register and acknowledge logic.

[1] Serial data output is driven to an active 0 level overriding all
other logic. This state is held until this bit is cleared.

* Data transfer count (DCNT[7:0])

Indicates the number of data bytes to transfer. As each data word is
transferred, DCNT is decremented. When DCNT is 0, a stop condition
is generated. Setting DCNT to OxFF disables the counter. In this
transfer mode, data continues to be transferred until it is concluded
by setting the STOP bit.

* Repeat start (RSTART)
[0] Transfer concludes with a stop condition.

[1] Issue a repeat start condition at the conclusion of the current
transfer (DCNT = 0) and begin the next transfer. The current transfer
concludes with updates to the appropriate status and interrupt bits.
If errors occurred during the previous transfer, a repeat start does
not occur. In the absence of any errors, master enable (MEN) does
not self clear on a repeat start.

* Issue stop condition (STOP)
[0] Normal transfer operation.

[1] The transfer concludes as soon as possible avoiding any error
conditions (as if data transfer count had been reached) and at that
time the TWI interrupt mask register (TWI_INT_MASK) is updated
along with any associated status bits.

ADSP-BF59x Blackfin Processor Hardware Reference 12-33



Register Descriptions

Fast mode (FAST)

[0] Standard mode (up to 100K bits/s) timing specifications in use.
[1] Fast mode (up to 400K bits/s) timing specifications in use.
Master transfer direction (MDIR)

[0] The initiated transfer is master transmit.

[1] The initiated transfer is master receive.

Master mode enable (MEN)

This bit self clears at the completion of a transfer. This includes
transfers terminated due to errors.

[0] Master mode functionality is disabled. If this bit is cleared dur-
ing operation, the transfer is aborted and all logic associated with
master mode transfers are reset. Serial data and serial clock (SDA,
SCL) are no longer driven. Write-1-to-clear status bits are not

affected.

[1] Master mode functionality is enabled. A start condition is gen-
erated if the bus is idle.

TWI Master Mode Address Register
(TWI_MASTER_ADDR)

During the addressing phase of a transfer, the TWI controller, with its
master enabled, transmits the contents of the TWI_MASTER_ADDR register.
When programming this register, omit the read/write bit. That is, only the
upper 7 bits that make up the slave address should be written to this regis-
ter. For example, if the slave address is b#1010000X, where X is the
read/write bit, then TWI_MASTER_ADDR is programmed with b#1010000,
which corresponds to 0x50. When sending out the address on the bus, the

12-34

ADSP-BF59x Blackfin Processor Hardware Reference



Two Wire Interface Controller

TWTI controller appends the read/write bit as appropriate based on the
state of the MDIR bit in the master mode control register.

TWI Master Mode Address Register (TWI_MASTER_ADDR)

1514 1312 1110 9 8 7 6 5 4 3 2 1 0
|o|o|o |o Io |o |o |o|o|o Iolololololol Reset = 0x0000

| |
L MADDR[6:0] (Master

Mode Address)

Figure 12-20. TWI Master Mode Address Register

TWI Master Mode Status Register
(TWI_MASTER_STAT)

TWI Master Mode Status Register (TWI_MASTER_STAT)

15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0
|o|o|o |o|o|o|o|o|0|0 |o|o|o|o|o|o| Reset = 0x0000

BUSBUSY (Bus Busy) - ROJ L MPROG (Master Transfer
SCLSEN (Serial Clock Sense) - RO in Progress) - RO
SDASEN (Serial Data Sense) - RO \IJVC:%TARB (Lost Arbitration) -
BUFWRERR (Buffer Write E -wicC

(Butfer Write Error) ANAK (Address Not

BUFRDERR (Buffer Read Error) - W1C Acknowledged) - W1C

DNAK (Data Not
Acknowledged) - W1C

Figure 12-21. TWI Master Mode Status Register

The TWI_MASTER_STAT register holds information during master mode
transfers and at their conclusion. Generally, master mode status bits are
not directly associated with the generation of interrupts but offer informa-

tion on the current transfer. Slave mode operation does not affect master
mode status bits.

ADSP-BF59x Blackfin Processor Hardware Reference 12-35



Register Descriptions

Note that—while the SCLSEN bit is set (this could be due to having no
pull-up resistor on SCL or another agent is driving SCL low)—the acknowl-
edge bits (ANAK and DNAK) do not update. This result occurs because the
acknowledge conditions are sampled during the high phase of scCL.

Bus busy (BUSBUSY)

Indicates whether the bus is currently busy or free. This indication
is not limited to only this device but is for all devices. Upon a start
condition, the setting of the register value is delayed due to the
input filtering. Upon a stop condition the clearing of the register
value occurs after tgy.

[0] The bus is free. The clock and data bus signals have been inac-
tive for the appropriate bus free time.

[1] The bus is busy. Clock or data activity has been detected.
Serial clock sense (SCLSEN)

This status bit can be used when direct sensing of the serial clock
line is required. The register value is delayed due to the input filter
(nominally 50 ns). Normal master and slave mode operation
should not require this feature.

[0] An inactive “one” is currently being sensed on the serial clock.

[1] An active “zero” is currently being sensed on the serial clock.
The source of the active driver is not known and can be internal or
external.

Serial data sense (SDASEN)

This status bit can be used when direct sensing of the serial data
line is required. The register value is delayed due to the input filter
(nominally 50 ns). Normal master and slave mode operation
should not require this feature.

12-36

ADSP-BF59x Blackfin Processor Hardware Reference



Two Wire Interface Controller

[0] An inactive “one” is currently being sensed on the serial data
line.

1] An active “zero” is currently being sensed on the serial data line.
y g
e source of the active driver is not known and can be internal or
Th f the active d tk d be int |
external.

e Buffer write error (BUFWRERR)

[0] The current master receive has not detected a receive buffer
write error.

[1] The current master transfer was aborted due to a receive buffer
write error. The receive buffer and receive shift register were both
full at the same time. This bit is W1C.

e Buffer read error (BUFRDERR)

[0] The current master transmit has not detected a buffer read
error.

[1] The current master transfer was aborted due to a transmit
buffer read error. At the time data was required by the transmit
shift register the buffer was empty. This bit is W1C.

* Data not acknowledged (DNAK)

[0] The current master receive has not detected a NAK during data
transmission.

[1] The current master transfer was aborted due to the detection of
a NAK during data transmission. This bit is W1C.

* Address not acknowledged (ANAK)

[0] The current master transmit has not detected NAK during
addressing.

ADSP-BF59x Blackfin Processor Hardware Reference 12-37



Register Descriptions

[1] The current master transfer was aborted due to the detection of

a NAK during the address phase of the transfer. This bit is W1C.
e Lost arbitration (LOSTARB)

[0] The current transfer has not lost arbitration with another
master.

[1] The current transfer was aborted due to the loss of arbitration
with another master. This bit is W1C.

* Master transfer in progress (MPROG)

[0] Currently no transfer is taking place. This can occur once a
transfer is complete or while an enabled master is waiting for an

idle bus.

[1] A master transfer is in progress.

TWI FIFO Control Register (TWI_FIFO_CTL)

The TWI_FIFO_CTL register control bits affect only the FIFO and are not
tied in any way with master or slave mode operation.

TWI FIFO Control Register (TWI_FIFO_CTL)

1514 1312 11 10 9 8 7 6 5 4 3 2 1 0
|o|0|o |o |o|o|0|o|o|o |o|o|o|o|o|o| Reset = 0x0000

XMTFLUSH (Transmit Buffer

RCVINTLEN (Receive Buffer

Interrupt Length) Flush) .
XMTINTLEN (Transmit Buffer 'F_}Ii\s/:;-USH (Receive Buffer

Interrupt Length)

Figure 12-22. TWI FIFO Control Register

12-38 ADSP-BF59x Blackfin Processor Hardware Reference



Two Wire Interface Controller

Additional information for the TWI_FIFO_CTL register bits includes:
* Receive buffer interrupt length (RCVINTLEN)

This bit determines the rate at which receive buffer interrupts are
to be generated. Interrupts may be generated with each byte
received or after two bytes are received.

[0] An interrupt (RCVSERV) is set when RCVSTAT indicates one or
two bytes in the FIFO are full (01 or 11).

[1] An interrupt (RCVSERV) is set when the RCVSTAT field in the
TWI_FIFO_STAT register indicates two bytes in the FIFO are full

(11).
e Transmit buffer interrupt length (XMTINTLEN)

This bit determines the rate at which transmit buffer interrupts are
to be generated. Interrupts may be generated with each byte trans-
mitted or after two bytes are transmitted.

[0] An interrupt (XMTSERV) is set when XMTSTAT indicates one or
two bytes in the FIFO are empty (01 or 00).

[1] An interrupt (XMTSERV) is set when the XMTSTAT field in the
TWI_FIFO_STAT register indicates two bytes in the FIFO are empty

(00).
e Receive buffer flush (RCVFLUSH)
[0] Normal operation of the receive buffer and its status bits.

[1] Flush the contents of the receive buffer and update the RCVSTAT
status bit to indicate the buffer is empty. This state is held until
this bit is cleared. During an active receive the receive buffer in this
state responds to the receive logic as if it is full.

e Transmit buffer flush (XMTFLUSH)

ADSP-BF59x Blackfin Processor Hardware Reference 12-39



Register Descriptions

[0] Normal operation of the transmit buffer and its status bits.

[1] Flush the contents of the transmit buffer and update the
XMTSTAT status bit to indicate the buffer is empty. This state is held
until this bit is cleared. During an active transmit the transmit
buffer in this state responds as if the transmit buffer is empty.

TWI FIFO Status Register (TWI_FIFO_STAT)

TWI FIFO Status Register (TWI_FIFO_STAT)
All bits are RO.

1514 1312 11 10 9 8 7 6 5 4 3 2 1 0
|o|o|o|o|o|o|o|o|o|o |o|o|o|o|o|o| Reset = 0x0000

RCVSTAT[1:0] (Receive FIFO Status) |_|i XMTSTAT[1:0] (Transmit
FIFO Status)

Figure 12-23. TWI FIFO Status Register

TWI FIFO Status

The fields in the TWI_FIFO_STAT register indicate the state of the FIFO
buffers’ receive and transmit contents. The FIFO buffers do not discrimi-
nate between master data and slave data. By using the status and control
bits provided, the FIFO can be managed to allow simultaneous master and
slave operation.

e Receive FIFO status (RCYSTAT[1:0])

The RCVSTAT field is read only. It indicates the number of valid data
bytes in the receive FIFO buffer. The status is updated with each
FIFO buffer read using the peripheral data bus or write access by
the receive shift register. Simultaneous accesses are allowed.

[00] The FIFO is empty.

12-40 ADSP-BF59x Blackfin Processor Hardware Reference



Two Wire Interface Controller

[01] The FIFO contains one byte of data. A single byte peripheral
read of the FIFO is allowed.

[10] Reserved

[11] The FIFO is full and contains two bytes of data. Either a sin-
gle or double byte peripheral read of the FIFO is allowed.

e Transmit FIFO status (XMTSTAT[1:07)

The xMTSTAT field is read only. It indicates the number of valid data
bytes in the FIFO buffer. The status is updated with each FIFO
buffer write using the peripheral data bus or read access by the
transmit shift register. Simultaneous accesses are allowed.

[00] The FIFO is empty. Either a single or double byte peripheral
write of the FIFO is allowed.

[01] The FIFO contains one byte of data. A single byte peripheral
write of the FIFO is allowed.

[10] Reserved
[11] The FIFO is full and contains two bytes of data.

TWI Interrupt Mask Register (TWI_INT_MASK)

The TWI_INT_MASK register enables interrupt sources to assert the interrupt
output. Each mask bit corresponds with one interrupt source bit in the
TWI_INT_STAT register. Reading and writing the TWI_INT_MASK register
does not affect the contents of the TWI_INT_STAT register.

ADSP-BF59x Blackfin Processor Hardware Reference 12-41



Register Descriptions

TWI Interrupt Mask Register (TWI_INT_MASK)
For all bits, 0 = Interrupt generation disabled, 1 = Interrupt generation enabled.

15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0
|o|o|o|o|o|o|o|o|o|o |o|o|0|o|o|o| Reset = 0x0000

RCVSERVM (Receive FIFO SINITM (Slave Transfer
Service Interrupt Mask) Initiated Interrupt Mask)
XMTSERVM (Transmit FIFO SCOMPM (Slave Transfer
Service Interrupt Mask) Complete Interrupt Mask)
MERRM (Master Transfer Error SERRM (Slave Transfer Error
Interrupt Mask) Interrupt Mask)

MCOMPM (Master Transfer —— SOVFM (Slave Overflow
Complete Interrupt Mask) Interrupt Mask)

Figure 12-24. TWI Interrupt Mask Register

TWI Interrupt Status Register (TWI_INT_STAT)

TWI Interrupt Status Register (TWI_INT_STAT)
All bits are sticky and W1C.

1514 1312 1110 9 8 7 6 5 4 3 2 1 0
|0|0|0|o|0|0|0|0|0|0 |0|o|o|o|o|o| Reset = 0x0000

RCVSERV (Receive FIFO Service)J L SINIT (Slave Transfer

XMTSERV (Transmit FIFO Service) Initiated)
MERR (Master Transfer Error) SCOMP (Slave Transfer

Complete
MCOMP (Master Transfer Complete) SERF?(SIa)ve Transfer Error)

SOVF (Slave Overflow)

Figure 12-25. TWI Interrupt Status Register

The TWI_INT_STAT register contains information about functional areas
requiring servicing. Many of the bits serve as an indicator to further read
and service various status registers. After servicing the interrupt source

12-42 ADSP-BF59x Blackfin Processor Hardware Reference



Two Wire Interface Controller

associated with a bit, the user must clear that interrupt source bit by writ-
ing a1 to it.

¢ Receive FIFO service (RCVSERV)

If RCVINTLEN in the TWI_FIFO_CTL register is 0, this bit is set each
time the RCVSTAT field in the TWI_FIFO_STAT register is updated to
either 01 or 11. If RCVINTLEN is 1, this bit is set each time RCVSTAT
is updated to or 11.

[0] No errors have been detected.

[1] The FIFO does not require servicing or the RCVSTAT field has
not changed since this bit was last cleared.

e Transmit FIFO service (XMTSERV)

If XMTINTLEN in the TWI_FIFO_CTL register is 0, this bit is set each
time the XMTSTAT field in the TWI_FIFO_STAT register is updated to
either 01 or 00. If XMTINTLEN is 1, this bit is set each time XMTSTAT
is updated to 00.

[0] FIFO does not require servicing or XMTSTAT field has not
changed since this bit was last cleared.

[1] The transmit FIFO buffer has one or two 8-bit locations avail-
able to be written.

e Master transfer error (MERR)
[0] No errors have been detected.

[1] A master error has occurred. The conditions surrounding the
error are indicated by the master status register (THI_MASTER_STAT).

* Master transfer complete (MCOMP)

[0] The completion of a transfer has not been detected.

ADSP-BF59x Blackfin Processor Hardware Reference 12-43



Register Descriptions

[1] The initiated master transfer has completed. In the absence of a
repeat start, the bus has been released.

Slave overflow (SOVF)
[0] No overflow has been detected.

[1] The slave transfer complete (SCOMP) bit was set at the time a
subsequent transfer has acknowledged an address phase. The trans-
fer continues, however, it may be difficult to delineate data of one
transfer from another.

Slave transfer error (SERR)
[0] No errors have been detected.

[1] A slave error has occurred. A restart or stop condition has
occurred during the data receive phase of a transfer.

Slave transfer complete (SCOMP)
[0] The completion of a transfer has not been detected.

[1] The transfer is complete and either a stop, or a restart was
detected.

Slave transfer initiated (SINIT)

[0] A transfer is not in progress. An address match has not occurred
since the last time this bit was cleared.

[1] The slave has detected an address match and a transfer has been
initiated.

12-44

ADSP-BF59x Blackfin Processor Hardware Reference



Two Wire Interface Controller

TWI FIFO Transmit Data Single Byte
Register (TWI_XMT_DATAS8)

The TWI_XMT_DATAS register holds an 8-bit data value written into the
FIFO buffer. Transmit data is entered into the corresponding transmit
buffer in a first-in first-out order. For 16-bit PAB writes, a write access to
TWI_XMT_DATA8 adds only one transmit data byte to the FIFO buffer. With
each access, the transmit status (XMTSTAT) field in the TWI_FIFO_STAT regis-
ter is updated. If an access is performed while the FIFO buffer is full, the
write is ignored and the existing FIFO buffer data and its status remains
unchanged.

TWI FIFO Transmit Data Single Byte Register (TWI_XMT_DATAS)
All bits are WO.

15 14 13 12 11 10 9 6 4 3 2 10
Io|o|o|o|o|o|o|o|o|o Iolololololol Reset = 0x0000

| |
L XMTDATABS[7:0] (Transmit

FIFO 8-Bit Data)

Figure 12-26. TWI FIFO Transmit Data Single Byte Register

TWI FIFO Transmit Data Double Byte
Register (TWI_XMT_DATAL16)

The TWI_XMT_DATA16 register holds a 16-bit data value written into the
FIFO buffer. To reduce interrupt output rates and peripheral bus access
times, a double byte transfer data access can be performed. Two data bytes
can be written, effectively filling the transmit FIFO buffer with a single
access.

The data is written in little endian byte order as shown in Figure 12-27
where byte 0 is the first byte to be transferred and byte 1 is the second byte
to be transferred. With each access, the transmit status (XMTSTAT) field in
the TWI_FIFO_STAT register is updated. If an access is performed while the

ADSP-BF59x Blackfin Processor Hardware Reference 12-45



Register Descriptions

FIFO buffer is not empty, the write is ignored and the existing FIFO
buffer data and its status remains unchanged.

TRANSMIT DATA REGISTER

B1 BO

>»| B1

>| BO —>

TRANSMISSION LINE

Figure 12-27. Transmit Little Endian Byte Order

TWI FIFO Transmit Data Double Byte Register (TWI_XMT_DATA16)
All bits are WO. This register always reads as 0x0000.

1514 1312 11 10 9 8 7 6 5 4 38 2 1 0
|o|o|o |o|o Iololololo lolololololol Reset = 0x0000
|

| XMTDATA16[15:0] (Transmit
FIFO 16-Bit Data)

Figure 12-28. TWI FIFO Transmit Data Double Byte Register

TWI FIFO Receive Data Single Byte
Register (TWI_RCV_DATAS8)

The TWI_RCV_DATAS register holds an 8-bit data value read from the FIFO
buffer. Receive data is read from the corresponding receive buffer in a
first-in first-out order. Although peripheral bus reads are 16 bits, a read
access to TWI_RCV_DATA8 will access only one transmit data byte from the
FIFO buffer. With each access, the receive status (RCVSTAT) field in the
TWI_FIFO_STAT register is updated. If an access is performed while the

12-46 ADSP-BF59x Blackfin Processor Hardware Reference



Two Wire Interface Controller

FIFO buffer is empty, the data is unknown and the FIFO buffer status
remains indicating it is empty.

TWI FIFO Receive Data Single Byte Register (TWI_RCV_DATAS)

All bits are RO.
1514 1312 1110 9 8 7 6 5 4 3 2 1 0
Io|o|o|o|o|o|o|o|o|o |o|o|o|o|o|o| Reset = 0x0000
|

|
L RCVDATAS[7:0] (Receive

FIFO 8-Bit Data)

Figure 12-29. TWI FIFO Receive Data Single Byte Register

TWI FIFO Receive Data Double Byte
Register (TWI_RCV_DATA16)

The TWI_RCV_DATA16 register holds a 16-bit data value read from the FIFO
buffer. To reduce interrupt output rates and peripheral bus access times, a
double byte receive data access can be performed. Two data bytes can be
read, effectively emptying the receive FIFO buffer with a single access.

The data is read in little endian byte order as shown in Figure 12-30
where byte 0 is the first byte received and byte 1 is the second byte
received. With each access, the receive status (RCVSTAT) field in the
TWI_FIFO_STAT register is updated to indicate it is empty. If an access is

ADSP-BF59x Blackfin Processor Hardware Reference 12-47



Programming Examples

performed while the FIFO buffer is not full, the read data is unknown and
the existing FIFO buffer data and its status remains unchanged.

RECEIVE DATA REGISTER

B1 BO

B1 »| BoO

TRANSMISSION LINE

Figure 12-30. Receive Little Endian Byte Order

TWI FIFO Receive Data Double Byte Register (TWI_RCV_DATA16)
All bits are WO.

15 14 13 12 11 10 9 8 7 5 4 3 2 1 0
|o|0|o|o|o|o|o|o|o|o |o|o|0|o|o|o| Reset = 0x0000
|

| RCVDATA16[15:0] (Receive
FIFO 16-Bit Data)

Figure 12-31. TWI FIFO Receive Data Double Byte Register

Programming Examples

The following sections include programming examples for general setup,
slave mode, and master mode, as well as guidance for repeated start
conditions.

Master Mode Setup

Listing 12-1 shows how to initiate polled receive and transmit transfers in
master mode.

12-48 ADSP-BF59x Blackfin Processor Hardware Reference



Two Wire Interface Controller

Listing 12-1. Master Mode Receive/Transmit Transfer

/***********************************************************

Macro for the count field of the TWI_MASTER_CTL register

X can be any value between 0 and OxFE (254). A value of OxFF
disables the counter.
***********************************************************/
fidefine TWICount(x) (DCNT & ((x) << 6))

.section Ll_data_b;

.byte TX_file[file_size] = "DATA.hex";

.BYTE RX_CHECK[file_sizel;

.byte rcvFirstWordl[2];

.SECTION program;
_main:

/***********************************************************

TWI Master Initialization subroutine
***********************************************************/

TWI_INIT:
/***********************************************************
Enable the TWI controller and set the Prescale value
Prescale = 10 (0xA) for an SCLK = 100 MHz (CLKIN = 50MHz)
Prescale = SCLK / 10 MHz

P1 points to the base of the system MMRs

***********************************************************/

R1 = TWI_ENA | OxA (z);

WCPL + LOCTWI_CONTROL)] = R1;
/***********************************************************
Set CLKDIV:

For example, for an SCL of 400 KHz (period = 1/400 KHz = 2500 ns)
and an internal time reference of 10 MHz (period = 100 ns):
CLKDIV = 2500 ns / 100 ns = 25

For an SCL with a 30% duty cycle, then CLKLOW = 17 (0x11) and
CLKHI = 8.

ADSP-BF59x Blackfin Processor Hardware Reference 12-49



Programming Examples

***********************************************************/

RS = CLKHI(O0x8) | CLKLOW(Ox11) (z);
WCPL + LOCTWI_CLKDIV)] = Rb;

/***********************************************************

enable these signals to generate a TWI interrupt: optional
***********************************************************/
R1 = RCVSERV | XMTSERV | MERR | MCOMP (z);

WLP1T + LO(CTWI_INT_MASK)] = R1;
/***********************************************************
The address needs to be shifted one place to the right

e.g., 1010 001x becomes 0101 0001 (Ox51) the TWI controller
will actually send out 1010 001x where x is either a 0 for writes
or 1 for reads
***********************************************************/
R6 OxBF;

R6 R6 >> 1;

TWI_INIT.END: WCP1 + LOCTWI_MASTER_ADDR)] = R6;

/******************** END OF TWI INIT **********************/

/***********************************************************

Starting the Read transfer

Program the Master Control register with:

1. the number of bytes to transfer: TWICount(x)

2. Repeated Start (RESTART): optional

3. speed mode: FAST or SLOW

4. direction of transfer: MDIR =1 for reads, MDIR = 0 for
writes

5. Master Enable MEN. This will kick off the master transfer
***********************************************************/
R1 = TWICount(0x2) | FAST | MDIR | MEN;

W[P1 + LO(TWI_MASTER_CTL)] = R1;

ssync;

/***********************************************************

Poll the FIFO Status register to know when

12-50 ADSP-BF59x Blackfin Processor Hardware Reference



Two Wire Interface Controller

2 bytes have been shifted into the RX FIFO

***********************************************************/

Rx_stat:

Rl = WLP1 + LO(TWI_FIFO_STAT)I(Z);
RO = 0xC;

R1 = R1 & RO;

CC = R1 == RO;

IF I cc jump Rx_stat;

RO WLPT + LOCTWI_RCV_DATA16)1(Z); /* Read data from the RX fifo
*/

ssync;
/***********************************************************

check that master transfer has completed
MCOMP will be set when Count reaches zero
***********************************************************/
M_COMP:

R1 WLP1 + LOCTWI_INT_STAT)I1(z);

cC BITTST (R1, bitpos(MCOMP));

if | CC jump M_COMP;
M_COMP.END: W[LP1 + LOCTWI_INT_STAT)] = R1;
/* load the pointer with the address of the transmit buffer */
P2.H = TX_file;
P2.L = TX_file;

/***********************************************************

Pre-Toad the tx FIFO with the first two bytes: this is necessary
to avoid the generation of the Buffer Read Error (BUFRDERR) which
occurs whenever a transmit transfer is initiated while the trans-
mit buffer is empty
***********************************************************/

R3 = WLP2++]1(Z);

WIP1 + LO(TWI_XMT_DATAl16)]1 = R3;
/***********************************************************
Initiating the Write operation

Program the Master Control register with:

ADSP-BF59x Blackfin Processor Hardware Reference 12-51



Programming Examples

the number of bytes to transfer: TWICount(x)
Repeated Start (RESTART): optional
speed mode: FAST or Standard
direction of transfer:
MDIR = 1 for reads, MDIR = 0 for writes
5. Master Enable MEN. Setting this bit will kick off the transfer
***********************************************************/
R1 = TWICount(OxFE) | FAST | MEN;
W[P1 + LO(TWI_MASTER_CTL)] = R1;
SSYNC;

/***********************************************************

B~ ow N

loop to write data to a TWI slave device P3 times
***********************************************************/
P3 = Tength(TX_file);
LSETUP (Loop_Startl, Loop_Endl) LCO = P3;

Loop_Startl:
/*******************************************************
check that there's at least one byte location empty in
the tx fifo
*******************************************************/
XMTSERV_Status:

R1 WIP1 + LO(TWI_INT_STAT)I(z);

CC = BITTST (R1, bitpos(XMTSERV)); /* test XMTSERV bit */
if | CC jump XMTSERV_Status;

WLP1 + LOCTWI_INT_STAT)] = R1l; /* clear status */

SSYNC;

/*******************************************************

write byte into the transmit FIFO
*******************************************************/
R3 = BLP2++]1(Z);
WLP1 + LO(TWI_XMT_DATA8)] = R3;
Loop_Endl: SSYNC;
/* check that master transfer has completed */
M_COMP1:

12-52 ADSP-BF59x Blackfin Processor Hardware Reference



Two Wire Interface Controller

R1 WLPT + LOCTWI_INT_STAT)1(z);

cC BITTST (R1, bitpos(MCOMP1));

if | CC jump M_COMP;

M_COMPI.END:W[PI1 + LOCTWI_INT_STAT)] = R1;
idle;

_main.end:

Slave Mode Setup

Listing 12-2 shows how to configure the slave for interrupt based trans-
fers. The interrupts are serviced in the subroutine _TWI_ISR shown in

Listing 12-3.
Listing 12-2. Slave Mode Setup

f##include <defBF527.h>

/*BF527 is used here as an example—change as appropriate.*/
ffinclude "startup.h”

ffdefine file_size 254

jidefine SYSMMR_BASE 0xFFC00000

fidefine COREMMR_BASE OxFFE00000

.GLOBAL _main;

.EXTERN _TWI_ISR;

.section Ll_data_b;

CBYTE TWI_RX[file_sizel;

LBYTE TWI_TX[file_size]l = "transmit.dat";
.section L1_code;

_main:

/***********************************************************

TWI STave Initialization subroutine
***********************************************************/

TWI_SLAVE_INIT:

/***********************************************************

Enable the TWI controller and set the Prescale value

ADSP-BF59x Blackfin Processor Hardware Reference 12-53



Programming Examples

Prescale = 10 (0xA) for an SCLK = 100 MHz (CLKIN = 50MHz)
Prescale SCLK / 10 MHz

P1 points to the base of the system MMRs

PO points to the base of the core MMRs
***********************************************************/
R1 = TWI_ENA | OxA (z);

WLP1 + LO(CTWI_CONTROL)] = RI1;

/***********************************************************

STave address

program the address to which this slave will respond to.
this is an arbitrary 7-bit value
***********************************************************/
R1 = Ox5F;
W[PL + LOCTWI_SLAVE_ADDR)] = R1;
/***********************************************************
Pre-Toad the TX FIFO with the first two bytes to be transmitted
in the event the slave is addressed and a transmit is required
***********************************************************/
R3=0xB537(Z);

WLPL + LOCTWI_XMT_DATA16)] = R3;
/***********************************************************
FIFO Control determines whether an interrupt is generated

for every byte transferred or for every two bytes.
A value of zero which is the default, allows for single byte
events to generate interrupts
***********************************************************/
R1 = 0;

W[PL + LOCTWI_FIFO_CTL)] = R1;

/***********************************************************

enable these signals to generate a TWI interrupt
***********************************************************/
R1 = RCVSERV | XMTSERV | SOVF | SERR | SCOMP | SINIT (z);
WLP1 + LOCTWI_INT_MASK)] = RI1;

/***********************************************************

12-54 ADSP-BF59x Blackfin Processor Hardware Reference



Two Wire Interface Controller

Enable the TWI Slave

Program the Slave Control register with:

1. STave transmit data valid (STDVAL) set so that the contents of
the TX FIFO can be used by this slave when a master requests data
from it.

2. Slave Enable SEN to enable Slave functionality
***********************************************************/

R1 = STDVAL | SEN;

W[P1 + LO(TWI_SLAVE_CTL)] = R1;

TWI_SLAVE_INIT.END:

P2.H = HI(TWI_RX);
P2.L = LOCTWI_RX);
P4.H = HI(TWI_TX);
P4.L = LOCTWI_TX);

/***********************************************************

Remap the vector table pointer from the default __T10HANDLER
to the new _TWI_ISR interrupt service routine
***********************************************************/
RI1.H = HI(_TWI_ISR);

R1.L = LOC_TWI_ISR);

[PO + LOCEVT10)] = R1; /* note that PO points to the base of
the core MMR registers */

/***********************************************************

ENABLE TWI generate to interrupts at the system Tevel
***********************************************************/
R1 = [P1 + LO(SIC_IMASK)T;

BITSET(R1,BITPOS(IRQ_TWI));

[P1 + LO(CSIC_IMASK)] = RI1;

/***********************************************************

ENABLE TWI to generate interrupts at the core level
***********************************************************/
Rl = [P0 + LOCIMASK)1:

BITSET(RI,BITPOS(EVT_IVG10));

ADSP-BF59x Blackfin Processor Hardware Reference 12-55



Programming Examples

[PO + LOCIMASK)] = RI1;

/***********************************************************

wait for interrupts
***********************************************************/

idle;
_main.END:

Listing 12-3. TWI Slave Interrupt Service Routine

/***********************************************************

Function: _ TWI_ISRDescription: This ISR is executed when the
TWI controller detects a slave initiated transfer. After an
interrupt is serviced, its corresponding bit is cleared in the
TWI_INT_STAT register. This done by writing a 1 to the particular
bit position. A1l bits are write 1 to clear.
***********************************************************/
#include <defBF527.h>

/*BF527 is used here as an example—change as appropriate.*/
.GLOBAL _TWI_ISR;

.section Ll_code;
_TWI_ISR:

/***********************************************************

read the source of the interrupt
***********************************************************/

R1 = WLP1 + LOCTWI_INT_STAT)1(z);

/***********************************************************

STave Transfer Initiated
***********************************************************/

cC BITTST(RI, BITPOS(SINIT));

if I CC JUMP RECEIVE;

RO SINIT (Z);

WCPL + LOCTWI_INT_STAT)] = RO; /* clear interrupt source bit */

12-56 ADSP-BF59x Blackfin Processor Hardware Reference



Two Wire Interface Controller

ssync;
/***********************************************************

Receive service
***********************************************************/
RECEIVE:

CC = BITTST(R1, BITPOS(RCVSERV));

if I CC JUMP TRANSMIT;

RO = W[P1 + LO(CTWI_RCV_DATA8)1 (Z); /* read data */

B[P2++] = RO; /* store bytes into a buffer pointed to by P2 */
RO = RCVSERV(Z);

WLP1T + LO(CTWI_INT_STAT)] = RO; /*clear interrupt source bit */
ssync;

JUMP _TWI_ISR.END; /* exit */

/***********************************************************

Transmit service
***********************************************************/
TRANSMIT:

CC = BITTST(R1, BITPOS(XMTSERV));

if I CC JUMP STlaveError;

RO = BLP4++]1(Z);

W[P1 + LO(TWI_XMT_DATA8)] = RO;

RO = XMTSERV(Z);

WLP1T + LOCTWI_INT_STAT)] = RO; /* clear interrupt source bit */
ssync;

JUMP _TWI_ISR.END; /* exit */

/***********************************************************

slave transfer error
***********************************************************/
STavekrror:

cC BITTST(R1, BITPOS(SERR));

if | CC JUMP SlaveOverflow;

RO = SERR(Z);

WLP1T + LOCTWI_INT_STAT)] = RO; /* clear interrupt source bit */
ssync;

ADSP-BF59x Blackfin Processor Hardware Reference 12-57



Programming Examples

JUMP _TWI_ISR.END; /* exit */

/***********************************************************

slave overflow
***********************************************************/
STaveOverflow:

CC = BITTST(R1, BITPOS(SOVF));

if 1CC JUMP SlaveTransferComplete;

RO = SOVF(Z);

WLPLI + LO(CTWI_INT_STAT)] = RO; /* clear interrupt source bit */
ssync;

JUMP _TWI_ISR.END; /* exit */

/***********************************************************

slave transfer complete
***********************************************************/
STaveTransferComplete:

CC = BITTST(R1, BITPOS(SCOMP));

if ICC JUMP _TWI_ISR.END;

RO = SCOMP(Z);
WLPT + LOCTWI_INT_STAT)] = RO; /* clear interrupt source bit */

ssync;

/* Transfer complete read receive FIFO buffer and set/clear sema-
phores etc.... */

RO = WLP1 + LOCTWI_FIFO_STAT)1(z);

CC = BITTST(RO,BITPOS(RCV_HALF)); /* BIT 2 indicates whether

there's a byte in the FIFO or not */

if ICC JUMP _TWI_ISR.END;

RO = WLP1 + LOCTWI_RCV_DATA8)1 (Z); /* read data */

B[P2++] = RO; /* store bytes into a buffer pointed to by P2 */
_TWI_ISR.END:RTI;

12-58 ADSP-BF59x Blackfin Processor Hardware Reference



Two Wire Interface Controller

Electrical Specifications

All logic complies with the Electrical Specification outlined in the Philips
PP C Bus Specification version 2.1 dated January 2000.

Unique Information for the ADSP-BF59x
Processor

None.

ADSP-BF59x Blackfin Processor Hardware Reference 12-59



Unique Information for the ADSP-BF59x Processor

12-60 ADSP-BF59x Blackfin Processor Hardware Reference



13 SPI-COMPATIBLE PORT
CONTROLLER

This chapter describes the serial peripheral interface (SPI) port. Following
an overview and a list of key features is a description of operation and
functional modes of operation. The chapter concludes with a program-
ming model, consolidated register definitions, and programming
examples.

Specific Information for the ADSP-BF59x

For details regarding the number of SPIs for the ADSP-BF59x product,
please refer to the ADSP-BF592 Blackfin Processor Data Sheet.

For SPI DMA channel assignments, refer to Table 5-7 on page 5-107 in
Chapter 5, “Direct Memory Access”.

For SPI interrupt vector assignments, refer to Table 4-3 on page 4-17 in
Chapter 4, “System Interrupts”.

To determine how each of the SPIs is multiplexed with other functional
pins, refer to Table 7-1 on page 7-3 through Table 7-2 on page 7-4 in
Chapter 7, “General-Purpose Ports”.

For a list of MMR addresses for each SPI, refer to Chapter A, “System
MMR Assignments”.

SPI behavior for the ADSP-BF59x that differs from the general informa-
tion in this chapter can be found in the section “Unique Information for

the ADSP-BF59x Processor” on page 13-53.

ADSP-BF59x Blackfin Processor Hardware Reference 13-1



Overview

Overview

The SPI port provides an I/O interface to a wide variety of SPI-compati-
ble peripheral devices.

With a range of configurable options, the SPI port provides a glueless
hardware interface with other SPI-compatible devices. SPI is a four-wire
interface consisting of two data signals, a device select signal, and a clock
signal. SPI is a full-duplex synchronous serial interface, supporting master
modes, slave modes, and multimaster environments. The SPI-compatible
peripheral implementation also supports programmable bit rate and clock
phase/polarities. The SPI features the use of open drain drivers to support
the multimaster scenario and to avoid data contention.

Features

The SPI includes these features:

Full duplex, synchronous serial interface

Supports 8- or 16-bit word sizes

Programmable baud rate, clock phase, and polarity

Supports multimaster environments

Integrated DMA controller

Double-buffered transmitter and receiver

One SPI device select input and multiple chip select outputs
Programmable shift direction of MSB or LSB first

Interrupt generation on mode fault, overflow, and underflow

Shadow register to aid debugging

13-2

ADSP-BF59x Blackfin Processor Hardware Reference



SPI-Compatible Port Controller

Typical SPI-compatible peripheral devices that can be used to interface to
the SPI-compatible interface include:

Other CPUs or microcontrollers

Codecs

A/D converters

D/A converters

Sample rate converters

SP/DIF or AES/EBU digital audio transmitters and receivers
LCD displays

Shift registers

FPGAs with SPI emulation

Interface Overview

Figure 13-1 on page 13-4 provides a block diagram of the SPI. The inter-
face is essentially a shift register that serially transmits and receives data
bits, one bit at a time at the SCK rate, to and from other SPI devices. SPI
data is transmitted and received at the same time through the use of a shift
register. When an SPI transfer occurs, data is simultaneously transmitted
(shifted serially out of the shift register) as new data is received (shifted

ADSP-BF59x Blackfin Processor Hardware Reference 13-3



Interface Overview

serially into the other end of the same shift register). The SCK synchronizes
the shifting and sampling of the data on the two serial data pins.

[mosi] [mso] [ sck ][ spss |
SPI
INTERNAL
! cLocK
e T SPI INTERFACE LOGIC || GENERATOR
Mi sy is §M SPI_CTL
| SPI_STAT
SPI_FLG
SPI_BAUD
TTTTTTITTTTTTIT < SPI_SHADOW
|| sHIFT REGISTER
[NEARRNRNRRENT!
SPI_RDBR SPI_TDBR
RECEIVE v TRANSMIT SPIIRQ
REGISTER REGISTER OR DMA
REQUEST

PAB

@ il

7/

[ FOUR-DEEP FIFO

@ DAB

Figure 13-1. SPI Block Diagram
External Interface

SPI Clock Signal (SCK)

The ScK signal is the serial clock signal. This control signal is driven by the
master and controls the rate at which data is transferred. The master may
transmit data at a variety of bit rates. The SCK signal cycles once for each
bit transmitted. It is an output signal if the device is configured as a mas-
ter, and an input signal if the device is configured as a slave.

The ScK is a gated clock that is active during data transfers only for the
length of the transferred word. The number of active clock edges is equal
to the number of bits driven on the data lines. Slave devices ignore the
serial clock if the SPISS input is driven inactive (high).

13-4 ADSP-BF59x Blackfin Processor Hardware Reference



SPI-Compatible Port Controller

The ScK is used to shift out and shift in the data driven on the M1S0 and
MOST lines. Clock polarity and clock phase relative to data are programma-
ble in the SPI_CTL register and define the transfer format.

Master-Out, Slave-In (MOSI) Signal

The master-out, slave-in (M0SI) signal is one of the bidirectional I/O data
pins. If the processor is configured as a master, the MOSI pin transmits data
out. If the processor is configured as a slave, the MOSI pin receives data in.
In an SPI interconnection, the data is shifted out from the MOST output
pin of the master and shifted into the MOST input(s) of the slave(s).

Master-In, Slave-Out (MISO) Signal

The master-in, slave-out (M150) signal is one of the bidirectional I/O data
pins. If the processor is configured as a master, the MIS0 pin receives data
in. If the processor is configured as a slave, the MISO pin transmits data
out. In an SPI interconnection, the data is shifted out from the MI5S0 out-
put pin of the slave and shifted into the MISO input pin of the master.

@ Only one slave is allowed to transmit data at any given time.

ADSP-BF59x Blackfin Processor Hardware Reference 13-5



Interface Overview

The SPI configuration example in Figure 13-2 illustrates how the proces-
sor can be used as the slave SPI device. The 8-bit host microcontroller is
the SPI master.

The processor can be booted through its SPI interface to allow user
application code and data to be downloaded before runtime.

8-BIT HOST BLACKFIN PROCESSOR
MICROCONTROLLER SLAVE SPI DEVICE
SCLK SCK
S_SEL SPISS
Mosi MosI
MISO MISO

Figure 13-2. Blackfin Processor as Slave SPI Device

SPI Slave Select Input Signal (SPISS)

The sPISS signal is the SPI slave select input signal. This is an active-low
signal used to enable a processor when it is configured as a slave device.
This input-only pin behaves like a chip select and is provided by the mas-
ter device for the slave devices. For a master device, it can act as an error
signal input in a multimaster environment. In multimaster mode, if the
SPISS input signal of a master is asserted (driven low), and the PSSE bit in
the SPI_CTL register is enabled, an error has occurred. This means that
another device is also trying to be the master device.

The enable lead time (T'1), the enable lag time (T2), and the sequential
transfer delay time (T3) each must always be greater than or equal to
one-half the SCK period. See Figure 13-3 on page 13-7. The minimum
time between successive word transfers (T4) is two SCK periods. This is
measured from the last active edge of SCK of one word to the first active

edge of sCK of the next word. This is independent of the configuration of
the SPI (CPHA, MSTR, and so on).

13-6 ADSP-BF59x Blackfin Processor Hardware Reference



SPI-Compatible Port Controller

T1 T2,

[ ==
SCK I I
(CPOL = 1) | | | | | |
T T

I [

SPISS I I I

(TO SLAVE) . .

T T T

I I [P I

fe—

1 1

Figure 13-3. SPI Timing

For a master device with CPHA = 0, the slave select output is inactive (high)
for at least one-half the SCK period. In this case, T1 and T2 will each
always be equal to one-half the SCK period.

SPI Slave Select Enable Output Signals

When operating in master mode, Blackfin processors may use any GPIO
pin to enable individual SPI slave devices by software. In addition, the SPI
module provides hardware support to generate up to seven slave select
enable signals automatically (depending upon the configuration of the
specific processor). See Figure 13-14 on page 13-38 for details.

These signals are always active low in the SPI protocol. Since the respec-
tive pins are not driven during reset, it is reccommended to pull them up
by a resistor.

If enabled as a master, the SPI uses the SPI_FLG register to enable gen-
eral-purpose port pins to be used as individual slave select lines. Before
manipulating this register, the port pins that are to be used as SPI
slave-select outputs must first be configured as such. To work as SPI out-
put pins, the port pins must be enabled for use by SPI in the appropriate
PORT_MUX register.

In slave mode, the SPI_FLG bits have no effect, and each SPI uses the
SPISS input as a slave select. Just as in the master mode case, the port pin

ADSP-BF59x Blackfin Processor Hardware Reference 13-7



Interface Overview

associated with SPISS must first be configured appropriately before use.
Figure 13-14 on page 13-38 shows the SPI_FLG register diagram.

Slave Select Inputs

If the SPI is in slave mode, SPISS acts as the slave select input. When
enabled as a master, SPISS can serve as an error detection input for the SPI
in a multimaster environment. The PSSE bit in SPI_CTL enables this fea-
ture. When PSSE = 1, the SPISS input is the master mode error input.
Otherwise, SPISS is ignored.

Use of FLS Bits in SPI_FLG for Multiple Slave SPI Systems

The FLSx bits in the SPI_FLG register are used in a multiple slave SPI envi-
ronment. For example, if there are eight SPI devices in the system
including a master processor equipped with seven slave selects, the master
processor can support the SPI mode transactions across the other seven
devices. This configuration requires only one master processor in this mul-
tislave environment. For example, assume that the SPI is the master. The
seven port pins that can be configured as SPI master mode slave-select
output pins can be connected to each of the slave SPI device’s SPISS pins.
In this configuration, the FLSx bits in SPI_FLG can be used in three cases.

In cases 1 and 2, the processor is the master and the seven microcontrol-
lers/peripherals with SPI interfaces are slaves. The processor can:

1. Transmit to all seven SPI devices at the same time in a broadcast
mode. Here, all FLSx bits are set.

2. Receive and transmit from one SPI device by enabling only one
slave SPI device at a time.

13-8 ADSP-BF59x Blackfin Processor Hardware Reference



SPI-Compatible Port Controller

In case 3, all eight devices connected through SPI ports can be
other processors.

3. If all the slaves are also processors, then the requester can receive
data from only one processor (enabled by clearing the EMISO0 bit in
the six other slave processors) at a time and transmit broadcast data
to all seven at the same time. This EMIS0 feature may be available in
some other microcontrollers. Therefore, it is possible to use the
EMISO feature with any other SPI device that includes this
functionality.

Figure 13-4 shows one processor as a master with three processors (or
other SPI-compatible devices) as slaves.

SLAVE DEVICE SLAVE DEVICE SLAVE DEVICE

MISO SCK MOSI SPISS MISO SCK MOSI SPISS MISO SCK MOSI SPISS

vDD

MISO SCK MOSI SPISS
L PF/PG/PH PF/PG/PH

PF/PG/PH MASTER
DEVICE

Figure 13-4. Single-Master, Multiple-Slave Configuration

The transmit buffer becomes full after it is written to. It becomes empty
when a transfer begins and the transmit value is loaded into the shift regis-
ter. The receive buffer becomes full at the end of a transfer when the shift

ADSP-BF59x Blackfin Processor Hardware Reference 13-9



Interface Overview

register value is loaded into the receive buffer. It becomes empty when the
receive buffer is read.

The SPIF bit in the SPI_STAT register is set when the SPI port is
disabled.

Upon entering DMA mode, the transmit buffer and the receive
buffer become empty. That is, the TXS bit and the RXS bit in the
SPI_STAT register are initially cleared upon entering DMA mode.

13-10 ADSP-BF59x Blackfin Processor Hardware Reference



SPI-Compatible Port Controller

When using DMA for SPI transmit, the DMA_DONE interrupt signi-
fies that the DMA FIFO is empty. However, at this point there
may still be data in the SPI DMA FIFO waiting to be transmitted.
Therefore, software needs to poll TXS in the SPI_STAT register until
it goes low for two successive reads, at which point the SPI DMA
FIFO will be empty. When the SPIF bit subsequently gets set, the
last word has been transferred and the SPI can be disabled or
enabled for another mode.

Internal Interfaces

The SPI has dedicated connections to the processor’s peripheral bus (PAB)
and DAB.

The low-latency PAB bus is used to map the SPI resources into the system
MMR space. For PAB accesses to SPI MMRs, the primary performance
criteria is latency, not throughput. Transfer latencies for both read and
write transfers on the peripheral bus are two SCLK cycles.

The DAB bus provides a means for DMA SPI transfers to gain access to
on-chip and off-chip memory with little or no degradation in core band-
width to memory. The SPI peripheral, as a DMA master, is capable of
sourcing DMA accesses. The arbitration policy for access to the DAB is
described in the Chip Bus Hierarchy chapter.

DMA Functionality

The SPI has a single DMA engine which can be configured to support
either an SPI transmit channel or a receive channel, but not both simulta-
neously. Therefore, when configured as a transmit channel, the received
data will essentially be ignored.

ADSP-BF59x Blackfin Processor Hardware Reference 13-11



Description of Operation

When configured as a receive channel, what is transmitted is irrelevant. A
16-bit by four-word FIFO (without burst capability) is included to
improve throughput on the DAB.

When using DMA for SPI transmit, the DMA_DONE interrupt signi-
fies that the DMA FIFO is empty. However, at this point there
may still be data in the SPI DMA FIFO waiting to be transmitted.
Therefore, software needs to poll TXS in the SPI_STAT register until
it goes low for two successive reads, at which point the SPI DMA
FIFO will be empty. When the SPIF bit subsequently gets set, the
last word has been transferred and the SPI can be disabled or
enabled for another mode.

The four-word FIFO is cleared when the SPI port is disabled.

Description of Operation

The following sections describe the operation of the SPI.

SPI Transfer Protocols

The SPI protocol supports four different combinations of serial clock
phase and polarity (SPI modes 0, 1, 2, 3). These combinations are selected
using the CPOL and CPHA bits in SPI_CTL as shown in Figure 13-5 on

page 13-13.

Figure 13-6 on page 13-14 and Figure 13-7 on page 13-14 demonstrate
the two basic transfer formats as defined by the CPHA bit. Two waveforms
are shown for SCk—one for CPOL = 0 and the other for cPOL = 1. The dia-
grams may be interpreted as master or slave timing diagrams since the SCK,
MIS0, and MOSI pins are directly connected between the master and the
slave. The MIS0 signal is the output from the slave (slave transmission),
and the MOST signal is the output from the master (master transmission).
The SCK signal is generated by the master, and the SPISS signal is the slave

13-12 ADSP-BF59x Blackfin Processor Hardware Reference



SPI-Compatible Port Controller

CLOCK PHASE (CPHA)

CPHA=0 | CPHA=1
MODE 0 MODE 1

° I

n
-~
=

o
8 !
e SAMPLE DRIVE | DRIVE SAMPLE
[ EDGE EDGE EDGE EDGE
T
= 4= = === == ==
o
o
% I
%]
8 _ —_— _ —_—
33 |

n

-

o MODE 2 | MODE 3

o

SAMPLE DRIVE | DRIVE SAMPLE

EDGE EDGE EDGE EDGE
Figure 13-5. SPI Modes of Operation

device select input to the slave from the master. The diagrams represent an
8-bit transfer (SIZE = 0) with the most significant bit (MSB) first

(LSBF = 0). Any combination of the SI1ZE and LSBF bits of SPI_CTL is
allowed. For example, a 16-bit transfer with the least significant bit (LSB)
first is another possible configuration.

The clock polarity and the clock phase should be identical for the master
device and the slave device involved in the communication link. The
transfer format from the master may be changed between transfers to
adjust to various requirements of a slave device.

When CPHA = 0, the slave select line, SPISS, must be inactive (high)
between each serial transfer. This is controlled automatically by the SPI
hardware logic. When CPHA = 1, SPISS may either remain active (low)
between successive transfers or be inactive (high). This must be controlled
by the software through manipulation of the SPI_FLG register.

ADSP-BF59x Blackfin Processor Hardware Reference 13-13



Description of Operation

Figure 13-6 shows the SPI transfer protocol for CPHA = 0. Note SCK starts
toggling in the middle of the data transfer, SIZE = 0, and LSBF = 0.

CLOCK CYCLE P11 2 0 3 !4 s ! & 1 7 ! 8
NUMBER T T T T T T T

(CPOL =0) 4I: ! |—| u u u u l—l ] u l—
scK — '
(CPOL=1) |

(FROMMAS'\‘:I'(E)% XMSBX 6 X 5 X 4 X 3 X 2 X 1 XLSBX

MISO

(FROM SLAVE)_"< ""?B X ‘? X 5 X 4 X 3 X 2 X 1 X LSB )( O
seiss <\ ¢ L E E E E E E E E E E E E | —
(TO SLAVE) ! ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' !

(* = UNDEFINED)

Figure 13-6. SPI Transfer Protocol for CPHA = 0

Figure 13-7 shows the SPI transfer protocol for CPHA = 1. Note SCK starts
toggling at the beginning of the data transfer, SIZE = 0, and LSBF = 0.

CLOCK CYCLE Vo1 2 3 4 5 | 6, 7. 8 |
NUMBER T T T T T T T

(CPOL=0) =¥, — — — — — — o
SCK . l l l l l l l l l l 1
(CPOL=1) | :

MOSI:~XMSBX5X5X4X3XZX1XLSBX

(FROM MASTER)

MISO—CXMSBXSXSX4X3X2X1XLSB; }—

(FROM SLAVE) !

e JUNNEEEEEEEEE R

(TO SLAVE) !

(* = UNDEFINED)

Figure 13-7. SPI Transfer Protocol for CPHA =1

13-14 ADSP-BF59x Blackfin Processor Hardware Reference



SPI-Compatible Port Controller

SPI General Operation

The SPI can be used in single master as well as multimaster environments.
The M0ST, MIS0, and the SCK signals are all tied together in both configura-
tions. SPI transmission and reception are always enabled simultaneously,
unless the broadcast mode has been selected. In broadcast mode, several
slaves can be enabled to receive, but only one of the slaves must be in
transmit mode driving the MIS0 line. If the transmit or receive is not
needed, it can simply be ignored. This section describes the clock signals,
SPI operation as a master and as a slave, and error generation.

Precautions must be taken to avoid data corruption when changing the
SPI module configuration. The configuration must not be changed during
a data transfer. The clock polarity should only be changed when no slaves
are selected. An exception to this is when an SPI communication link con-
sists of a single master and a single slave, CPHA = 1, and the slave select
input of the slave is always tied low. In this case, the slave is always
selected and data corruption can be avoided by enabling the slave only
after both the master and slave devices are configured.

In a multimaster or multislave SPI system, the data output pins (M0SI and
MIS0) can be configured to behave as open drain outputs, which prevents
contention and possible damage to pin drivers. An external pull-up resis-
tor is required on both the MOST and MISO pins when this option is
selected.

The WoM bit in the SPI_CTL register controls this option. When WOM is set
and the SPI is configured as a master, the MOSI pin is three-stated when
the data driven out on MOSI is a logic high. The M0SI pin is not
three-stated when the driven data is a logic low. Similarly, when WOM is set
and the SPI is configured as a slave, the MISO pin is three-stated if the data
driven out on MISO is a logic high.

During SPI data transfers, one SPI device acts as the SPI link master,
where it controls the data flow by generating the SPI serial clock and
asserting the SPI device select signal (SP1SS). The other SPI device acts as

ADSP-BF59x Blackfin Processor Hardware Reference 13-15



Description of Operation

the slave and accepts new data from the master into its shift register, while
it transmits requested data out of the shift register through its SPI trans-
mit data pin. Multiple processors can take turns being the master device,
as can other microcontrollers or microprocessors. One master device can
also simultaneously shift data into multiple slaves (known as broadcast
mode). However, only one slave may drive its output to write data back to
the master at any given time. This must be enforced in broadcast mode,
where several slaves can be selected to receive data from the master, but
only one slave at a time can be enabled to send data back to the master.

In a multimaster or multidevice environment where multiple processors
are connected through their SPI ports, all MOST pins are connected
together, all MIS0O pins are connected together, and all SCK pins are con-
nected together.

For a multislave environment, the processor can make use of up to seven
programmable flags that are dedicated SPI slave select signals for the SPI
slave devices.

@ At reset, the SPI is disabled and configured as a slave.

Clock Signals

The sck signal is a gated clock that is only active during data transfers for
the duration of the transferred word. The number of active edges is equal
to the number of bits driven on the data lines. The clock rate can be as
high as one-fourth of the SCLK rate. For master devices, the clock rate is
determined by the 16-bit value in the SPI_BAUD register. For slave devices,
the value in SPI_BAUD is ignored. When the SPI device is a master, SCK is
an output signal. When the SPI is a slave, SCK is an input signal. Slave
devices ignore the serial clock if the slave select input is driven inactive

(high).

The scK signal is used to shift out and shift in the data driven onto the
MISO and MOSI lines. The data is always shifted out on one edge of the
clock and sampled on the opposite edge of the clock. Clock polarity and

13-16 ADSP-BF59x Blackfin Processor Hardware Reference



SPI-Compatible Port Controller

clock phase relative to data are programmable in the SPI_CTL register and
define the transfer format. See Figure 13-5 on page 13-13.

Interrupt Output

The SPI has two interrupt output signals: a data interrupt and an error
interrupt.

The behavior of the SPI data interrupt signal depends on the TIMOD field
in the SPI_CTL register. In DMA mode (TIMOD = b#1X), the data interrupt
acts as a DMA request and is generated when the DMA FIFO is ready to
be written to (TIMOD = b#11) or read from (TIMOD = b#10). In non-DMA
mode (TIMOD = 0X), a data interrupt is generated when the SPI_TDBR regis-
ter is ready to be written to (TIMOD = b#01) or when the SPI_RDBR register
is ready to be read from (TIMOD = b#00).

An SPI error interrupt is generated in a master when a mode fault error
occurs, in both DMA and non-DMA modes. An error interrupt can also
be generated in DMA mode when there is an underflow (TXE when

TIMOD = b#11) or an overflow (RBSY when TIMOD = b#10) error condition.
In non-DMA mode, the underflow and overflow conditions set the TXE
and RBSY bits in the SPI_STAT register, respectively, but do not generate an
error interrupt.

For more information about this interrupt output, see the discussion of

the TIMOD bits in “SPI Control (SPI_CTL) Register” on page 13-35.

Functional Description

The following sections describe the functional operation of the SPI.

ADSP-BF59x Blackfin Processor Hardware Reference 13-17



Functional Description

Master Mode Operation (Non-DMA)

When the SPI is configured as a master (and DMA mode is not selected),
the interface operates in the following manner.

1.

The core writes to the appropriate port register(s) to properly con-
figure the SPI interface for master mode operation.The required
pins are configured for SPI use as slave-select outputs.

The core writes to SPI_FLG, setting one or more of the SPI flag
select bits (FLSx). This ensures that the desired slaves are properly
deselected while the master is configured.

The core writes to the SPI_BAUD and SPI_CTL registers, enabling the
device as a master and configuring the SPI system by specifying the
appropriate word length, transfer format, baud rate, and other nec-
essary information.

If the CPHA bit in the SPI_CTL register = 1, the core activates the
desired slaves by clearing one or more of the SPI flag bits (FLGx) of
SPI_FLG.

The TIMOD bits in SPI_CTL determine the SPI transfer initiate
mode. The transfer on the SPI link begins upon either a data write
by the core to the SPI_TDBR register or a data read of the SPI_RDBR
register.

The SPI then generates the programmed clock pulses on SCk and
simultaneously shifts data out of M0ST and shifts data in from MISO.
Before a shift, the shift register is loaded with the contents of the
SPI_TDBR register. At the end of the transfer, the contents of the
shift register are loaded into the SPI_RDBR register.

With each new transfer initiate command, the SPI continues to
send and receive words, according to the SPI transfer initiate mode.

See Figure 13-8 on page 13-30 for additional information.

13-18

ADSP-BF59x Blackfin Processor Hardware Reference



SPI-Compatible Port Controller

If the transmit buffer remains empty or the receive buffer remains full, the
device operates according to the states of the SZ and GM bits in SPT_CTL.

If Sz = 1 and the transmit buffer is empty, the device repeatedly transmits
zeros on the MOST pin. One word is transmitted for each new transfer ini-
tiate command. If S7 = 0 and the transmit buffer is empty, the device
repeatedly transmits the last word it transmitted before the transmit buffer
became empty.

If GM = 1 and the receive buffer is full, the device continues to receive new
data from the MIS0 pin, overwriting the older data in the SPT_RDBR regis-
ter. If GM = 0 and the receive buffer is full, the incoming data is discarded,
and SPI_RDBR is not updated.

Transfer Initiation From Master (Transfer Modes)

When a device is enabled as a master, the initiation of a transfer is defined
by the two TIMOD bits of SPI_CTL. Based on those two bits and the status of
the interface, a new transfer is started upon either a read of the SPI_RDBR
register or a write to the SPI_TDBR register. This is summarized in

Table 13-1.

If the SPI port is enabled with TIMOD = b#01 or TIMOD = b#11, the
hardware immediately issues a first interrupt or DMA request.

ADSP-BF59x Blackfin Processor Hardware Reference 13-19



Functional Description

Table 13-1. Transfer Initiation
TIMOD Function Transfer Initiated Upon Action, Interrupt
b#00 Transmit and | Initiate new single word trans- | Interrupt is active when the
receive fer upon read of SPI_RDBR receive buffer is full.
and previous transfer com-
pleted. Read of SPI_RDBR clears
interrupt.
b#01 Transmit and | Initiate new single word trans- | Interrupt is active when the
receive fer upon write to SPI_TDBR | transmit buffer is empty.
and previous transfer com-
pleted. Writing to SPI_TDBR clears
interrupt.
b#10 Receive with | Initiate new multiword trans- | Request DMA reads as long as
DMA fer upon enabling SPI for DMA | the SPI DMA FIFO is not
mode. Individual word trans- | empty.
fers begin with a DMA read of
SPI_RDBR, and last transfer
completed.
b#11 Transmit with | Initiate new multiword trans- | Request DMA writes as long as
DMA fer upon enabling SPI for DMA | the SPI DMA FIFO is not full.
mode. Individual word trans-
fers begin with a DMA write to
SPI_TDBR, and last transfer
completed.

Slave Mode Operation (Non-DMA)

When a device is enabled as a slave (and DMA mode is not selected), the
start of a transfer is triggered by a transition of the SPISS select signal to
the active state (low), or by the first active edge of the clock (5Ck), depend-
ing on the state of the CPHA bit in the SPI_CTL register.

13-20

ADSP-BF59x Blackfin Processor Hardware Reference




SPI-Compatible Port Controller

These steps illustrate SPI operation in the slave mode:

1. The core writes to the appropriate port register(s) to properly con-
figure the SPI for slave mode operation.

2. The core writes to SPI_CTL to define the mode of the serial link to
be the same as the mode set up in the SPI master.

3. To prepare for the data transfer, the core writes data to be trans-
mitted into SPI_TDBR.

4. Once the sPISS falling edge is detected, the slave starts shifting
data out on MIS0 and in from MOSI on SCK edges, depending upon
the states of CPHA and CPOL.

5. Reception/transmission continues until SPISS is released or until
the slave has received the proper number of clock cycles.

6. The slave device continues to receive/transmit with each new fall-
ing edge transition on SPISS and/or SCK clock edge.

See Figure 13-8 on page 13-30 for additional information.

If the transmit buffer remains empty or the receive buffer remains full, the
device operates according to the states of the S7 and GM bits in SPI_CTL. If
$Z = 1 and the transmit buffer is empty, the device repeatedly transmits
zeros on the MISO pin. If SZ = 0 and the transmit buffer is empty, it repeat-
edly transmits the last word it transmitted before the transmit buffer
became empty. If GM = 1 and the receive buffer is full, the device continues
to receive new data from the MOSI pin, overwriting the older data in the
SPI_RDBR register. If GM = 0 and the receive buffer is full, the incoming
data is discarded, and the SPI_RDBR register is not updated.

ADSP-BF59x Blackfin Processor Hardware Reference 13-21



Programming Model

Slave Ready for a Transfer

When a device is enabled as a slave, the actions shown in Table 13-2 are
necessary to prepare the device for a new transfer.

Table 13-2. Transfer Preparation

TIMOD Function Action, Interrupt

b#00 Transmit and Interrupt is active when the receive buffer is full.
receive Read of SPI_RDBR clears interrupt.

b#01 Transmit and Interrupt is active when the transmit buffer is empty.
receive Writing to SPI_TDBR clears interrupt.

b#10 Receive with Request DMA reads as long as SPI DMA FIFO is not empty.
DMA

b#11 Transmit with | Request DMA writes as long as SPI DMA FIFO is not full.
DMA

Programming Model

The following sections describe the SPI programming model.

Beginning and Ending an SPI Transfer

The start and finish of an SPI transfer depend on whether the device is
configured as a master or a slave, which CPHA mode is selected, and which
transfer initiation mode (TIMOD) is selected. For a master SPI with

CPHA = 0, a transfer starts when either SPT_TDBR is written to or SPI_RDBR
is read, depending on TIMOD. At the start of the transfer, the enabled slave
select outputs are driven active (low). However, the SCK signal remains
inactive for the first half of the first cycle of SCK. For a slave with CPHA = 0,
the transfer starts as soon as the SPISS input goes low.

For CPHA = 1, a transfer starts with the first active edge of SCK for both
slave and master devices. For a master device, a transfer is considered fin-

13-22 ADSP-BF59x Blackfin Processor Hardware Reference




SPI-Compatible Port Controller

ished after it sends the last data and simultaneously receives the last data
bit. A transfer for a slave device ends after the last sampling edge of SCK.

The RXS bit defines when the receive buffer can be read. The TXS bit
defines when the transmit buffer can be filled. The end of a single word
transfer occurs when the RXS bit is set, indicating that a new word has just
been received and latched into the receive buffer, SPI_RDBR. For a master
SPI, RxS is set shortly after the last sampling edge of SCK. For a slave SPI,
RXS is set shortly after the last SCK edge, regardless of CPHA or CPOL. The
latency is typically a few SCLK cycles and is independent of TIMOD and the
baud rate. If configured to generate an interrupt when SPI_RDBR is full
(TIMOD = b#00), the interrupt goes active one SCLK cycle after RXS is set.
When not relying on this interrupt, the end of a transfer can be detected
by polling the RXS bit.

To maintain software compatibility with other SPI devices, the SPIF bit is
also available for polling. This bit may have a slightly different behavior
from that of other commercially available devices. For a slave device, SPIF
is cleared shortly after the start of a transfer (SPISS going low for CPHA = 0,
first active edge of SCK on CPHA = 1), and is set at the same time as RXS. For
a master device, SPIF is cleared shortly after the start of a transfer (either
by writing the SPI_TDBR or reading the SPI_RDBR, depending on TIMOD),
and is set one-half SCK period after the last SCK edge, regardless of CPHA or
CPOL.

The time at which SPIF is set depends on the baud rate. In general, SPIF is
set after RXS, but at the lowest baud rate settings (SPI_BAUD < 4). The SPIF
bit is set before RXS is set, and consequently before new data is latched into
SPI_RDBR, because of the latency. Therefore, for SPI_BAUD = 2 or
SPI_BAUD = 3, RXS must be set before SPIF to read SPI_RDBR. For larger
SPI_BAUD settings, RXS is guaranteed to be set before SPIF is set.

If the SPI port is used to transmit and receive at the same time, or to
switch between receive and transmit operation frequently, then the

TIMOD = b#00 mode may be the best operation option. In this mode, soft-
ware performs a dummy read from the SPI_RDBR register to initiate the

ADSP-BF59x Blackfin Processor Hardware Reference 13-23



Programming Model

first transfer. If the first transfer is used for data transmission, software
should write the value to be transmitted into the SPI_TDBR register before
performing the dummy read. If the transmitted value is arbitrary, it is
good practice to set the SZ bit in the SPI_CTL register to ensure zero data is
transmitted rather than random values. When receiving the last word of
an SPI stream, software should ensure that the read from the SPI_RDBR
register does not initiate another transfer. It is reccommended that the SPI
port be disabled before the final SPI_RDBR read access. Reading the
SPI_SHADOW register is not sufficient, as it does not clear the interrupt
request.

In master mode with the CPHA bit set, software should manually assert the
required slave select signal before starting the transaction. After all data
has been transferred, software typically releases the slave select again. If the
SPI slave device requires the slave select line to be asserted for the
complete transfer, this can be done in the SPI interrupt service routine
only when operating in TIMOD = b#00 or TIMOD = b#10 mode. With
TIMOD = b#01 or TIMOD = b#11, the interrupt is requested while the trans-
fer is still in progress.

Master Mode DMA Operation

When enabled as a master with the DMA engine configured to transmit or
receive data, the SPI interface operates as follows.

1. The core writes to the appropriate port register(s) to properly con-
figure the SPI for master mode operation. The appropriate pins can
be configured for SPI use as slave-select outputs.

2. The processor core writes to the appropriate DMA registers to
enable the SPI DMA channel and to configure the necessary work
units, access direction, word count, and so on. For more informa-
tion, see the Direct Memory Access chapter.

3. The processor core writes to the SPI_FLG register, setting one or
more of the SPI flag select bits (FLSx).

13-24 ADSP-BF59x Blackfin Processor Hardware Reference



SPI-Compatible Port Controller

4. The processor core writes to the SPI_BAUD and SPI_CTL registers,
enabling the device as a master and configuring the SPI system by
specifying the appropriate word length, transfer format, baud rate,
and so on. The TIMOD field should be configured to select either
“receive with DMA” (TIMOD = b#10) or “transmit with DMA”
(TIMOD = b#11) mode.

5. If configured for receive, a receive transfer is initiated upon
enabling of the SPI. Subsequent transfers are initiated as the SPI
reads data from the SPI_RDBR register and writes to the SPI DMA
FIFO. The SPI then requests a DMA write to memory. Upon a
DMA grant, the DMA engine reads a word from the SPI DMA
FIFO and writes to memory.

If configured for transmit, the SPI requests a DMA read from
memory. Upon a DMA grant, the DMA engine reads a word from
memory and writes to the SPI DMA FIFO. As the SPI writes data
from the SPI DMA FIFO into the SPI_TDBR register, it initiates a
transfer on the SPI link.

6. The SPI then generates the programmed clock pulses on SCK and
simultaneously shifts data out of M0ST and shifts data in from MISO.
For receive transfers, the value in the shift register is loaded into
the SPI_RDBR register at the end of the transfer. For transmit trans-
fers, the value in the SPI_TDBR register is loaded into the shift
register at the start of the transfer.

7. In receive mode, as long as there is data in the SPI DMA FIFO (the
FIFO is not empty), the SPI continues to request a DMA write to
memory. The DMA engine continues to read a word from the SPI
DMA FIFO and writes to memory until the SPI DMA word count
register transitions from “1” to “0”. The SPI continues receiving

words until SPT DMA mode is disabled.

ADSP-BF59x Blackfin Processor Hardware Reference 13-25



Programming Model

In transmit mode, as long as there is room in the SPI DMA FIFO
(the FIFO is not full), the SPI continues to request a DMA read
from memory. The DMA engine continues to read a word from
memory and write to the SPI DMA FIFO until the SPI DMA word
count register transitions from “1” to “0”. The SPI continues trans-
mitting words until the SPI DMA FIFO is empty.

See Figure 13-9 on page 13-31 for additional information.

For receive DMA operations, if the DMA engine is unable to keep up with
the receive datastream, the receive buffer operates according to the state of
the GM bit in the SPI_CTL register. If GM = 1 and the DMA FIFO is full, the
device continues to receive new data from the MISO pin, overwriting the
older data in the SPI_RDBR register. If GM = 0, and the DMA FIFO is full,
the incoming data is discarded, and the SPI_RDBR register is not updated.
While performing receive DMA, the transmit buffer is assumed to be
empty (and TXE is set). If SZ = 1, the device repeatedly transmits zeros on
the MOST pin. If S7 = 0, it repeatedly transmits the contents of the
SPI_TDBR register. The TXE underrun condition cannot generate an error
interrupt in this mode.

For transmit DMA operations, the master SPI initiates a word transfer
only when there is data in the DMA FIFO. If the DMA FIFO is empty,
the SPI waits for the DMA engine to write to the DMA FIFO before start-
ing the transfer. All aspects of SPI receive operation should be ignored
when configured in transmit DMA mode, including the data in the
SPI_RDBR register, and the status of the RXS and RBSY bits. The RBSY over-
run conditions cannot generate an error interrupt in this mode. The TXE
underrun condition cannot happen in this mode (master DMA TX mode),
because the master SPI will not initiate a transfer if there is no data in the
DMA FIFO.

Writes to the SPI_TDBR register during an active SPI transmit DMA opera-
tion should not occur because the DMA data will be overwritten. Writes
to the SPI_TDBR register during an active SPI receive DMA operation are
allowed. Reads from the SPI_RDBR register are allowed at any time.

13-26 ADSP-BF59x Blackfin Processor Hardware Reference



SPI-Compatible Port Controller

DMA requests are generated when the DMA FIFO is not empty (when
TIMOD = b#10), or when the DMA FIFO is not full (when TIMOD = b#11).

Error interrupts are generated when there is an RBSY overflow error condi-
tion (when TIMOD = b#10).

A master SPI DMA sequence may involve back-to-back transmission
and/or reception of multiple DMA work units. The SPI controller sup-
ports such a sequence with minimal core interaction.

Slave Mode DMA Operation

When enabled as a slave with the DMA engine configured to transmit or
receive data, the start of a transfer is triggered by a transition of the SPISS
signal to the active-low state or by the first active edge of SCK, depending
on the state of CPHA.

The following steps illustrate the SPI receive or transmit DMA sequence
in an SPI slave (in response to a master command).

1. The core writes to the appropriate port register(s) to properly con-
figure the SPI for slave mode operation.

2. The processor core writes to the appropriate DMA registers to
enable the SPI DMA channel and configure the necessary work
units, access direction, word count, and so on. For more informa-
tion, see the Direct Memory Access chapter.

3. The processor core writes to the SPI_CTL register to define the
mode of the serial link to be the same as the mode set up in the SPI
master. The TIMOD field will be configured to select either “receive
with DMA” (TIMOD = b#10) or “transmit with DMA”

(TIMOD = b#11) mode.

4. If configured for receive, once the slave select input is active, the
slave starts receiving and transmitting data on SCK edges. The value
in the shift register is loaded into the SPT_RDBR register at the end

ADSP-BF59x Blackfin Processor Hardware Reference 13-27



Programming Model

of the transfer. As the SPI reads data from the SPI_RDBR register
and writes to the SPI DMA FIFO, it requests a DMA write to
memory. Upon a DMA grant, the DMA engine reads a word from
the SPI DMA FIFO and writes to memory.

If configured for transmit, the SPI requests a DMA read from
memory. Upon a DMA grant, the DMA engine reads a word from
memory and writes to the SPI DMA FIFO. The SPI then reads
data from the SPI DMA FIFO and writes to the SPI_TDBR register,
awaiting the start of the next transfer. Once the slave select input is
active, the slave starts receiving and transmitting data on SCK edges.
The value in the SPI_TDBR register is loaded into the shift register at
the start of the transfer.

5. In receive mode, as long as there is data in the SPI DMA FIFO
(FIFO not empty), the SPI slave continues to request a DMA write
to memory. The DMA engine continues to read a word from the
SPI DMA FIFO and writes to memory until the SPI DMA word
count register transitions from “1” to “0”. The SPI slave continues
receiving words on SCK edges as long as the slave select input is
active.

In transmit mode, as long as there is room in the SPI DMA FIFO
(FIFO not full), the SPI slave continues to request a DMA read
from memory. The DMA engine continues to read a word from
memory and write to the SPI DMA FIFO until the SPI DMA word
count register transitions from “1” to “0”. The SPI slave continues
transmitting words on SCK edges as long as the slave select input is
active.

See Figure 13-9 on page 13-31 for additional information.

For receive DMA operations, if the DMA engine is unable to keep up with
the receive datastream, the receive buffer operates according to the state of
the GM bit in the SPI_CTL register. If GM = 1 and the DMA FIFO is full, the

device continues to receive new data from the MOSI pin, overwriting the

13-28 ADSP-BF59x Blackfin Processor Hardware Reference



SPI-Compatible Port Controller

older data in the SPI_RDBR register. If GM = 0 and the DMA FIFO is full,
the incoming data is discarded, and the SPI_RDBR register is not updated.
While performing receive DMA, the transmit buffer is assumed to be
empty and TXE is set. If SZ = 1, the device repeatedly transmits zeros on
the MISO pin. If SZ = 0, it repeatedly transmits the contents of the
SPI_TDBR register. The TXE underrun condition cannot generate an error
interrupt in this mode.

For transmit DMA operations, if the DMA engine is unable to keep up
with the transmit stream, the transmit port operates according to the state
of the Sz bit. If SZ = 1 and the DMA FIFO is empty, the device repeatedly
transmits zeros on the M1S0 pin. If S7 = 0 and the DMA FIFO is empty, it
repeatedly transmits the last word it transmitted before the DMA buffer
became empty. All aspects of SPI receive operation should be ignored
when configured in transmit DMA mode, including the data in the
SPI_RDBR register, and the status of the RXS and RBSY bits. The RBSY over-
run conditions cannot generate an error interrupt in this mode.

Writes to the SPI_TDBR register during an active SPI transmit DMA opera-
tion should not occur because the DMA data will be overwritten. Writes
to the SPI_TDBR register during an active SPI receive DMA operation are
allowed. Reads from the SPI_RDBR register are allowed at any time.

DMA requests are generated when the DMA FIFO is not empty (when
TIMOD = b#10), or when the DMA FIFO is not full (when TIMOD = b#11).

Error interrupts are generated when there is an RBSY overflow error condi-
tion (when TIMOD = b#10), or when there is a TXE underflow error
condition (when TIMOD = b#11).

ADSP-BF59x Blackfin Processor Hardware Reference 13-29



Programming Model

WRITE TO PORT REGISTERS TO ENABLE
AND SELECT THE APPROPRIATE SLAVE

<

WRITE TO PORT REGISTERS TO ENABLE SPI
SIGNALS AND SELECT THE REQUIRED SIGNALS.

'

MASTER OR SLAVE?

MASTER

MULTISLAVE

SELECT SIGNALS. SUPPORT?

v I

WRITE SPI_FLG TO SET APPROPRIATE FLSx BITS

Y

WRITE SPI_BAUD TO SET DESIRED SPI BIT RATE

l MSTR =1

SLAVE, MSTR =0

\i

WRITE SPI_CTL TO CONFIGURE SPI HARDWARE AND ENABLE SPI PORT

WRITE SPI_FLG
TO SELECT SLAVE(S)
USING FLGx BITS

!

A

WRITE SPI_TBDR WITH DATA TO SEND OVER SPI

i

TIMOD = 00

READ SPI_RDBR
TO START
TRANSFER

!

WAIT FOR TRANSFER COMPLETE

LAST TRANSFER?

WRITE SPI_FLG
TO DESELECT
SLAVE(S) USING
FLGx BITS

'

READ NEW DATA

WRITE SPI_CTL TO DISABLE SPI PORT

FROM SPI_RDBR

Figure 13-8. Core-Driven SPI Flow Chart

ADSP-BF59x Blackfin Processor Hardware Reference




SPI-Compatible Port Controller

WRITE TO PORT REGISTERS TO ENABLE SPI
SIGNALS AND SELECT THE REQUIRED SIGNALS.

'

WRITE DESIRED DMA CHANNEL'S
DMA_PERIPHERAL_MAP TO SET AS SPI.

(REPLACE ALL MENTION OF DMA7 REGISTER NAMES
INTHIS FLOW CHART WITH CHOSEN DMAXx PREFIX.)

!

WRITE DMA7_CONFIG TO CONFIGURE DMA ENGINE

0x4 ARRAY
0x6 SMALL LIST

POPULATE 0x7 LARGE LIST DMA7_CONFIG
DESCRIPTORS FLOW = ?
IN MEMORY

0x0 STOP
0x1 AUTOBUFFER

0x6 SMALL LIST

DMA?_CONFIG 0x7 LARGE LIST

FLOW = ?

0x4 ARRAY

\

SET SET
DMA7_CURR_DESC_PTR| [DMA7_NEXT_DESC_PTR
TO ADDRESS OF TO ADDRESS OF
FIRST DESCRIPTOR FIRST DESCRIPTOR

! '

DMA7_CONFIG'S NDSIZE FIELD DETERMINES
WHICH DMA REGISTERS TO INITIALIZE STATICALLY

v v

WRITE DMA REGISTERS:
DMA7_START_ADDR
DMA7_X_COUNT
DMA7_X_MODIFY

Figure 13-9. SPI DMA Flow Chart (Part 1 of 3)

ADSP-BF59x Blackfin Processor Hardware Reference 13-31



Programming Model

WRITE DMA REGISTERS:
DMA7_Y_COUNT
DMA7_Y_MODIFY

SLAVE,
MSTR=0

—— IS SPI MASTER
OR SLAVE?

MASTER

WRITE TO PORT
REGISTERS
TO ENABLE SLAVES

MULTI-SLAVE
SUPPORT?

WRITE SPI_FLG TO SET APPROPRIATE FLSx BITS

WRITE SPI_BAUD TO SET DESIRED SPI BIT RATE

l MSTR =1

WRITE SPI_CTL TO CONFIGURE SPI PORT

WRITE SPI_FLG
TO SELECT SLAVE(S)
USING FLGx BITS

!

WRITE DMA7_CONFIG TO ENABLE DMA

!

WRITE SPI_CTL TO ENABLE SPI

Figure 13-10. SPI DMA Flow Chart (Part 2 of 3)

13-32 ADSP-BF59x Blackfin Processor Hardware Reference



SPI-Compatible Port Controller

CLEAR INTERRUPT BY
WRITING THE DMA_DONE
BIT IN DMA7_IRQ_STATUS

INTERRUPT
REQUESTED?

FLOW = STOP

Y

WRITE DMA7_CONFIG
TO ENABLE DMA
AGAIN

RX
TX OR RX DMA?

X

WAIT FOR DMA_RUN = 0 IN DMA7_IRQ_STATUS

Y

WAIT FOR TWO STRAIGHT READS
OF TXS = 0 IN SPI_STAT

!

WAIT FOR SPIF = 1 IN SPI_STAT

WRITE SPI_FLGTO
DESELECT SLAVE(S)
VIA FLGx BITS

!

WRITE SPI_CTL TO DISABLE SPI PORT

'

WRITE DMA7_CONFIG TO DISABLE DMA

Figure 13-11. SPI DMA Flow Chart (Part 3 of 3)

ADSP-BF59x Blackfin Processor Hardware Reference 13-33



SPI Registers

SPIl Registers

The SPI peripheral includes a number of user-accessible registers. Some of
these registers are also accessible through the DMA bus. Four registers
contain control and status information: SP1_BAUD, SPT_CTL, SPI_FLG, and
SPI_STAT. Two registers are used for buffering receive and transmit data:
SPI_RDBR and SPI_TDBR. The shift register, SFDR, is internal to the SPI
module and is not directly accessible.

Table 13-3shows the functions of the SPI registers. Figure 13-12 through
Figure 13-18 on page 13-44 provide details.

Table 13-3. SPI Register Mapping

Register Name |Function Notes

SPI_BAUD SPI port Value of “0” or “1” disables the serial clock
baud control

SPI_CTL SPI port SPE and MSTR bits can also be modified by hardware
control (when MODF is set)

SPI_FLG SPI port Bits 0 and 8 are reserved
flag

SPI_STAT SPI port SPIF bit can be set by clearing SPE in SPI_CTL
status

SPI_TDBR SPI port Register contents can also be modified by hardware (by
transmit data bufferf DMA and/or when SZ = 1 in SPI_CTL)

SPI_RDBR SPI port When register is read, hardware events can be triggered
receive data buffer

SPI_SHADOW/| SPI port Register has the same contents as SPI_RDBR, but no
data action is taken when it is read

SPI Baud Rate (SPI_BAUD) Register

The SPI_BAUD register is used to set the bit transfer rate for a master
device. When configured as a slave, the value written to this register is
ignored. The serial clock frequency is determined by this formula:

13-34 ADSP-BF59x Blackfin Processor Hardware Reference



SPI-Compatible Port Controller

SCK frequency = (peripheral clock frequency SCLK)/(2 x SPI_BAUD)

Writing a value of “0” or “1” to the register disables the serial clock.

Therefore, the maximum serial clock rate is one-fourth the system clock
rate.

Table 13-4 lists several possible baud rate values for SPI_BAUD.

Table 13-4. SPI Master Baud Rate Example

SPI_BAUD Decimal Value SPI Clock (SCK) Divide Baud Rate for
Factor SCLK at 100 MHz

0 N/A N/A

1 N/A N/A

2 4 25 MHz

3 6 16.7 MHz

4 8 12.5 MHz

65,535 (0xFFFF) 131,070 763 Hz

SPI Baud Rate Register (SPI_BAUD)

15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0
fofofofofofofofofofofofofofofo]o] Reset=oxoo00
| |

Baud Rate[15:0]
SCLK/(2 x SPI_BAUD)

Figure 13-12. SPI Baud Rate Register

SPI Control (SPI_CTL) Register

The SPI_CTL register is used to configure and enable the SPI system. This
register is used to enable the SPI interface, select the device as a master or
slave, and determine the data transfer format and word size.

ADSP-BF59x Blackfin Processor Hardware Reference 13-35



SPI Registers

The term “word” refers to a single data transfer of either 8 bits or 16 bits,
depending on the word length (S1ZE) bitin SPI_CTL. There are two special
bits which can also be modified by the hardware: SPE and MSTR.

The TIMOD field is used to specify the action that initiates transfers to/from
the receive/transmit buffers. When set to b#00, a SPI port transaction is
begun when the receive buffer is read. Data from the first read will need to
be discarded since the read is needed to initiate the first SPI port transac-
tion. When set to b#01, the transaction is initiated when the transmit
buffer is written. A value of b#10 selects DMA receive mode and the first
transaction is initiated by enabling the SPI for DMA receive mode. Subse-
quent individual transactions are initiated by a DMA read of the SPI_RDBR
register. A value of 11 selects DMA transmit mode and the transaction is
initiated by a DMA write of the SPI_TDBR register.

The PSSE bit is used to enable the SPISS input for an external master.
When not used, SPISS can be disabled, freeing up a pin for an alternate
function.

The EMISO bit enables the MISO pin as an output. This is needed in an
environment where the master wishes to transmit to various slaves at one
time (broadcast). Only one slave is allowed to transmit data back to the
master. Except for the slave from whom the master wishes to receive, all
other slaves should have this bit cleared.

The SPE and MSTR bits can be modified by hardware when the MODF bit of
the SPI_STAT register is set. See “Mode Fault Error (MODEF)” on
page 13-41.

13-36 ADSP-BF59x Blackfin Processor Hardware Reference



SPI-Compatible Port Controller

Figure 13-13 on page 13-37 provides the bit descriptions for SPI_CTL.

SPI Control Register (SPI_CTL)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

o fofofofo [t fofofofofofofofo]ofo

Reset = 0x0400

SPE (SPI Enable)
0 - Disabled
1 - Enabled

WOM (Write Open Drain
Master) ——————
0 - Normal

1 - Open drain

MSTR (Master)

Sets the SPI module as
master or slave

0 - Slave

1 - Master

CPOL (Clock Polarity)
0 - Active high SCK
1 - Active low SCK

CPHA (Clock Phase)
Selects transfer format and
operation mode
0 - SCK toggles from middle
of the first data bit, slave select
pins controlled by hardware
1 - SCK toggles from beginning
of first data bit, slave select
pins controlled by software

LSBF (LSB First)
0 - MSB sent/received first
1 - LSB sent/received first

SIZE (Size of Words)
0 - 8 bits
1- 16 bits

Figure 13-13. SPI Control Register

TIMOD[1:0] (Transfer Initiation

Mode)

00 - Start transfer with read of
SPI_RDBR, interrupt when
SPI_RDBR is full

01 - Start transfer with write of
SPI_TDBR, interrupt when
SPI_TDBR is empty

10 - Start transfer with DMA read
of SPI_RDBR, request further
DMA reads as long as SPI DMA
FIFO is not empty

11 - Start transfer with DMA write
of SPI_TDBR, request further
DMA writes as long as SPI DMA
FIFO is not full

SZ (Send Zero)

Send zero or last word when
SPI_TDBR is empty

0 - Send last word

1 - Send zeros

GM (Get More Data)

When SPI_RDBR is full, get

data or discard incoming data

0 - Discard incoming data

1 - Get more data, overwrite
previous data

PSSE (Slave Select Enable)
0 - Disable
1 - Enable

EMISO (Enable MISO)
0 - MISO disabled
1 - MISO enabled

ADSP-BF59x Blackfin Processor Hardware Reference 13-37



SPI Registers

SPI Flag (SPI_FLG) Register

The SPI_FLG register consists of two sets of bits that function as follows.

SPI Flag Register (SPI_FLG)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

T T [ e]oJoTo]oJo o Jo ] Reset=oxrroo

FLG7 (Slave FLS1 (Slave Select Enable 1)

Select Value 7) 0 - SPISSEL1 disabled

SPISSEL7 value 1 - SPISSEL1 enabled

FLG6 (Slave Select — FLS2 (Slave Select Enable 2)

Value 6) ———— 0 - SPISSEL2 disabled

SPISSELS6 value 1 - SPISSEL2 enabled

FLG5 (Slave Select ——— FLS3 (Slave Select Enable 3)

vValue5) ———— 0 - SPISSELS3 disabled

SPISSELS5 value 1 - SPISSELS3 enabled

FLG4 (Slave Select — FLS4 (Slave Select Enable 4)

Value4) ——— 0 - SPISSEL4 disabled

SPISSEL4 value 1 - SPISSEL4 enabled

FLG3 (Slave Select Value 3) — L FLS5 (Slave Select Enable 5)

SPISSELS3 value 0 - SPISSELS5 disabled

FLG2 (Slave Select Value 2) — 1- SPISSELS enabled

SPISSEL2 value FLS6 (Slave Select Enable 6)
0 - SPISSELS disabled

FLG1 (Slave Select Value 1) ;

SPISSEL1 value 1 - SPISSEL6 enabled

FLS7 (Slave Select Enable 7)

(shown for an SPI instance with seven slave selects) 0 - SPISSEL7 disabled
1 - SPISSEL7 enabled

Figure 13-14. SPI Flag Register (example with 7 slave selects)

e Slave select enable (FLSx) bits

Each FLSx bit corresponds to a general purpose port pin. When an
FLSx bit is set, the corresponding port pin is driven as a slave select.
For example, if FLS1 is set in SPI_FLG, the port pin corresponding
to SPISSELI is driven as a slave select.

13-38 ADSP-BF59x Blackfin Processor Hardware Reference



SPI-Compatible Port Controller

If the FLSx bit is not set, the general-purpose port registers configure and
control the corresponding port pins.

e Slave select value (FLGx) bits

* When a port pin is configured as a slave select output, the FLGx bits
can determine the value driven onto the output. If the CPHA bit in
SPI_CTL is set, the output value is set by software control of the
FLGx bits. The SPI protocol permits the slave select line to either
remain asserted (low) or be deasserted between transferred words.
The user must set or clear the appropriate FLGx bits. For example,
setting FLS3 in the SPI_FLG register drives the SPISSEL3 pin as a
slave select. Then, clearing FLG3 in the SPI_FLG register drives the
pin low, and setting FLG3 drives it high. The pin can be cycled high
and low between transfers by setting and clearing FLG3. Otherwise,
the pin remains active (low) between transfers.

If CPHA = 0, the SPI hardware sets the output value and the FLGx
bits are ignored. The SPI protocol requires that the slave select be
deasserted between transferred words. In this case, the SPI hard-
ware controls the pins. For example, to use the slave select function
on a port pin to which it is mapped, it is only necessary to set the
appropriate FLS bitin SPI_FLG. It is not necessary to write to an FLG
bit, because the SPI hardware automatically drives the port pin.

ADSP-BF59x Blackfin Processor Hardware Reference 13-39



SPI Registers

SPI Status (SPI_STAT) Register

The SPI_STAT register is used to detect when an SPI transfer is complete
or if transmission/reception errors occur. The SPI_STAT register can be
read at any time.

SPI Status Register (SPI_STAT)

15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0
|o|o|o|o|o|o|o|o|o|0|o|o|0|0|0|1|Reset=0x0001

TXCOL (Transmit Collision Error) - W1C SPIF (SPI Finished) - RO
When set, corrupt data may Set when SPI single word
have been transmitted transfer complete
RXS (RX Data Buffer Status) - RO L—— MODF (Mode Fault Error) - W1C
0 - Empty Set in a master device when
1 - Full some other device tries to
RBSY (Receive Error) - W1C become the master
Set when data is received with TXE (Transmission Error) - W1C
receive buffer full ———— Set when transmission
d with data i
TXS (SPI_TDBR Data Buffer Status) -RO — | apl TpBR o newdaam
0 - Empty -
1 - Full

Figure 13-15. SPI Status Register

Some of the bits in SPI_STAT are read-only and other bits are sticky. Bits
that provide information only about the SPI are read-only. These bits are
set and cleared by the hardware. Sticky bits are set when an error condi-
tion occurs. These bits are set by hardware and must be cleared by
software. To clear a sticky bit, the user must write a “1” to the desired bit
position of SPI_STAT. For example, if the TXE bit is set, the user must write
a “1”7 to bit 2 of SPI_STAT to clear the TXE error condition. This allows the
user to read SPI_STAT without changing its value.

Sticky bits are cleared on a reset, but are not cleared on an SPI

disable.

See Figure 13-15 on page 13-40 for more information.

13-40 ADSP-BF59x Blackfin Processor Hardware Reference



SPI-Compatible Port Controller

Mode Fault Error (MODF)

The MODF bit is set in SPI_STAT when the SPISS input pin of a device
enabled as a master is driven low by some other device in the system. This
occurs in multimaster systems when another device is also trying to be the
master. To enable this feature, the PSSE bit in SPT_CTL must be set. This
contention between two drivers can potentially damage the driving pins.
As soon as this error is detected, these actions occur:

e The MSTR control bit in SPI_CTL is cleared, configuring the SPI
interface as a slave

e The SPE control bit in SPI_CTL is cleared, disabling the SPI system
e The MODF status bit in SPI_STAT is set
* An SPI error interrupt is generated

These four conditions persist until the MODF bit is cleared by software.
Until the MODF bit is cleared, the SPI cannot be re-enabled, even as a slave.
Hardware prevents the user from setting either SPE or MSTR while MODF is
set.

When MODF is cleared, the interrupt is deactivated. Before attempting to
re-enable the SPI as a master, the state of the SPISS input pin should be
checked to make sure the pin is high. Otherwise, once SPE and MSTR are
set, another mode fault error condition immediately occurs.

When SPE and MSTR are cleared, the SPI data and clock pin drivers (M0SI,
M1S0, and SCK) are disabled. However, the slave select output pins revert to
being controlled by the general-purpose I/O port registers. This could lead
to contention on the slave select lines if these lines are still driven by the
processor. To ensure that the slave select output drivers are disabled once
an MODF error occurs, the program must configure the general-purpose 1/O
port registers appropriately.

When enabling the MODF feature, the program must configure as inputs all
of the port pins that will be used as slave selects. Programs can do this by

ADSP-BF59x Blackfin Processor Hardware Reference 13-41



SPI Registers

configuring the direction of the port pins prior to configuring the SPI.
This ensures that, once the MODF error occurs and the slave selects are auto-
matically reconfigured as port pins, the slave select output drivers are

disabled.

Transmission Error (TXE)

The TXE bit is set in SPI_STAT when all the conditions of transmission are
met, and there is no new data in SPI_TDBR (SPI_TDBR is empty). In this
case, the contents of the transmission depend on the state of the SZ bit in

SPI_CTL. The TXE bit is sticky (W1C).

Reception Error (RBSY)

The RBSY flag is set in the SPI_STAT register when a new transfer is com-
pleted, but before the previous data can be read from SPI_RDBR. The state
of the GM bit in the SPI_CTL register determines whether SPT_RDBR is
updated with the newly received data. The RBSY bit is sticky (W1C).

Transmit Collision Error (TXCOL)

The TxcoL flag is set in SPI_STAT when a write to SPI_TDBR coincides with
the load of the shift register. The write to SPI_TDBR can be by software or
the DMA. The TxcOL bit indicates that corrupt data may have been loaded
into the shift register and transmitted. In this case, the data in SPI_TDBR
may not match what was transmitted. This error can easily be avoided by
proper software control. The TXCoL bit is sticky (W1C).

SPI Transmit Data Buffer (SPI_TDBR) Register

The SPI_TDBR register is a 16-bit read-write register. Data is loaded into
this register before being transmitted. Just prior to the beginning of a data
transfer, the data in SPI_TDBR is loaded into the internal shift register
SFDR. A read of SPI_TDBR can occur at any time and does not interfere with
or initiate SPI transfers.

13-42 ADSP-BF59x Blackfin Processor Hardware Reference



SPI-Compatible Port Controller

When the DMA is enabled for transmit operation, the DMA engine loads
data into this register for transmission just prior to the beginning of a data
transfer. A write to SPI_TDBR should not occur in this mode because this
data will overwrite the DMA data to be transmitted.

When the DMA is enabled for receive operation, the contents of SPI_TDBR
are repeatedly transmitted. A write to SPI_TDBR is permitted in this mode,
and this data is transmitted.

If the S7 control bit in the SPI_CTL register is set, SPI_TDBR may be reset to
zero under certain circumstances.

If multiple writes to SPI_TDBR occur while a transfer is already in progress,
only the last data written is transmitted. None of the intermediate values
written to SPI_TDBR are transmitted. Multiple writes to SPI_TDBR are pos-
sible, but not recommended.

SPI Transmit Data Buffer Register (SPI_TDBR)

15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0
o|o|o|o|0|o|o|o|o|0|o|o|o|o|0|o Reset = 0x0000

Transmit Data Buffer[15:0]

Figure 13-16. SPI Transmit Data Buffer Register

SPI Receive Data Buffer (SPI_RDBR) Register

The SPI_RDBR register is a 16-bit read-only register. At the end of a data
transfer, the data in the shift register is loaded into SPI_RDBR. During a
DMA receive operation, the data in SPI_RDBR is automatically read by the
DMA controller. When SPI_RDBR is read by software, the RXS bit in the

ADSP-BF59x Blackfin Processor Hardware Reference 13-43



SPI Registers

SPI_STAT register is cleared and an SPI transfer may be initiated (if
TIMOD = b#00).

SPI Receive Data Buffer Register (SPI_RDBR)
Read Only

1514 1312 11 10 9 8 7 6 5 4 3 2 1 0
Io Io lo lo Io Io Io Io Io lo Io Io Io Io Io lol Reset = 0x0000
L |

L Receive Data Buffer[15:0]

Figure 13-17. SPI Receive Data Buffer Register

SPI RDBR Shadow (SPI_SHADOW) Register

The SPI_SHADOW register is provided for use in debugging software. This
register is at a different address than the receive data buffer, SPT_RDBR, but
its contents are identical to that of SPI_RDBR. When a software read of
SPI_RDBR occurs, the RXS bit in SPI_STAT is cleared and an SPI transfer
may be initiated (if TIMOD = b#00 in SPI_CTL). No such hardware action
occurs when the SPI_SHADOW register is read. The SPI_SHADOW register is
read-only.

SPI RDBR Shadow Register (SPI_SHADOW)
Read Only

1514 1312 11 10 9 8 7 6 5 4 3 2 1 0
Io |0 |o |o Io |o |0 |o|o |o |o |o|o |o |o |o| Reset = 0x0000
L |

SPI_RDBR Shadow[15:0]

Figure 13-18. SPI RDBR Shadow Register

13-44 ADSP-BF59x Blackfin Processor Hardware Reference



SPI-Compatible Port Controller

Programming Examples

This section includes examples (Listing 13-1 through Listing 13-8 on
page 13-52) for both core-generated and DMA-based transfers. Each code
example assumes that the appropriate processor header files are included.

Core-Generated Transfer

The following core-driven master-mode SPI example shows how to initial-
ize the hardware, signal the start of a transfer, handle the interrupt and
issue the next transfer, and generate a stop condition.

Initialization Sequence

Before the SPI can transfer data, the registers must be configured as
follows.

Listing 13-1. SPI Register Initialization

SPI_Register_Initialization:
PO.H = hi(SPI_FLG);
PO.L = To(SPI_FLG);
RO = WLPO1 (Z2);

BITSET (R0O,0x7); /* FLS7 */
WLPOT = RO; /* Enable slave-select output pin */
PO.H = hi(SPI_BAUD);

PO.L 1o(SPI_BAUD);

RO.L 0x208E; /* Write to SPI Baud rate register */

WLPO] = RO.L; ssync; /* If SCLK = 133 MHz, SPI clock ~= 8 kHz
*/

/* Setup SPI Control Register */

/*************************************************

ADSP-BF59x Blackfin Processor Hardware Reference 13-45



Programming Examples

* TIMOD [1:0] = 00 : Transfer On RDBR Read.

* S7Z [2] =0 Send Last Word When TDBR Is Empty

* GM [3] =1 Overwrite Previous Data If RDBR Is Full
* PSSE [4] =0 Disables Slave-Select As Input (Master)
* EMISO [5] =0 MISO Disabled For Qutput (Master)

* [7]1 and [6] = 0 : RESERVED

* SIZE [8] =1 : 16 Bit Word Length Select

* LSBF [9] =0 : Transmit MSB First

* CPHA [101] = 0 : Hardware Controls Slave-Select Outputs
* CPOL [11] =1 : Active Low SCK

* MSTR [12] =1 Device Is Master

* WOM [13] =0 Normal MOSI/MISO Data OQutput (No Open Drain)
* SPE [14] =1 : SPI Module Is EnabTed

* [15] = 0 : RESERVED

*************************************************/

PO.H = hi(SPI_CTL)
PO.L = To(SPI_CTL)
RO = 0x5908;

WLPO] = RO.L; ssync; /* Enable SPI as MASTER */

Starting a Transfer

After the initialization procedure in the given master mode, a transfer
begins following a dummy read of SPI_RDBR. Typically, known data which
is desired to be transmitted to the slave is preloaded into the SPI_TDBR. In
the following code, P1 is assumed to point to the start of the 16-bit trans-
mit data buffer and P2 is assumed to point to the start of the 16-bit receive
data buffer. In addition, the user must ensure appropriate interrupts are
enabled for SPI operation.

Listing 13-2. Initiate Transfer

Initiate_Transfer:
PO.H = hi(SPI_FLG);

13-46 ADSP-BF59x Blackfin Processor Hardware Reference



SPI-Compatible Port Controller

PO.L = To(SPI_FLG);
RO = WLPOT (Z);

BITCLR (RO,0xF); /* FLG7 */
WLPO] = RO; /* Drive 0 on enabled slave-select pin */
PO.H = hi(SPI_TDBR); /* SPI Transmit Register */

PO.L 1o(SPI_TDBR);
RO = WLP1++]1 (z2);
/* Get First Data To Be Transmitted And Increment Pointer */

WLPO] = RO; /* Write to SPI_TDBR */

PO.H = hi(SPI_RDBR);

PO.L = 10(SPI_RDBR);

RO = WLPO] (z); /* Dummy read of SPI_RDBR kicks off transfer */

Post Transfer and Next Transfer

Following the transfer of data, the SPI generates an interrupt, which is ser-
viced if the interrupt is enabled during initialization. In the interrupt
routine, software must write the next value to be transmitted prior to
reading the byte received. This is because a read of the SPI_RDBR initiates
the next transfer.

Listing 13-3. SPI Interrupt Handler

SPI_Interrupt_Handler:
Process_SPI_Sample:

PO.H = hi(SPI_TDBR); /* SPI transmit register */

PO.L = 1o(SPI_TDBR);

RO = WLPI++1(2z2); /* Get next data to be transmitted */
WLPOT = RO.T; /* Write that data to SPI_TDBR */

Kick_Off_Next:
PO.H = hi(SPI_RDBR); /* SPI receive register */

ADSP-BF59x Blackfin Processor Hardware Reference 13-47



Programming Examples

PO.L = 10(SPI_RDBR);
RO = W[PO] (2); /* Read SPI receive register (also kicks off
next transfer) */

WLP2++] = RO; /* Store received data to memory */
RTI; /* Exit interrupt handler */
Stopping

In order for a data transfer to end after the user has transferred all data,
the following code can be used to stop the SPI. Note that this is typically
done in the interrupt handler to ensure the final data has been sent in its
entirety.

Listing 13-4. Stopping SPI

Stopping_SPI:
PO.H = hi(SPI_CTL);
PO.L = 10(SPI_CTL);
RO = W[LPOI;
BITCLR(RO, 14); /* Clear SPI enable bit */
WLPO] = RO.L; ssync; /* Disable SPI */

DMA-Based Transfer

The following DMA-driven master-mode SPI autobuffer example shows
how to initialize DMA, initialize SPI, signal the start of a transfer, and
generate a stop condition.

DMA Initialization Sequence

The following code initializes the DMA to perform a 16-bit memory read
DMA operation in autobuffer mode, and generates an interrupt request
when the buffer has been sent. This code assumes that P1 points to the
start of the data buffer to be transmitted and that NUM_SAMPLES is a defined
macro indicating the number of elements being sent.

13-48 ADSP-BF59x Blackfin Processor Hardware Reference



SPI-Compatible Port Controller

Listing 13-5. DMA Initialization

Initialize_DMA: /* Assume DMA7 as the channel for SPI DMA */
PO.H = hi(DMA7_CONFIG);
PO.L 10(DMA7_CONFIG);
RO = 0x1084(z); /* Autobuffer mode, IRQ on complete, Tinear
16-bit, mem read */

wlP0] = RO;

PO.H = hi(DMA7_START_ADDR);

PO.L = To0(DMA7_START_ADDR);

[p0] = pl; /* Start address of TX buffer */
PO.H = hi(DMA7_X_COUNT);

PO.L = To(DMA7_X_COUNT);

RO = NUM_SAMPLES;

wlp0]l = RO; /* Number of samples to transfer */
RO = 2;

PO.H = hi(DMA7_X_MODIFY);

PO.L = To(DMA7_X_MODIFY);

wlp0] = RO; /* 2 byte stride for 16-bit words */
RO = 1; /* single dimension DMA means 1 row */
PO.H = hi(DMA7_Y_COUNT);

PO.L = 10(DMA7_Y_COUNT);

wlp0] = RO;

SPI Initialization Sequence

Before the SPI can transfer data, the registers must be configured as
follows.

ADSP-BF59x Blackfin Processor Hardware Reference 13-49



Programming Examples

Listing 13-6. SPI Initialization

SPI_Register_Initialization:
hi(SPI_FLG);
10(SPI_FLG);
RO = W[LPO]

*
*
*
*
*
*
*
*

bi
*

*

PO.H
PO.L

WLPO]

P1.H

P1.L
RO.L

WLPO] = RO.L;

(Z);
BITSET (RO,0x7);
RO;

/* FLST */
/* Enable slave-select output pin */

hi(SPI_BAUD);
To(SPI_BAUD);
0x208E;

/* Write to SPI baud rate register */

ssync; /* If SCLK = 133MHz, SPI clock ~= 8kHz */

/* Setup SPI Control Register */
/***************************************************
* TIMOD [1:0] = 11 : Transfer on DMA TDBR write

SZ [2]

GM [3]
PSSE [4]
EMISO [5]

[7] and [6]

SIZE
LSBF
CPHA
t
CPOL
MSTR

(8]
(9]
[10]

[11]
[12]

* WOM [13]

dr

ain)

* SPE [14]

*

[15]

0 : Send last word when TDBR is empty

Discard incoming data if RDBR is full
Disables slave-select as input (master)
MISO disabled for output (master)
RESERVED

16 Bit word Tength select

: Transmit MSB first

SCK starts toggling at START of first data

O O — O O O

1 : Active HIGH serial clock
: Device is master
0 : Normal MOSI/MISO data output (no open

1 : SPI module is enabled
0 : RESERVED

***************************************************/

/* Configure SPI as MASTER */

13-50

ADSP-BF59x Blackfin Processor Hardware Reference



SPI-Compatible Port Controller

R1 = 0x190B(z); /* Leave disabled until DMA is enabled */
P1.L = 10(SPI_CTL);
W[P1] = R1; ssync;

Starting a Transfer

After the initialization procedure in the given master mode, a transfer
begins following enabling of SPI. However, the DMA must be enabled
before enabling the SPI.

Listing 13-7. Starting a Transfer

Initiate_Transfer:
PO.H hi(DMA7_CONFIG);
PO.L 10(DMA7_CONFIG);
R2 = wlP0I(z);
BITSET (R2, 0); /*Set DMA enable bit */
wlp0]l = R2.L; /* Enable TX DMA */

P4.H hi(SPI_CTL);

P4.L 10(SPI_CTL);

R2=w[pd1(z);

BITSET (R2, 14); /* Set SPI enable bit */
wlpd]l = RZ; /* Enable SPI */

Stopping a Transfer

In order for a data transfer to end after the DMA has transferred all
required data, the following code is executed in the SPI DMA interrupt
handler. The example code below clears the DMA interrupt, then waits
for the DMA engine to stop running. When the DMA engine has
completed, SPI_STAT is polled to determine when the transmit buffer is
empty. If there is data in the SPI Transmit FIFO, it is loaded as soon as
the TXS bit clears. A second consecutive read with the TXS bit clear indi-
cates the FIFO is empty and the last word is in the shift register. Finally,

ADSP-BF59x Blackfin Processor Hardware Reference 13-51



Programming Examples

polling for the SPIF bit determines when the last bit of the last word has
been shifted out. At that point, it is safe to shut down the SPI port and the

DMA engine.
Listing 13-8. Stopping a Transfer

SPI_DMA_INTERRUPT_HANDLER:

PO.L = 10(DMA7_IRQ_STATUS);
PO.H = hi(DMA7_IRQ_STATUS);
RO =1 ;

WLPOl = RO ; /* Clear DMA interrupt */

/* Wait for DMA to complete */
PO.L = 1o(DMA7_IRQ_STATUS);
PO.H = hi(DMA7_IRQ_STATUS);
RO DMA_RUN; /* 0x08 */

CHECK_DMA_COMPLETE: /* Poll for DMA_RUN bit to clear */

R3 = WIPOT (2):
RL = R3 & RO;
CC = Rl ==

IF !CC JUMP CHECK_DMA_COMPLETE;

/* Wait for TXS to clear */
PO.L = To(SPI_STAT);
PO.H = hi(SPI_STAT);

R1 = TXS; /* 0x08 */
Check_TXS: /* Poll for TXS =0 */
R2 = WLPO] (Z);
R2 = R2 & R1;
CC = RO ==

IF !'CC JUMP Check_TXS;

13-52 ADSP-BF59x Blackfin Processor Hardware Reference



SPI-Compatible Port Controller

R2 = WLPO] (Z); /* Check if TXS stays clear for 2 reads */
R2 = R2 & RI1;
CC = RO == 0;

IF 1CC JUMP Check_TXS;
/* Wait for final word to transmit from SPI */

Final_Word:
RO = WLPOI(Z);
RZ = SPIF; /* 0x01 */
RO = RO & RZ;
CC = RO ==

IF CC JUMP Final_Word;

Disable_SPI:
PO.L = 1o(SPI_CTL);
PO.H = hi(SPI_CTL);
RO = WLPO] (Z);
BITCLR (RO,Oxe); /* Clear SPI enable bit */
WLPO] = RO; /* Disable SPI */

Disable_DMA:
PO.L 10(DMA7_CONFIG);
PO.H hi(DMA7_CONFIG);
RO = WLPOI(Z);
BITCLR (RO,0x0); /* Clear DMA enable bit */
WLPO] = RO; /* Disable DMA */

RTI; /* Exit Handler */

Unique Information for the ADSP-BF59x
Processor

None.

ADSP-BF59x Blackfin Processor Hardware Reference 13-53



Unique Information for the ADSP-BF59x Processor

13-54 ADSP-BF59x Blackfin Processor Hardware Reference



14 SPORT CONTROLLER

This chapter describes the synchronous serial peripheral port (SPORT).
Following an overview and a list of key features is a description of opera-
tion and functional modes of operation. The chapter concludes with a
programming model, consolidated register definitions, and programming
examples.

Specific Information for the ADSP-BF59x

For details regarding the number of SPORTSs for the ADSP-BF59x prod-
uct, please refer to the ADSP-BF592 Blackfin Processor Data Sheet.

For SPORT DMA channel assignments, refer to Table 5-7 on page 5-107
in Chapter 5, “Direct Memory Access”.

For SPORT interrupt vector assignments, refer to Table 4-3 on page 4-17
in Chapter 4, “System Interrupts”.

To determine how each of the SPORTSs is multiplexed with other func-
tional pins, refer to Table 7-1 on page 7-3 through Table 7-2 on page 7-4
in Chapter 7, “General-Purpose Ports”.

For a list of MMR addresses for each SPORT, refer to Chapter A, “System
MMR Assignments”.

SPORT behavior for the ADSP-BF59x that differs from the general infor-
mation in this chapter can be found at the end of this chapter in the
section “Unique Information for the ADSP-BF59x Processor” on

page 14-77.

ADSP-BF59x Blackfin Processor Hardware Reference 14-1



Overview

Overview

Unlike the SPI interface which has been designed for SPI-compatible
communication only, the SPORT modules support a variety of serial data
communication protocols, for example:

e A-law or p-law companding according to G.711 specification
* Multichannel or time-division-multiplexed (TDM) modes
*  Stereo audio IS mode
e H.100 telephony standard support
In addition to these standard protocols, the SPORT module provides

modes to connect to standard peripheral devices, such as ADCs or codecs,
without external glue logic. With support for high data rates, independent
transmit and receive channels, and dual data paths, the SPORT interface
is a perfect choice for direct serial interconnection between two or more
processors in a multiprocessor system. Many processors provide compati-
ble interfaces, including processors from Analog Devices and other
manufacturers.

Each SPORT has its own set of control registers and data buffers.

Features

A SPORT can operate at up to %2 the system clock (SCLK) rate for an inter-
nally generated or external serial clock. The SPORT external clock must
always be less than the SCLK frequency. Independent transmit and receive
clocks provide greater flexibility for serial communications.

14-2 ADSP-BF59x Blackfin Processor Hardware Reference



SPORT Controller

A SPORT offers these features and capabilities:

Provides independent transmit and receive functions.

Transfers serial data words from 3 to 32 bits in length, either MSB
first or LSB first.

Provides alternate framing and control for interfacing to 128 serial
devices, as well as other audio formats (for example, left-justified
stereo serial data).

Has FIFO plus double buffered data (both receive and transmit
functions have a data buffer register and a shift register), providing
additional time to service the SPORT.

Provides two synchronous transmit and two synchronous receive
data signals and buffers to double the total supported datastreams.

Performs A-law and p-law hardware companding on transmitted
and received words. (See “Companding” on page 14-29 for more
information.)

Internally generates serial clock and frame sync signals in a wide
range of frequencies or accepts clock and frame sync input from an
external source.

Operates with or without frame synchronization signals for each
data word, with internally generated or externally generated frame
signals, with active high or active low frame signals, and with either
of two configurable pulse widths and frame signal timing.

Performs interrupt-driven, single word transfers to and from
on-chip memory under processor control.

ADSP-BF59x Blackfin Processor Hardware Reference 14-3



Interface Overview

* Provides direct memory access transfer to and from memory under
DMA master control. DMA can be autobuffer-based (a repeated,
identical range of transfers) or descriptor-based (individual or
repeated ranges of transfers with differing DMA parameters).

e Has a multichannel mode for TDM interfaces. A SPORT can
receive and transmit data selectively from a time-division-multi-
plexed serial bitstream on 128 contiguous channels from a stream
of up to 1024 total channels. This mode can be useful as a network
communication scheme for multiple processors. The 128 channels
available to the processor can be selected to start at any channel
location from 0 to 895 (= 1023 — 128). Note the multichannel
select registers and the WSIZE register control which subset of the
128 channels within the active region can be accessed.

Interface Overview

A SPORT provides an I/O interface to a wide variety of peripheral serial
devices. SPORT's provide synchronous serial data transfer only. Each
SPORT has one group of signals (primary data, secondary data, clock, and
frame sync) for transmit and a second set of signals for receive. The receive
and transmit functions are programmed separately. A SPORT is a full
duplex device, capable of simultaneous data transfer in both directions. A
SPORT can be programmed for bit rate, frame sync, and number of bits
per word by writing to memory-mapped registers.

Figure 14-1 on page 14-6 shows a simplified block diagram of a single
SPORT. Data to be transmitted is written from an internal processor reg-
ister to the SPORT_TX register via the peripheral bus. This data is optionally
compressed by the hardware and automatically transferred to the TX shift
register. The bits in the shift register are shifted out on the DTPRI/DTSEC
pin, MSB first or LSB first, synchronous to the serial clock on the TSCLK
pin. The receive portion of the SPORT accepts data from the DRPRI/DRSEC
pin synchronous to the serial clock on the RSCLK pin. When an entire word

14-4 ADSP-BF59x Blackfin Processor Hardware Reference



SPORT Controller

is received, the data is optionally expanded, then automatically transferred
to the SPORT_RX register, and then into the RX FIFO where it is available
to the processor. Table 14-1 shows the signals for each SPORT.

Table 14-1. SPORT Signals

Pin Description

DTxPRI Transmit Data Primary
DTxSEC Transmit Data Secondary
TSCLKx Transmit Clock

TFSx Transmit Frame Sync
DRxPRI Receive Data Primary
DRxSEC Receive Data Secondary
RSCLKx Receive Clock

RFSx Receive Frame Sync

ADSP-BF59x Blackfin Processor Hardware Reference

14-5



Interface Overview

PAB
/
DAB
/ ll ﬂ /
TX REGISTER RX REGISTER
TX FIFO RX FIFO
4x320R8x 16 4x320R8x16
TX PRI TX SEC | | SERIAL RX PRI RX SEC
HOLD REG HOLD REG CONTROL HOLD REG HOLD REG

g ; n
COMPANDING
HARDWARE INTERNAL
CLOCK
GENERATOR

COMPANDING
HARDWARE

TX PRI TX SEC RX PRI RX SEC
SHIFT REG SHIFT REG ) SHIFT REG SHIFT REG
A
v v \ V 1 ) )
DTPRI DTSEC TFS TSCLK RSCLK RFS DRPRI DRSEC

Figure 14-1. SPORT Block Diagraml’ 2,3

1 All wide arrow data paths are 16- or 32-bits wide, depending on SLEN. for SLEN =2 to 15, a 16-bit
data path with 8-deep fifo is used. for SLEN = 16 to 31, a 32-bit data path with 4-deep fifo is used.

2 TX register is the bottom of the TX fifo, RX register is the top of the RX fifo.

3 In multichannel mode, the TFS pin acts as transmit data valid (TDV). For more information, see
“Multichannel Operation” on page 14-15.

A SPORT receives serial data on its DRPRI and DRSEC inputs and transmits
serial data on its DTPRI and DTSEC outputs. It can receive and transmit
simultaneously for full-duplex operation. For transmit, the data bits
(DTPRI and DTSEC) are synchronous to the transmit clock (TSCLK). For
receive, the data bits (DRPRI and DRSEC) are synchronous to the receive
clock (RSCLK). The serial clock is an output if the processor generates it, or
an input if the clock is externally generated. Frame synchronization signals
RFS and TFS are used to indicate the start of a serial data word or stream of
serial words.

14-6 ADSP-BF59x Blackfin Processor Hardware Reference



SPORT Controller

The primary and secondary data pins, if enabled by a specific processor
port configuration, provide a method to increase the data throughput of
the serial port. They do not behave as totally separate SPORTS; rather,
they operate in a synchronous manner (sharing clock and frame sync) but
on separate data. The data received on the primary and secondary signals
is interleaved in main memory and can be retrieved by setting a stride in
the data address generators (DAG) unit. For more information about
DAGs, see the Data Address Generators chapter in the Blackfin Processor
Programming Reference. Similarly, for TX, data should be written to the
TX register in an alternating manner—first primary, then secondary, then
primary, then secondary, and so on. This is easily accomplished with the
processor’s powerful DAGs.

In addition to the serial clock signal, data must be signalled by a frame
synchronization signal. The framing signal can occur either at the begin-
ning of an individual word or at the beginning of a block of words.

Figure 14-2 on page 14-8 shows a possible port connection for a device
with at least two SPORTSs. Note serial devices A and B must be synchro-
nous, as they share common frame syncs and clocks. The same is true for
serial devices 1, 2, ...N.

ADSP-BF59x Blackfin Processor Hardware Reference 14-7



Interface Overview

BLACKFIN

—SPORT0 —
TSCLKO
»{ TFSO
»| RSCLKO
> RFSO

rYVYY

SERIAL

<«—{ DTOPRI
DEVICE A
(PRIMARY) [ DROPRI

Yvyvy

SERIAL - DTOSEC
DEVICE B
(SECONDARY) DROSEC

—SPORT1 —
TSCLK1

I; RSCLK1

TFS1 (TDV1)
»| RFS1

DT1PRI

> DR1PRI
YYVY AR VT Yy I DT1SEC
SERIAL SERIAL SERIAL DR1SEC

pevicen |®*®®| pevice2 DEVICE 1

Figure 14-2. Example SPORT Connections
(SPORTO is Standard Mode, SPORT1 is Multichannel Mode) ! 2

1 In multichannel mode, TFS functions as a transmit data valid (TDV) output. See “Multichannel
Operation” on page 14-15.

2 Although shown as an external connection, the TSCLK1/RSCLKI1 connection is internal in multi-
channel mode. See “Multichannel Operation” on page 14-15.

14-8 ADSP-BF59x Blackfin Processor Hardware Reference



SPORT Controller

Figure 14-3 shows an example of a stereo serial device with three transmit
and two receive channels connected to a processor with two SPORTs.

AD1836
STEREO SERIAL
DEVICE BLACKFIN
DLRCLK — SPORTO0—
DBCLK [~ TSCLKO
TFSO
DSDATA1 RSCLKO
DSDATA2 [<— RFS0
DSDATA3 [<
DTOPRI
ALRCLK —|DROPRI
ABCLK
DTOSEC
ASDATA1 l— DROSEC
ASDATA2
— SPORT1—
TSCLK1
TFS1
RSCLK1
RFS1
DT1PRI
DR1PRI
DT1SEC
DR1SEC

Figure 14-3. Stereo Serial Connection

SPORT Pin/Line Terminations

The processor has very fast drivers on all output pins, including the
SPORTs. If connections on the data, clock, or frame sync lines are longer
than six inches, consider using a series termination for strip lines on
point-to-point connections. This may be necessary even when using low
speed serial clocks, because of the edge rates.

ADSP-BF59x Blackfin Processor Hardware Reference 14-9



Description of Operation

Description of Operation

This section describes general SPORT operation, illustrating the most
common use of a SPORT. Since the SPORT functionality is configurable,
this description represents just one of many possible configurations.

Writing to a SPORT_TX register readies the SPORT for transmission. The
TFS signal initiates the transmission of serial data. Once transmission has
begun, each value written to the SPORT_TX register is transferred through
the FIFO to the internal transmit shift register. The bits are then sent,
beginning with either the MSB or the LSB as specified in the SPORT_TCR1
register. Each bit is shifted out on the driving edge of TSCLK. The driving
edge of TSCLK can be configured to be rising or falling. The SPORT gener-
ates the transmit interrupt or requests a DMA transfer as long as there is
space in the TX FIFO.

As a SPORT receives bits, they accumulate in an internal receive register.
When a complete word has been received, it is written to the SPORT
FIFO register and the receive interrupt for that SPORT is generated or a
DMA transfer is initiated. Interrupts are generated differently if DMA
block transfers are performed.

SPORT Disable

The SPORTS are automatically disabled by a processor hardware or soft-
ware reset. A SPORT can also be disabled directly by clearing the
SPORT’s transmit or receive enable bits (TSPEN in the SPORT_TCR1 register
and RSPEN in the SPORT_RCR1 register, respectively). Each method has a
different effect on the SPORT.

A processor reset disables the SPORTSs by clearing the SPORT_TCR1,
SPORT_TCR2, SPORT_RCR1, and SPORT_RCR? registers (including the TSPEN
and RSPEN enable bits) and the SPORT_TCLKDIV, SPORT_RCLKDIV,
SPORT_TFSDIVx, and SPORT_RFSDIVx clock and frame sync divisor registers.
Any ongoing operations are aborted.

14-10 ADSP-BF59x Blackfin Processor Hardware Reference



SPORT Controller

Clearing the TSPEN and RSPEN enable bits disables the SPORT's and aborts
any ongoing operations. Status bits are also cleared. Configuration bits
remain unaffected and can be read by the software in order to be altered or
overwritten. To disable the SPORT output clock, set the SPORT to be
disabled.

Note that disabling a SPORT via TSPEN/RSPEN may shorten any
currently active pulses on the TFS/RFS and TSCLK/RSCLK outputs, if
these signals are configured to be generated internally.

When disabling the SPORT from multichannel operation, first disable
TXEN and then disable RXEN. Note both TXEN and RXEN must be disabled
before re-enabling. Disabling only TX or RX is not allowed.

Setting SPORT Modes

SPORT configuration is accomplished by setting bit and field values in
configuration registers. A SPORT must be configured prior to being
enabled. Once the SPORT is enabled, further writes to the SPORT con-
figuration registers are disabled (except for SPORT_RCLKDIV,
SPORT_TCLKDIV, and multichannel mode channel select registers). To
change values in all other SPORT configuration registers, disable the
SPORT by clearing TSPEN in SPORT_TCR1 and/or RSPEN in SPORT_RCRI.

Each SPORT has its own set of control registers and data buffers. These
registers are described in detail in “SPORT Registers” on page 14-46. All
control and status bits in the SPORT registers are active high unless other-
wise noted.

Stereo Serial Operation

Several stereo serial modes can be supported by the SPORT, including the
popular I2S format. To use these modes, set bits in the SPORT_RCR2 or
SPORT_TCR2 registers. Setting RSESE or TSFSE in SPORT_RCR2 or
SPORT_TCR2 changes the operation of the frame sync pin to a left/right

ADSP-BF59x Blackfin Processor Hardware Reference 14-11



Description of Operation

clock as required for I2S and left-justified stereo serial data. Setting this
bit enables the SPORT to generate or accept the special LRCLK-style
frame sync. All other SPORT control bits remain in effect and should be
set appropriately. Figure 14-4 on page 14-14 and Figure 14-5 on

page 14-15 show timing diagrams for stereo serial mode operation.

Table 14-2 on page 14-12 shows several modes that can be configured
using bits in SPORT_TCR1 and SPORT_RCR1. The table shows bits for the
receive side of the SPORT, but corresponding bits are available for config-
uring the transmit portion of the SPORT. A control field which may be
either set or cleared depending on the user’s needs, without changing the
standard, is indicated by an “X.”

Blackfin SPORTSs are designed such that, in %S master mode,
LRCLK is held at the last driven logic level and does not transition,
to provide an edge, after the final data word is driven out. There-
fore, while transmitting a fixed number of words to an IS receiver
that expects an LRCLK edge to receive the incoming data word, the
SPORT should send a dummy word after transmitting the fixed
number of words. The transmission of this dummy word toggles
LRCLK, generating an edge. Transmission of the dummy word is not
required when the I2S receiver is a Blackfin SPORT.

Table 14-2. Stereo Serial Settings

Bit Field Stereo Audio Serial Scheme
12S Left-Justified DSP Mode

RSFSE 1 1 0
RREST 0 0 0
LARFS 0 1 0
LRES 0 1 0
RFSR 1 1 1
RCKFE 1 0 0

14-12 ADSP-BF59x Blackfin Processor Hardware Reference



Table 14-2. Stereo Serial Settings (Continued)

SPORT Controller

Bit Field Stereo Audio Serial Scheme

12S Left-Justified DSP Mode
SLEN 2-31 2-31 2-31
RLSBIT 0 0 0
RESDIV 2 — Max 2 — Max 2 — Max
(If internal FS is selected.)
RXSE X X X
(Secondary Enable is available for RX and TX.)

Note most bits shown as a 0 or 1 may be changed depending on the user’s
preference, creating many other “almost standard” modes of stereo serial
operation. These modes may be of use in interfacing to codecs with
slightly non-standard interfaces. The settings shown in Table 14-2 on
page 14-12 provide glueless interfaces to many popular codecs.

Note RFSDIV or TFSDIV must still be greater than or equal to SLEN. For I2S
operation, RFSDIV or TFSDIV is usually 1/64 of the serial clock rate. With
RSFSE set, the formulas to calculate frame sync period and frequency (dis-
cussed in “Clock and Frame Sync Frequencies” on page 14-206) still apply,
but now refer to one half the period and twice the frequency. For instance,
setting RFSDIV or TFSDIV = 31 produces an LRCLK that transitions every 32
serial clock cycles and has a period of 64 serial clock cycles.

The LRFS bit determines the polarity of the RFS or TFS frame sync pin for
the channel that is considered a “right” channel. Thus, setting LRFS = 0
(meaning that it is an active high signal) indicates that the frame sync is
high for the "right" channel, thus implying that it is low for the "left"
channel. This is the default setting.

The RRFST and TRFST bits determine whether the first word received or
transmitted is a left or a right channel. If the bit is set, the first word
received or transmitted is a right channel. The default is to receive or
transmit the left channel word first.

ADSP-BF59x Blackfin Processor Hardware Reference

14-13



Description of Operation

The secondary DRSEC and DTSEC pins are useful extensions of the SPORT

which pair well with stereo serial mode. Multiple 1S streams of data can
be transmitted or received using a single SPORT. Note the primary and
secondary pins are synchronous, as they share clock and LRCLK (frame
sync) pins. The transmit and receive sides of the SPORT need not be
synchronous, but may share a single clock in some designs. See

Figure 14-3 on page 14-9, which shows multiple stereo serial connections
being made between the processor and an AD1836 codec.

S _ “CEFT CHANNEL ¢ RIGHT CHANNEL N a
LW AWAWAWAVAVYA VAW AWAWAWAWAWVEA WS WA
oreRI_fm$B X X , X X tsB\ me X X, X X\
I LEFT-JUSTIFIED MODE—3TO|32 BITS PER CHANNEL
s ) LEFT CHANNEL N RIGHT CHANNEL )
T WAWAWAWAWAWAWAWAWAWAWAWAWAWA WS
DTPRI [mwss X X, X Xiss\ , /mee X X, X Xuse\ ,
I 12S MODE—3T0 32 BITS PER CHANNEL
TFS _/ \ 5 » \ 5
LT A WA WVANWAANE W A WIAWAWE WAWIAWE W A
DTPRI /mss X X 5, X Xuss\ , [mes X X, X Xuss\ ,
I 1$Y ¢ I ¢ 1Y
DSP MODE—3TO 32 BITS PER CHANNEL
g -
Figure 14-4. SPORT Stereo Serial Modes, Transmit! 23
1 DSP mode does not identify channel.
2 TFS normally operates at fg except for DSP mode which is 2 x fg.
3 TSCLK frequency is normally 64 x TFS but may be operated in burst mode.
14-14 ADSP-BF59x Blackfin Processor Hardware Reference



RFS _ 4
RSCLK N

DRPRI

RFS

J J

RSCLK

DRPRI

A\ \
5D S G D S 1NN £7--) G & (e,

SPORT Controller

J) b))
“LEFT CHANNEL N RIGHT CHANNEL .,

18 1

1 AYAVAVA VA AVATAWAWVAVE WV

5

LEFT-JUSTIFIED MODE—3 TO 32 BITS PER CHANNEL

LEFT CHANNEL 3
,, ,, RIGHT CHANNEL
2%

VAWAWAWAWAVAVYAWAYAWAWAWAVAE S

S|

RFS _ \ n ) \ )

DRPRI

ST WA WAWA WAWAWE W EAWEA WAWE WAWAWE & W

o X X , [wsa X X X (e,

12S MODE—3TO 32 BITS PER CHANNEL

¢ U ¢

/ use X X:::X X s \ 2

/ MSB x x
I
DSP MODE—3 TO 32 BITS PER CHANNEL

- 1IfS

A4

Figure 14-5. SPORT Stereo Serial Modes, Receivel” 23

1 DSP mode does not identify channel.
2 RFS normally operates at fg except for DSP mode which is 2 x fg.

3 RSCLK frequency is normally 64 x RES but may be operated in burst mode.

Multichannel Operation

The SPORT offers a multichannel mode of operation which allows the
SPORT to communicate in a time-division-multiplexed (TDM) serial sys-
tem. In multichannel communications, each data word of the serial
bitstream occupies a separate channel. Each word belongs to the next con-
secutive channel so that, for example, a 24-word block of data contains
one word for each of 24 channels.

The SPORT can automatically select words for particular channels while
ignoring the others. Up to 128 channels are available for transmitting or

receiving; each SPORT can receive and transmit data selectively from any
of the 128 channels. These 128 channels can be any 128 out of the 1024

AD

SP-BF59x Blackfin Processor Hardware Reference 14-15



Description of Operation

total channels. RX and TX must use the same 128-channel region to selec-
tively enable channels. The SPORT can do any of the following on each
channel:

e Transmit data

e Receive data

e Transmit and receive data
* Do nothing

Data companding and DMA transfers can also be used in multichannel
mode.

The DTPRI pin is always driven (not three-stated) if the SPORT is enabled
(TSPEN =1 in the SPORT_TCRI register), unless it is in multichannel mode
and an inactive time slot occurs. The DTSEC pin is always driven (not
three-stated) if the SPORT is enabled and the secondary transmit is
enabled (TXSE = 1 in the SPORT_TCR? register), unless the SPORT is in
multichannel mode and an inactive time slot occurs.

/ The SPORT multichannel transmit select register and the SPORT

multichannel receive select register must be programmed before
enabling SPORT_TX or SPORT_RX operation for multichannel mode.
This is especially important in “DMA data unpacked mode,” since
SPORT FIFO operation begins immediately after RSPEN and TSPEN
are set, enabling both RX and TX. The MCMEN bit (in SPORT_MCMC2)
must be enabled prior to enabling SPORT_TX or SPORT_RX operation.
When disabling the SPORT from multichannel operation, first
disable TXEN and then disable RXEN. Note both TXEN and RXEN must
be disabled before re-enabling. Disabling only TX or RX is not

allowed.

14-16 ADSP-BF59x Blackfin Processor Hardware Reference



Figure

SPORT Controller

14-6 on page 14-17 shows example timing for a multichannel

transfer that has these characteristics:

Use TDM method where serial data is sent or received on different
channels sharing the same serial bus

Can independently select transmit and receive channels
RFS signals start of frame

TFS is used as “transmit data valid” for external logic, true only dur-
ing transmit channels

Receive on channels 0 and 2, transmit on channels 1 and 2

Multichannel frame delay is set to 1

See “Timing Examples” on page 14-40 for more examples.

RSCLK

DR
RFS

DT

TFS

Figure

MFD =1

<——|<7CHANNEL 0 4—|<7 CHANNEL 1 4—I<—CHANNEL 2

B/ N A N/ U N A U N A U N N W A N
— (83 —{(B2)—{(B1) (B0 IGNORED Ba)—{B2)}—

{83 X B2 X BT Y\ B0 X B3 ) B2

/

14-6. Multichannel Operation

ADSP-BF59x Blackfin Processor Hardware Reference 14-17



Description of Operation

Multichannel Enable

Setting the MCMEN bit in the SPORT_MCM?2 register enables multichannel
mode. When MCMEN = 1, multichannel operation is enabled; when
MCMEN = 0, all multichannel operations are disabled.

Setting the MCMEN bit enables multichannel operation for bozh the
receive and transmit sides of the SPORT. Therefore, if a receiving
SPORT is in multichannel mode, the transmitting SPORT must

also be in multichannel mode.

When in multichannel mode, do not enable the stereo serial frame
sync modes or the late frame sync feature, as these features are
incompatible with multichannel mode.

Table 14-3 shows the dependencies of bits in the SPORT configuration
register when the SPORT is in multichannel mode.

Table 14-3. Multichannel Mode Configuration

SPORT_RCRI1 or SPORT_TCRI1 or Notes

SPORT_RCR2 SPORT_TCR2

RSPEN TSPEN Set or clear both

IRCLK - Independent

- ITCLK Independent

RDTYPE TDTYPE Independent

RLSBIT TLSBIT Independent

IRFS - Independent

] ITES Ignored

RFSR TESR Ignored

- DITES Ignored

LRFS LTES Independent

LARFS LATES Both must be 0

RCKFE TCKFE Set or clear both to same value
14-18 ADSP-BF59x Blackfin Processor Hardware Reference




SPORT Controller

Table 14-3. Multichannel Mode Configuration (Continued)

SPORT_RCRI or SPORT_TCRI or Notes

SPORT_RCR2 SPORT_TCR2

SLEN SLEN Set or clear both to same value
RXSE TXSE Independent

RSFSE TSFSE Both must be 0

RRFST TREST Ignored

Frame Syncs in Multichannel Mode

All receiving and transmitting devices in a multichannel system must have
the same timing reference. The RFS signal is used for this reference, indi-
cating the start of a block or frame of multichannel data words.

When multichannel mode is enabled on a SPORT, both the transmitter
and the receiver use RFS as a frame sync. This is true whether RFS is gener-
ated internally or externally. The RFS signal is used to synchronize the
channels and restart each multichannel sequence. Assertion of RFS indi-
cates the beginning of the channel 0 data word.

Since RFS is used by both the SPORT_TX and SPORT_RX channels of the
SPORT in multichannel mode configuration, the corresponding bit pairs
in SPORT_RCR1 and SPORT_TCR1, and in SPORT_RCR2 and SPORT_TCRZ,
should always be programmed identically, with the possible exception of
the RXSE and TXSE pair and the ROTYPE and TDTYPE pair. This is true even if
SPORT_RX operation is not enabled.

In multichannel mode, RFS timing similar to late (alternative) frame mode
is entered automatically; the first bit of the transmit data word is available
and the first bit of the receive data word is sampled in the same serial clock
cycle that the frame sync is asserted, provided that MFD is set to 0.

The TFS signal is used as a transmit data valid signal which is active during
transmission of an enabled word. The SPORT’s data transmit pin is
three-stated when the time slot is not active, and the TFS signal serves as an

ADSP-BF59x Blackfin Processor Hardware Reference 14-19



Description of Operation

output-enabled signal for the data transmit pin. The SPORT drives TFS in
multichannel mode whether or not ITFS is cleared. The TFS pin in multi-
channel mode still obeys the LTFS bit. If LTFS is set, the transmit data valid
signal will be active low—a low signal on the TFS pin indicates an active
channel.

Once the initial RFS is received, and a frame transfer has started, all other
RFS signals are ignored by the SPORT until the complete frame has been
transferred.

If MFD > 0, the RFS may occur during the last channels of a previous frame.
This is acceptable, and the frame sync is not ignored as long as the delayed
channel 0 starting point falls outside the complete frame.

In multichannel mode, the RFS signal is used for the block or frame start
reference, after which the word transfers are performed continuously with
no further RFS signals required. Therefore, internally generated frame
syncs are always data independent.

The Multichannel Frame

A multichannel frame contains more than one channel, as specified by the
window size and window offset. A complete multichannel frame consists
of 1 — 1024 channels, starting with channel 0. The particular channels of
the multichannel frame that are selected for the SPORT are a combination
of the window offset, the window size, and the multichannel select regis-
ters. See Figure 14-7 on page 14-21.

14-20 ADSP-BF59x Blackfin Processor Hardware Reference



SPORT Controller

RSCLK
FRAME
SYNC / \ / \
< g CHANNEL
¥
\ [
/

DATA T DATAIGNORED

(DATA IGNORED | DATA IGNORED |

|_

X

MULTICHANNEL FRAME

SPORT_MCMCn le—— e e ]
REG FIELDS MFD WINDOW OFFSET WINDOW
SIZE
UNITS: BITS WORDS MULTIPLES OF 8 WORDS
RANGE: 0-15 0-1015 8-128

NOTE: FRAME LENGTH IS SET BY FRAME SYNC DIVIDE OR EXTERNAL FRAME SYNC PERIOD.

Figure 14-7. Relationships for Multichannel Parameters

Multichannel Frame Delay

The 4-bit MFD field in SPORT_MCMC2 specifies a delay between the frame
sync pulse and the first data bit in multichannel mode. The value of MFD is
the number of serial clock cycles of the delay. Multichannel frame delay
allows the processor to work with different types of interface devices.

A value of 0 for MFD causes the frame sync to be concurrent with the first
data bit. The maximum value allowed for MFD is 15. A new frame sync may
occur before data from the last frame has been received, because blocks of
data occur back-to-back.

Window Size

The window size (WSIZE[3:0]) defines the number of channels that can be
enabled/disabled by the multichannel select registers. This range of words
is called the active window. The number of channels can be any value in
the range of 0 to 15, corresponding to active window size of 8 to 128, in
increments of 8; the default value of 0 corresponds to a minimum active

ADSP-BF59x Blackfin Processor Hardware Reference 14-21



Description of Operation

window size of 8 channels. To calculate the active window size from the
WSIZE register, use this equation:

Number of words in active window = 8 x (WSIZE + 1)

Since the DMA buffer size is always fixed, it is possible to define a smaller
window size (for example, 32 words), resulting in a smaller DMA buffer

size (in this example, 32 words instead of 128 words) to save DMA band-
width. The window size cannot be changed while the SPORT is enabled.

Multichannel select bits that are enabled but fall outside the window
selected are ignored.

Window Offset

The window offset (WOFF[9:01) specifies where in the 1024-channel range
to place the start of the active window. A value of 0 specifies no offset and
896 is the largest value that permits using all 128 channels. As an example,
a program could define an active window with a window size of 8

(WSIZE = 0) and an offset of 93 (WOFF = 93). This 8-channel window
would reside in the range from 93 to 100. Neither the window offset nor

the window size can be changed while the SPORT is enabled.

If the combination of the window size and the window offset would place
any portion of the window outside of the range of the channel counter,
none of the out-of-range channels in the frame are enabled.

Other Multichannel Fields in SPORT_MCMC2

The FSDR bit in the SPORT_MCMC2 register changes the timing relationship

between the frame sync and the clock received. This change enables the
SPORT to comply with the H.100 protocol.

Normally (When FSDR = 0), the data is transmitted on the same edge that
the TFS is generated. For example, a positive edge on TFS causes data to be
transmitted on the positive edge of the TSCLK—either the same edge or the
following one, depending on when LATFS is set.

14-22 ADSP-BF59x Blackfin Processor Hardware Reference



SPORT Controller

When the frame sync/data relationship is used (FSDR = 1), the frame sync
is expected to change on the falling edge of the clock and is sampled on
the rising edge of the clock. This is true even though data received is sam-
pled on the negative edge of the receive clock.

Channel Selection Register

A channel is a multibit word from 3 to 32 bits in length that belongs to
one of the TDM channels. Specific channels can be individually enabled
or disabled to select which words are received and transmitted during mul-
tichannel communications. Data words from the enabled channels are
received or transmitted, while disabled channel words are ignored. Up to
128 contiguous channels may be selected out of 1024 available channels.
The SPORT_MRCSn and SPORT_MTCSn multichannel select registers are used
to enable and disable individual channels; the SPORT_MRCSn registers spec-
ify the active receive channels, and the SPORT_MTCSn registers specify the
active transmit channels.

Four registers make up each multichannel select register. Each of the four
registers has 32 bits, corresponding to 32 channels. Setting a bit enables
that channel, so the SPORT selects its word from the multiple word block
of data (for either receive or transmit). See Figure 14-8.

0 310 31 0 31 0 31

[ mcso | mcs1i | mcs2 | mcs3 |

0 3132 63 64 95 96 127

- /)
YT

CHANNEL SELECT 0-127
Figure 14-8. Multichannel Select Registers

Channel select bit 0 always corresponds to the first word of the active win-
dow. To determine a channel’s absolute position in the frame, add the
window offset words to the channel select position. For example, setting
bit 7 in MCS2 selects word 71 of the active window to be enabled. Setting
bit 2 in MCS1 selects word 34 of the active window, and so on.

ADSP-BF59x Blackfin Processor Hardware Reference 14-23



Description of Operation

Setting a particular bit in the SPORT_MTCSn register causes the SPORT to

transmit the word in that channel’s position of the datastream. Clearing

the bit in the SPORT_MTCSn register causes the SPORT’s data transmit pin
to three-state during the time slot of that channel.

Setting a particular bit in the SPORT_MRCSn register causes the SPORT to
receive the word in that channel’s position of the datastream; the received
word is loaded into the SPORT_RX buffer. Clearing the bit in the
SPORT_MRCSn register causes the SPORT to ignore the data.

Companding may be selected for all channels or for no channels. A-law or
U-law companding is selected with the TDTYPE field in the SPORT_TCRI reg-
ister and the ROTYPE field in the SPORT_RCR1 register, and applies to all
active channels. (See “Companding” on page 14-29 for more information
about companding.)

Multichannel DMA Data Packing

Multichannel DMA data packing and unpacking are specified with the
MCDTXPE and MCDRXPE bits in the SPORT_MCMC2 multichannel configuration
register.

If the bits are set, indicating that data is packed, the SPORT expects the
data contained by the DMA buffer corresponds only to the enabled
SPORT channels. For example, if an MCM frame contains 10 enabled
channels, the SPORT expects the DMA buffer to contain 10 consecutive
words for each frame. It is not possible to change the total number of
enabled channels without changing the DMA buffer size, and reconfigura-
tion is not allowed while the SPORT is enabled.

If the bits are cleared (the default, indicating that data is not packed), the
SPORT expects the DMA buffer to have a word for each of the channels
in the active window, whether enabled or not, so the DMA buffer size
must be equal to the size of the window. For example, if channels 1 and 10
are enabled, and the window size is 16, the DMA buffer size would have

to be 16 words (unless the secondary side is enabled). The data to be

14-24 ADSP-BF59x Blackfin Processor Hardware Reference



SPORT Controller

transmitted or received would be placed at addresses 1 and 10 of the
buffer, and the rest of the words in the DMA buffer would be ignored.
This mode allows changing the number of enabled channels while the
SPORT is enabled, with some caution. First read the channel register to
make sure that the active window is not being serviced. If the channel
count is 0, then the multichannel select registers can be updated.

Support for H.100 Standard Protocol

The processor supports the H.100 standard protocol. The following
SPORT parameters must be set to support this standard.

* Set for external frame sync. Frame sync generated by external bus
master.

* TFSR/RFSR set (frame syncs required)

* LTFS/LRFS set (active low frame syncs)

* Set for external clock

e MCMEN set (multichannel mode selected)

* MFD = 0 (no frame delay between frame sync and first data bit)
* SLEN = 7 (8-bit words)

e FSDR =1 (set for H.100 configuration, enabling half-clock-cycle
early frame sync)

2x Clock Recovery Control

The SPORT can recover the data rate clock from a provided 2x input
clock. This enables the implementation of H.100 compatibility modes for
MVIP-90 (2 Mbps data) and HMVIP (8 Mbps data), by recovering

2 MHz from 4 MHz or 8 MHz from the 16 MHz incoming clock with
the proper phase relationship. A 2-bit mode signal (MCCRM[1:0] in the

ADSP-BF59x Blackfin Processor Hardware Reference 14-25



Functional Description

SPORT_MCMC2 register) chooses the applicable clock mode, which includes a
non-divide or bypass mode for normal operation. A value of MCCRM = 00
chooses non-divide or bypass mode (H.100-compatible), MCCRM = 10
chooses MVIP-90 clock divide (extract 2 MHz from 4 MHz), and

MCCRM = 11 chooses HMVIP clock divide (extract 8 MHz from 16 MHz).

Functional Description

The following sections provide a functional description of the SPORT.

Clock and Frame Sync Frequencies

The maximum serial clock frequency (for either an internal source or an
external source) is SCLK/2. The frequency of an internally generated clock
is a function of the system clock frequency (SCLK) and the value of the
16-bit serial clock divide modulus registers, SPORT_TCLKDIV and
SPORT_RCLKDIV.

TSCLK frequency = (SCLK frequency)/(2 x (SPORT_TCLKDIV + 1))
RSCLK frequency = (SCLK frequency)/(2 x (SPORT_RCLKDIV + 1))

If the value of SPORT_TCLKDIV or SPORT_RCLKDIV is changed while the
internal serial clock is enabled, the change in TSCLK or RSCLK frequency
takes effect at the start of the drive edge of TSCLK or RSCLK that follows the
next leading edge of TFS or RFS.

When an internal frame sync is selected (ITFS = 1 in the SPORT_TCR1 regis-
ter or IRFS = 1 in the SPORT_RCRI register) and frame syncs are not
required, the first frame sync does not update the clock divider if the value
in SPORT_TCLKDIV or SPORT_RCLKDIV has changed. The second frame sync
will cause the update.

The SPORT_TFSDIV and SPORT_RFSDIV registers specify the number of
transmit or receive clock cycles that are counted before generating a TFS or

14-26 ADSP-BF59x Blackfin Processor Hardware Reference



SPORT Controller

RFS pulse (when the frame sync is internally generated). This enables a
frame sync to initiate periodic transfers. The counting of serial clock
cycles applies to either internally or externally generated serial clocks.

The formula for the number of cycles between frame sync pulses is:
# of transmit serial clocks between frame sync assertions = TFSDIV + 1
# of receive serial clocks between frame sync assertions = RFSDIV + 1

Use the following equations to determine the correct value of TFSDIV or
RFSDIV, given the serial clock frequency and desired frame sync frequency:

SPORT TES frequency = (TSCLK frequency)/(SPORT_TFSDIV + 1)
SPORT RES frequency = (RSCLK frequency)/(SPORT_RFSDIV + 1)

The frame sync would thus be continuously active (for transmit if
TFSDIV = O or for receive if RFSDIV = 0). However, the value of TFSDIV (or
RFSDIV) should not be less than the serial word length minus 1 (the value
of the SLEN field in SPORT_TCR2 or SPORT_RCR2). A smaller value could
cause an external device to abort the current operation or have other
unpredictable results. If a SPORT is not being used, the TFSDIV (or
RFSDIV) divisor can be used as a counter for dividing an external clock or
for generating a periodic pulse or periodic interrupt. The SPORT must be
enabled for this mode of operation to work.

Maximum Clock Rate Restrictions

Externally generated late transmit frame syncs also experience a delay from
arrival to data output, and this can limit the maximum serial clock speed.
See the ADSP-BF592 Blackfin Processor Data Sheet for exact timing
specifications.

ADSP-BF59x Blackfin Processor Hardware Reference 14-27



Functional Description

Word Length

Each SPORT channel (transmit and receive) independently handles word
lengths of 3 to 32 bits. The data is right-justified in the SPORT data reg-
isters if it is fewer than 32 bits long, residing in the LSB positions. The
value of the serial word length (SLEN) field in the SPORT_TCR2 and
SPORT_RCR2 registers of each SPORT determines the word length accord-
ing to this formula:

Serial Word Length = SLEN + 1

@ The SLEN value should not be set to 0 or 1; values from 2 to 31 are

allowed. Continuous operation (when the last bit of the current
word is immediately followed by the first bit of the next word) is
restricted to word sizes of 4 or longer (so SLENZ 3).

Bit Order

Bit order determines whether the serial word is transmitted MSB first or
LSB first. Bit order is selected by the RLSBIT and TLSBIT bits in the
SPORT_RCR1 and SPORT_TCRI registers. When RLSBIT (or TLSBIT) = 0, serial
words are received (or transmitted) MSB first. When RLSBIT (or

TLSBIT) = 1, serial words are received (or transmitted) LSB first.

14-28 ADSP-BF59x Blackfin Processor Hardware Reference



SPORT Controller

Data Type

The TDTYPE field of the SPORT_TCRI register and the RDTYPE field
of the SPORT_RCRI register specify one of four data formats for both
single and multichannel operation. See Table 14-4 on page 14-29.

Table 14-4. TDTYPE, RDTYPE, and Data Formatting

TDTYPE or SPORT_TCRI1 Data Formatting SPORT_RCRI1 Data Formatting
RDTYPE

00 Normal operation Zero fill

01 Reserved Sign extend

10 Compand using [L-law Compand using [L-law

11 Compand using A-law Compand using A-law

These formats are applied to serial data words loaded into the SPORT_RX
and SPORT_TX buffers. SPORT_TX data words are not actually zero filled or
sign extended, because only the significant bits are transmitted.

Companding

Companding (a contraction of COMpressing and exPANDing) is the pro-
cess of logarithmically encoding and decoding data to minimize the
number of bits that must be sent. The SPORT supports the two most
widely used companding algorithms, p-law and A-law. The processor
compands data according to the CCITT G.711 specification. The type of
companding can be selected independently for each SPORT.

When companding is enabled, valid data in the SPORT_RX register is the
right-justified, expanded value of the eight LSBs received and sign
extended to 16 bits. A write to SPORT_TX causes the 16-bit value to be
compressed to eight LSBs (sign extended to the width of the transmit
word) and written to the internal transmit register. Although the com-
panding standards support only 13-bit (A-law) or 14-bit (1-law)

ADSP-BF59x Blackfin Processor Hardware Reference 14-29



Functional Description

maximum word lengths, up to 16-bit word lengths can be used. If the
magnitude of the word value is greater than the maximum allowed, the
value is automatically compressed to the maximum positive or negative
value.

Lengths greater than 16 bits are not supported for companding operation.

Clock Signal Options

Each SPORT has a transmit clock signal (TSCLK) and a receive clock signal
(RSCLK). The clock signals are configured by the TCKFE and RCKFE bits of
the SPORT_TCR1 and SPORT_RCR1 registers. Serial clock frequency is config-
ured in the SPORT_TCLKDIV and SPORT_RCLKDIV registers.

The receive clock pin may be tied to the transmit clock if a single
clock is desired for both receive and transmit.

Both transmit and receive clocks can be independently generated inter-
nally or input from an external source. The ITCLK bit of the SPORT_TCRI
configuration register and the IRCLK bit in the SPORT_RCR1 configuration
register determines the clock source.

When IRCLK or ITCLK = 1, the clock signal is generated internally by the
processor, and the TSCLK or RSCLK pin is an output. The clock frequency is
determined by the value of the serial clock divisor in the SPORT_RCLKDIV
register.

When IRCLK or ITCLK = 0, the clock signal is accepted as an input on the
TSCLK or RSCLK pins, and the serial clock divisors in the
SPORT_TCLKDIV/SPORT_RCLKDIV registers are ignored. The externally gener-
ated serial clocks do not need to be synchronous with the system clock or

14-30 ADSP-BF59x Blackfin Processor Hardware Reference



SPORT Controller

with each other. The system clock must have a higher frequency than
RSCLK and TSCLK.

When the SPORT uses external clocks, it must be enabled for a
minimal number of stable clock pulses before the first active frame
sync is sampled. Failure to allow for these clocks may result in a
SPORT malfunction. See the ADSP-BF592 Blackfin Processor
Data Sheet for details.

The first internal frame sync will occur one frame sync delay after
the SPORTSs are ready. External frame syncs can occur as soon as

the SPORT is ready.

Frame Sync Options

Framing signals indicate the beginning of each serial word transfer. The
framing signals for each SPORT are TFS (transmit frame sync) and RFS
(receive frame sync). A variety of framing options are available; these
options are configured in the SPORT configuration registers (SPORT_TCRI,
SPORT_TCR2, SPORT_RCRL and SPORT_RCR2). The TFS and RFS signals of a
SPORT are independent and are separately configured in the control
registers.

Framed Versus Unframed

The use of multiple frame sync signals is optional in SPORT communica-
tions. The TFSR (transmit frame sync required select) and RFSR (receive

frame sync required select) control bits determine whether frame sync sig-
nals are required. These bits are located in the SPORT_TCR1 and SPORT_RCR1

registers.

When TFSR =1 or RFSR = 1, a frame sync signal is required for every data
word. To allow continuous transmitting by the SPORT, each new data
word must be loaded into the SPORT_TX hold register before the previous
word is shifted out and transmitted.

ADSP-BF59x Blackfin Processor Hardware Reference 14-31



Functional Description

When TFSR = 0 or RFSR = 0, the corresponding frame sync signal is not
required. A single frame sync is needed to initiate communications but is
ignored after the first bit is transferred. Data words are then transferred
continuously, unframed.

With frame syncs not required, interrupt or DMA requests may
not be serviced frequently enough to guarantee continuous
unframed data flow. Monitor status bits or check for a SPORT
Error interrupt to detect underflow or overflow of data.

Figure 14-9 on page 14-33 illustrates framed serial transfers, which have
these characteristics:

* TFSR and RFSR bits in the SPORT_TCRI1 and SPORT_RCRI1

registers determine framed or unframed mode.

e Framed mode requires a framing signal for every word. Unframed
mode ignores a framing signal after the first word.

* Unframed mode is appropriate for continuous reception.

* Active low or active high frame syncs are selected with the LTFS and
LRFS bits of the SPORT_TCR1 and SPORT_RCR1 registers.

See “Timing Examples” on page 14-40 for more timing examples.

14-32 ADSP-BF59x Blackfin Processor Hardware Reference



SPORT Controller

S UL
e 2] | N
AV VA v VA VA VA

wemzo 5t | XOOOKAKK
T —0-0-0-0-6-6-0-0-0-0-¢

Figure 14-9. Framed Versus Unframed Data

Internal Versus External Frame Syncs

Both transmit and receive frame syncs can be independently generated
internally or can be input from an external source. The ITFS and IRFS bits
of the SPORT_TCR1 and SPORT_RCR1 registers determine the frame sync
source.

When ITFS = 1 or IRFS = 1, the corresponding frame sync signal is gener-
ated internally by the SPORT, and the TFS pin or RFS pin is an output.
The frequency of the frame sync signal is determined by the value of the
frame sync divisor in the SPORT_TFSDIV or SPORT_RFSDIV register.

When ITFS = 0 or IRFS = 0, the corresponding frame sync signal is
accepted as an input on the TFS pin or RFS pin, and the frame sync divisors
in the SPORT_TFSDIV/SPORT_RFSDIV registers are ignored.

All of the frame sync options are available whether the signal is generated
internally or externally.

ADSP-BF59x Blackfin Processor Hardware Reference 14-33



Functional Description

Active Low Versus Active High Frame Syncs

Frame sync signals may be either active high or active low (in other words,
inverted). The LTFS and LRFS bits of the SPORT_TCR1 and SPORT_RCR1 regis-
ters determine frame sync logic levels:

* When LTFS = 0 or LRFS = 0, the corresponding frame sync signal is
active high.

* When LTFS =1 or LRFS = 1, the corresponding frame sync signal is
active low.

Active high frame syncs are the default. The LTFS and LRFS bits are initial-
ized to 0 after a processor reset.

Sampling Edge for Data and Frame Syncs

Data and frame syncs can be sampled on either the rising or falling edges
of the SPORT clock signals. The TCKFE and RCKFE bits of the
SPORT_TCRI and SPORT_RCRI registers select the driving and sam-

pling edges of the serial data and frame syncs.

For the SPORT transmitter, setting TCKFE = 1 in the SPORT_TCRI register
selects the falling edge of TSCLK to drive data and internally generated
frame syncs and selects the rising edge of TSCLK to sample externally gener-
ated frame syncs. Setting TCKFE = 0 selects the rising edge of TSCLK to drive
data and internally generated frame syncs and selects the falling edge of
TSCLK to sample externally generated frame syncs.

For the SPORT receiver, setting RCKFE = 1 in the SPORT_RCR1 register
selects the falling edge of RSCLK to drive internally generated frame syncs
and selects the rising edge of RSCLK to sample data and externally gener-
ated frame syncs. Setting RCKFE = 0 selects the rising edge of RSCLK to drive
internally generated frame syncs and selects the falling edge of RSCLK to
sample data and externally generated frame syncs.

14-34 ADSP-BF59x Blackfin Processor Hardware Reference



SPORT Controller

Note externally generated data and frame sync signals should
change state on the opposite edge than that selected for sampling.
For example, for an externally generated frame sync to be sampled
on the rising edge of the clock (TCKFE = 1 in the SPORT_TCR1 regis-
ter), the frame sync must be driven on the falling edge of the clock.

The transmit and receive functions of two SPORT's connected together
should always select the same value for TCKFE in the transmitter and RCKFE
in the receiver, so that the transmitter drives the data on one edge and the
receiver samples the data on the opposite edge.

In Figure 14-10, TCKFE = RCKFE = 0 and transmit and receive are con-
nected together to share the same clock and frame syncs.

DRIVE  SAMPLE
EDGE EDGE

L OR EXTERNAL ‘L’I_I‘il_l_l_l_l_l_
INTERNAL OR EXTERNAL
TFS = RFS l—l
INTERNAL OR EXTERNAL

ot — B0 X B1 X B2 X B3

prR — Bo X B1 X B2 X B3

Figure 14-10. Example of TCKFE = RCKFE = 0, Transmit and Receive Con-
nected

In Figure 14-11 on page 14-36, TCKFE = RCKFE = 1 and transmit and
receive are connected together to share the same clock and frame syncs.

ADSP-BF59x Blackfin Processor Hardware Reference 14-35



Functional Description

DRIVE  SAMPLE
EDGE EDGE

TSCLK = RSCLK ‘;I ZI I
INTERNAL OR EXTERNAL
TFS = RFS l_l
INTERNAL OR EXTERNAL

pt—— Bo X B1 X B2 X B3

pR— Bo X B1 X B2 X B3

Figure 14-11. Example of TCKFE = RCKFE = 1, Transmit and Receive
Connected

Early Versus Late Frame Syncs (Normal Versus
Alternate Timing)

Frame sync signals can occur during the first bit of each data word (late)
or during the serial clock cycle immediately preceding the first bit (early).
The LATFS and LARFS bits of the SPORT_TCR1 and SPORT_RCRI registers con-
figure this option.

When LATFS = 0 or LARFS = 0, early frame syncs are configured; this is the
normal mode of operation. In this mode, the first bit of the transmit data
word is available and the first bit of the receive data word is sampled in the
serial clock cycle after the frame sync is asserted, and the frame sync is not
checked again until the entire word has been transmitted or received. In
multichannel operation, this corresponds to the case when multichannel
frame delay is 1.

If data transmission is continuous in early framing mode (in other words,
the last bit of each word is immediately followed by the first bit of the next
word), then the frame sync signal occurs during the last bit of each word.
Internally generated frame syncs are asserted for one clock cycle in early
framing mode. Continuous operation is restricted to word sizes of 4 or
longer (SLEN = 3).

14-36 ADSP-BF59x Blackfin Processor Hardware Reference



SPORT Controller

When LATFS = 1 or LARFS = 1, late frame syncs are configured; this is the
alternate mode of operation. In this mode, the first bit of the transmit data
word is available and the first bit of the receive data word is sampled in the
same serial clock cycle that the frame sync is asserted. In multichannel
operation, this is the case when frame delay is 0. Receive data bits are sam-
pled by serial clock edges, but the frame sync signal is only checked during
the first bit of each word. Internally generated frame syncs remain asserted
for the entire length of the data word in late framing mode. Externally
generated frame syncs are only checked during the first bit.

Figure 14-12 on page 14-38 illustrates the two modes of frame signal tim-
ing. In summary:

* For the LATFS or LARFS bits of the SPORT_TCR1 or SPORT_RCR1 regis-
ters: LATFS = 0 or LARFS = 0 for early frame syncs, LATFS = 1 or
LARFS = 1 for late frame syncs.

* For early framing, the frame sync precedes data by one cycle. For
late framing, the frame sync is checked on the first bit only.

e Data is transmitted MSB first (TLSBIT = 0 or RLSBIT = 0) or LSB
first (TLSBIT = 1 or RLSBIT = 1).

e Frame sync and clock are generated internally or externally.

See “Timing Examples” on page 14-40 for more examples.

ADSP-BF59x Blackfin Processor Hardware Reference 14-37



Functional Description

oo S I U O I O

or
TSCLK

LATE
FRAME

SYNC

EARLY
FRAME
SYNC

() (m
> /S L/ S O

Figure 14-12. Normal Versus Alternate Framing

Data Independent Transmit Frame Sync

Normally the internally generated transmit frame sync signal (TFS) is out-
put only when the SPORT_TX buffer has data ready to transmit. The
data-independent transmit frame sync select bit (DITFS) allows the contin-
uous generation of the TFS signal, with or without new data. The DITFS bit
of the SPORT_TCR1 register configures this option.

When DITFS = 0, the internally generated TFS is only output when a new
data word has been loaded into the SPORT_TX buffer. The next TFS is gen-
erated once data is loaded into SPORT_TX. This mode of operation allows

data to be transmitted only when it is available.

When DITFS = 1, the internally generated TFS is output at its programmed
interval regardless of whether new data is available in the SPORT_TX buffer.
Whatever data is present in SPORT_TX is transmitted again with each asser-
tion of TFS. The TUVF (transmit underflow status) bit in the SPORT_STAT
register is set when this occurs and old data is retransmitted. The TUVF sta-
tus bit is also set if the SPORT_TX buffer does not have new data when an
externally generated TFS occurs. Note that in this mode of operation, data
is transmitted only at specified times.

If the internally generated TFS is used, a single write to the SPORT_TX data
register is required to start the transfer.

14-38 ADSP-BF59x Blackfin Processor Hardware Reference



SPORT Controller

Moving Data Between SPORTs and Memory

Transmit and receive data can be transferred between the SPORTs and
on-chip memory in one of two ways: with single word transfers or with

DMA block transfers.
If no SPORT DMA channel is enabled, the SPORT generates an interrupt

every time it has received a data word or needs a data word to transmit.
SPORT DMA provides a mechanism for receiving or transmitting an
entire block or multiple blocks of serial data before the interrupt is gener-
ated. The SPORT’s DMA controller handles the DMA transfer, allowing
the processor core to continue running until the entire block of data is
transmitted or received. Interrupt service routines (ISRs) can then operate
on the block of data rather than on single words, significantly reducing
overhead.

SPORT RX, TX, and Error Interrupts

The SPORT RX interrupt is asserted when RSPEN is enabled and any
words are present in the RX FIFO. If RX DMA is enabled, the SPORT
RX interrupt is turned off and DMA services the RX FIFO.

The SPORT TX interrupt is asserted when TSPEN is enabled and the TX
FIFO has room for words. If TX DMA is enabled, the SPORT TX inter-
rupt is turned off and DMA services the TX FIFO.

The SPORT error interrupt is asserted when any of the sticky status bits
(ROVF, RUVF, TOVF, TUVF) are set. The ROVF and RUVF bits are cleared by
writing 0 to RSPEN. The TOVF and TUVF bits are cleared by writing 0 to
TSPEN.

ADSP-BF59x Blackfin Processor Hardware Reference 14-39



Functional Description

Peripheral Bus Errors

The SPORT generates a peripheral bus error for illegal register read or

write operations. Examples include:
* Reading a write-only register (for example, SPORT_TX)
* Writing a read-only register (for example, SPORT_RX)

* Writing or reading a register with the wrong size (for example,

32-bit read of a 16-bit register)

* Accessing reserved register locations

Timing Examples

Several timing examples are included within the text of this chapter (in the
sections “Framed Versus Unframed” on page 14-31, “Early Versus Late
Frame Syncs (Normal Versus Alternate Timing)” on page 14-36, and
“Frame Syncs in Multichannel Mode” on page 14-19). This section con-
tains additional examples to illustrate other possible combinations of the
framing options.

These timing examples show the relationships between the signals but are
not scaled to show the actual timing parameters of the processor. Consult
the ADSP-BF592 Blackfin Processor Data Sheet for actual timing parame-

ters and values.

These examples assume a word length of four bits (SLEN = 3). Framing sig-
nals are active high (LRFS = 0 and LTFS = 0).

Figure 14-13 on page 14-41 through Figure 14-18 on page 14-43 show

framing for receiving data.

14-40 ADSP-BF59x Blackfin Processor Hardware Reference



SPORT Controller

In Figure 14-13 and Figure 14-14, the normal framing mode is shown for
non-continuous data (any number of TSCLK or RSCLK cycles between
words) and continuous data (no TSCLK or SCLK cycles between words).

RFS OUTPUT /_\ /_\
RFS INPUT \OOCXXCECO0XXX XXX \XXCKXRXCOCKXXXXXXUXXXX
bR (B3}—(B2) (B0) (83)—B2)

SPORT CONTROL REGISTER:
BOTH INTERNAL FRAMING OPTION AND EXTERNAL FRAMING OPTION SHOWN.
DR REPRESENTS DRPRI AND/OR DRSEC, DEPENDING ON DESIRED CONFIGURATION.

Figure 14-13. SPORT Receive, Normal Framing

RFS OUTPUT [\  \  \
RFS INPUT
OR

SPORT CONTROL REGISTER:
BOTH INTERNAL FRAMING OPTION AND EXTERNAL FRAMING OPTION SHOWN
DR REPRESENTS DRPRI AND/OR DRSEC, DEPENDING ON DESIRED CONFIGURATION.

Figure 14-14. SPORT Continuous Receive, Normal Framing

Figure 14-15 on page 14-42 and Figure 14-16 on page 14-42 show
non-continuous and continuous receiving in the alternate framing mode.
These four figures show the input timing requirement for an externally
generated frame sync and also the output timing characteristic of an inter-
nally generated frame sync. Note the output meets the input timing

ADSP-BF59x Blackfin Processor Hardware Reference 14-41



Functional Description

requirement; therefore, with two SPORT channels used, one SPORT
channel could provide RFS for the other SPORT channel.

RFS OUTPUT; \—/
RFS INPUT \KEXXRXRXOCKX XX XXX \ XXX XXXXKXKX
bR (83}—{B2)—(B1)—{BO) (83)—B2)

SPORT CONTROL REGISTER:
BOTH INTERNAL FRAMING OPTION AND EXTERNAL FRAMING OPTION SHOWN.
DR REPRESENTS DRPRI AND/OR DRSEC, DEPENDING ON DESIRED CONFIGURATION.

Figure 14-15. SPORT Receive, Alternate Framing

on

SPORT CONTROL REGISTER:
BOTH INTERNAL FRAMING OPTION AND EXTERNAL FRAMING OPTION SHOWN
DR REPRESENTS DRPRI AND/OR DRSEC, DEPENDING ON DESIRED CONFIGURATION.

Figure 14-16. SPORT Continuous Receive, Alternate Framing

Figure 14-17 on page 14-43 and Figure 14-18 on page 14-43 show the

receive operation with normal framing and alternate framing, respectively,
in the unframed mode. A single frame sync signal occurs only at the start
of the first word, either one RSCLK before the first bit (in normal mode) or

14-42 ADSP-BF59x Blackfin Processor Hardware Reference



SPORT Controller

at the same time as the first bit (in alternate mode). This mode is appro-
priate for multiword bursts (continuous reception).

CORCOTRECOROHOTREL0D0CORCORNCOORONONNOONSORODRSSRRARONREONNNAN

DR (B3}—(B2)—(B1)}—{B0)}—(B3)—(B2)}—(B1)—(B0)}—(B3)—B2)

DR REPRESENTS DRPRI AND/OR DRSEC, DEPENDING ON DESIRED CONFIGURATION.

Figure 14-17. SPORT Receive, Unframed Mode, Normal Framing

R K

DR (B3)—(B2)—(B1)}—(B0)}—(B3)—(B2)—(B1)—(B0)}—{B3)—B2)

DR REPRESENTS DRPRI AND/OR DRSEC, DEPENDING ON DESIRED CONFIGURATION.

Figure 14-18. SPORT Receive, Unframed Mode, Alternate Framing

Figure 14-19 on page 14-44 through Figure 14-24 on page 14-46 show
framing for transmitting data and are very similar to Figure 14-13 on

page 14-41 through Figure 14-18 on page 14-43.

In Figure 14-19 on page 14-44 and Figure 14-20 on page 14-44, the nor-
mal framing mode is shown for non-continuous data (any number of
TSCLK cycles between words) and continuous data (no TSCLK cycles
between words). Figure 14-21 on page 14-45 and Figure 14-22 on

page 14-45 show non-continuous and continuous transmission in the

ADSP-BF59x Blackfin Processor Hardware Reference 14-43



Functional Description

alternate framing mode. As noted previously for the receive timing dia-
grams, the RFS output meets the RFS input timing requirement.

TFS OUTPUT / \ / \
TFS INPUT XK \XOOOOO0OCOCN

oT—— {83 Y\ B2 \ Bt X\ BO )/ B3 X B2 X\ B1 X BO

SPORT CONTROL REGISTER:
BOTH INTERNAL FRAMING OPTION AND EXTERNAL FRAMING OPTION SHOWN.
DT REPRESENTS DTPRI AND/OR DTSEC, DEPENDING ON DESIRED CONFIGURATION.

Figure 14-19. SPORT Transmit, Normal Framing

msouteut [\ [\ [\
tesiveut /AKX AR \
TR——— (83 Y B2 X B1 X B0 X B3 X B2 Y\ B1 X BO X B3 XB2_
SPORT CONTROL REGISTER:

BOTH INTERNAL FRAMING OPTION AND EXTERNAL FRAMING OPTION SHOWN
DT REPRESENTS DTPRI AND/OR DTSEC, DEPENDING ON DESIRED CONFIGURATION.

Figure 14-20. SPORT Continuous Transmit, Normal Framing

14-44 ADSP-BF59x Blackfin Processor Hardware Reference



SPORT Controller

TFS OUTPUT / \ / \

TFS INPUT \OCCOCOCOXXXXXXON \CKKXXXXXKXXXROCNXAXXN

pt—{ B3 \ B2 \ Bt { Bo )—————{ B3 X B2 { B1 X BO

SPORT CONTROL REGISTER:
BOTH INTERNAL FRAMING OPTION AND EXTERNAL FRAMING OPTION SHOWN.
DT REPRESENTS DTPRI AND/OR DTSEC, DEPENDING ON DESIRED CONFIGURATION.

Figure 14-21. SPORT Transmit, Alternate Framing

TFS OUTPUT /
TFS INPUT XXX XXX XN X KX XXX XX XN
TR—— (B3 X B2 X B1 X B0 X B3 X B2 Y\ B1 X BO

SPORT CONTROL REGISTER:
BOTH INTERNAL FRAMING OPTION AND EXTERNAL FRAMING OPTION SHOWN
DT REPRESENTS DTPRI AND/OR DTSEC, DEPENDING ON DESIRED CONFIGURATION.

Figure 14-22. SPORT Continuous Transmit, Alternate Framing

Figure 14-23 on page 14-45 and Figure 14-24 on page 14-46 show the
transmit operation with normal framing and alternate framing, respec-
tively, in the unframed mode. A single frame sync signal occurs only at the
start of the first word, either one TSCLK before the first bit (in normal
mode) or at the same time as the first bit (in alternate mode).

TFS N XXX KX XXX XA KX X XXX KX XXX KA XXX KK KX KX KAXAX

T — (B3 X B2 X B1 X Bo X B3 X B2 X B1 X B0o X B3 X B2

DT REPRESENTS DTPRI AND/OR DTSEC, DEPENDING ON DESIRED CONFIGURATION.

Figure 14-23. SPORT Transmit, Unframed Mode, Normal Framing

ADSP-BF59x Blackfin Processor Hardware Reference 14-45



SPORT Registers

TFS N XX XX XXX XXX XXX XXX XXX XXX XXX

ot ——{ B3 X B2 X\ B1 X Bo X B3 X B2 X B1 X B0 X B3 X

B2

DT REPRESENTS DTPRI AND/OR DTSEC, DEPENDING ON DESIRED CONFIGURATION.

Figure 14-24. SPORT Transmit, Unframed Mode, Alternate Framing

SPORT Registers

The following sections describe the SPORT registers. Table 14-5 provides

an overview of the available control registers.

Table 14-5. SPORT Register Mapping

Register Name

Function

Notes

SPORT_TCRI1 Primary transmit Bits [15:1] can only be written if
configuration register bit0 =0
SPORT_TCR2 Secondary transmit

configuration register

SPORT_TCLKDIV

Transmit clock
divider register

Ignored if external SPORT clock
mode is selected

SPORT_TESDIV

Transmit frame sync divider register

Ignored if external frame sync mode
is selected

SPORT_TX Transmit data register See description of FIFO buffering at
“SPORT Transmit Data
(SPORT_TX) Register” on
page 14-59
SPORT_RCRI1 Primary receive Bits [15:1] can only be written if
configuration register bit0 =0
SPORT_RCR2 Secondary receive

configuration register

SPORT_RCLK_DIV

Receive clock
divider register

Ignored if external SPORT clock
mode is selected

14-46

ADSP-BF59x Blackfin Processor Hardware Reference




SPORT Controller

Table 14-5. SPORT Register Mapping (Continued)

Register Name

Function

Notes

SPORT_RESDIV

Receive frame sync
divider register

Ignored if external frame sync mode
is selected

SPORT_RX Receive data register See description of FIFO buffering at
“SPORT Receive Data
(SPORT_RX) Register” on
page 14-61

SPORT_STAT Receive and transmit status

SPORT_MCM1 Primary multichannel mode Configure this register before

configuration register enabling the SPORT
SPORT_MCM2 Secondary multichannel Configure this register before

mode configuration register

enabling the SPORT

SPORT_MRCSn

Receive channel selection registers

Select or deselect channels in a mul-
tichannel frame

SPORT_MTCSn

Transmit channel selection registers

Select or deselect channels in a mul-
tichannel frame

SPORT_CHNL

Currently serviced channel
in a multichannel frame

Register Writes and Effective Latency

When the SPORT is disabled (TSPEN and RSPEN cleared), SPORT register
writes are internally completed at the end of the SCLK cycle in which they
occurred, and the register reads back the newly-written value on the next

cycle.

When the SPORT is enabled to transmit (TSPEN set) or receive (RSPEN set),
corresponding SPORT configuration register writes are disabled (except
for SPORT_RCLKDIV, SPORT_TCLKDIV, and multichannel mode channel select
registers). The SPORT_TX register writes are always enabled; SPORT_RX,
SPORT_CHNL, and SPORT_STAT are read-only registers.

ADSP-BF59x Blackfin Processor Hardware Reference

14-47



SPORT Registers

After a write to a SPORT register, while the SPORT is disabled, any
changes to the control and mode bits generally take effect when the

SPORT is re-enabled.

Most configuration registers can only be changed while the
SPORT is disabled (TSPEN/RSPEN = 0). Changes take effect after the
SPORT is re-enabled. The only exceptions to this rule are the
TCLKDIV/RCLKDIV registers and multichannel select registers.

SPORT Transmit Configuration
(SPORT_TCR1 and SPORT_TCR2) Registers

The main control registers for the transmit portion of each SPORT are
the transmit configuration registers, SPORT_TCR1 and SPORT_TCR2, shown
in Figure 14-25 on page 14-49 and Figure 14-26 on page 14-50.

A SPORT is enabled for transmit if bit 0 (TSPEN) of the transmit configu-
ration 1 register is set to 1. This bit is cleared during either a hard reset or
a soft reset, disabling all SPORT transmission.

When the SPORT is enabled to transmit (TSPEN set), corresponding
SPORT configuration register writes are not allowed except for
SPORT_TCLKDIV and multichannel mode channel select registers. Writes to
disallowed registers have no effect. While the SPORT is enabled,
SPORT_TCR1 is not written except for bit 0 (TSPEN). For example,

write (SPORT_TCR1, 0x0001) ; /* SPORT TX Enabled */
write (SPORT_TCRI, OxFFO1) ; /* ignored, no effect */

14-48 ADSP-BF59x Blackfin Processor Hardware Reference



SPORT Controller

write (SPORT_TCR1, OxFFF0) ; /* SPORT disabled, SPORT_TCRI1
still equal to 0x0000 */

SPORT Transmit Configuration 1 Register (SPORT_TCR1)

15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0
[oTo o o o [o To To oo To o o o [¢ [o | reset=oxooo

L1 L
TCKFE (Clock Falling TSPEN (Transmit Enable)
Edge Select) 0 - Transmit disabled
0 - Drive data and internal 1 - Transmit enabled

frame syncs with rising .
edge of TSCLK. Sample I(.:I-Igléll((g:ltei:rsal Transmit
external frame syncs with 0 -External transmit clock
falling edge of TSCLK. selected

1 - Drive data and internal .
frame syncs with falling 1 - Internal transmit clock

edge of TSCLK. Sample selected
external frame syncs —  TDTYPE[1:0] (Data Format-
with rising edge of TSCLK. ting Type Select)

LATFS (Late Transmit 00 - Normal operation

01 - Reserved

10 - Compand using p-law

11 - Compand using A-law
TLSBIT (Transmit Bit Order)
0 - Transmit MSB first

1 - Transmit LSB first

Frame Sync)

0 - Early frame syncs
1 - Late frame syncs

LTFS (Low Transmit
Frame Sync Select)

0 - Active high TFS

1 - Active low TFS ITFS (Internal Transmit
Frame Sync Select)

DITFS (Data-Independent 0 - External TFS used

Transmit Frame Sync Select) —— 1 - Internal TFS used

0 - Data-dependent TFS generated TFSR (Transmit Frame Sync

1 - Data-independent TFS generated Required Select)

0 - Does not require TFS for
every data word

1 - Requires TFS for every
data word

Figure 14-25. SPORT Transmit Configuration 1 Register

ADSP-BF59x Blackfin Processor Hardware Reference 14-49



SPORT Registers

SPORT Transmit Configuration 2 Register (SPORT_TCR2)

156 14 1312 11 10 9 8 7 6 5 4 3 2 1 0
|o|o|o |0|o |o Io |o|0|o |o|o|o|0|0|o| Reset = 0x0000

SLEN[4:0] (SPORT Word

TRFST (Left/Right Length)

0 - Left stereo channel first 00000 - lllegal value

1 - Right stereo channel first 00001 - lllegal value

TSFSE (Transmit Stereo Serial word length is value in
Frame Sync Enable) this field plus 1

0 - Normal mode TXSE (TxSEC Enable)

1 - Frame sync becomes L/R clock 0 - Secondary side disabled

1 - Secondary side enabled

Figure 14-26. SPORT Transmit Configuration 2 Register

Additional information for the SPORT_TCR1 and SPORT_TCR? transmit con-
figuration register bits includes:

e Transmit enable (TSPEN). This bit selects whether the SPORT is
enabled to transmit (if set) or disabled (if cleared).

Setting TSPEN causes an immediate assertion of a SPORT TX inter-
rupt, indicating that the TX data register is empty and needs to be
filled. This is normally desirable because it allows centralization of
the transmit data write code in the TX interrupt service routine
(ISR). For this reason, the code should initialize the ISR and be
ready to service TX interrupts before setting TSPEN.

Similarly, if DMA transfers are used, DMA control should be con-
figured correctly before setting TSPEN. Set all DMA control
registers before setting TSPEN.

14-50 ADSP-BF59x Blackfin Processor Hardware Reference



SPORT Controller

Clearing TSPEN causes the SPORT to stop driving data, TSCLK, and
frame sync pins; it also shuts down the internal SPORT circuitry.
In low power applications, battery life can be extended by clearing
TSPEN whenever the SPORT is not in use.

@ All SPORT control registers should be programmed before TSPEN is

set. Typical SPORT initialization code first writes all control regis-
ters, including DMA control if applicable. The last step in the code
is to write SPORT_TCR1 with all of the necessary bits, including
TSPEN.

e Internal transmit clock select. (I1TCLK). This bit selects the internal
transmit clock (if set) or the external transmit clock on the TSCLK
pin (if cleared). The TCLKDIV MMR value is not used when an
external clock is selected.

* Data formatting type select. The two TDTYPE bits specify data for-
mats used for single and multichannel operation.

e Bit order select. (TLSBIT). The TLSBIT bit selects the bit order of
the data words transmitted over the SPORT.

* Serial word length select. (SLEN). The serial word length (the num-
ber of bits in each word transmitted over the SPORTS) is
calculated by adding 1 to the value of the SLEN field:

Serial Word Length = SLEN + 1;

The SLEN field can be set to a value of 2 to 31; 0 and 1 are illegal
values for this field. Three common settings for the SLEN field are
15, to transmit a full 16-bit word; 7, to transmit an 8-bit byte; and
23, to transmit a 24-bit word. The processor can load 16- or 32-bit
values into the transmit buffer via DMA or an MMR write

ADSP-BF59x Blackfin Processor Hardware Reference 14-51



SPORT Registers

instruction; the SLEN field tells the SPORT how many of those bits
to shift out of the register over the serial link. The SPORT always
transfers the SLEN+1 lower bits from the transmit buffer.

The frame sync signal is controlled by the SPORT_TFSDIV and
SPORT_RFSDIV registers, not by SLEN. To produce a frame sync pulse
on each byte or word transmitted, the proper frame sync divider
must be programmed into the frame sync divider register; setting
SLEN to 7 does not produce a frame sync pulse on each byte
transmitted.

Internal transmit frame sync select. (1TFS). This bit selects
whether the SPORT uses an internal TFS (if set) or an external TFS
(if cleared).

Transmit frame sync required select. (TFSR). This bit selects
whether the SPORT requires (if set) or does not require (if cleared)
a transmit frame sync for every data word.

The TFSR bit is normally set during SPORT configuration. A frame
sync pulse is used to mark the beginning of each word or data
packet, and most systems need a frame sync to function properly.

Data-Independent transmit frame sync select. (DITFS). This bit
selects whether the SPORT generates a data-independent TFS (sync
at selected interval) or a data-dependent TFS (sync when data is
present in SPORT_TX) for the case of internal frame sync select
(ITFS = 1). The DITFS bit is ignored when external frame syncs are
selected.

The frame sync pulse marks the beginning of the data word. If
DITFS is set, the frame sync pulse is issued on time, whether the
SPORT_TX register has been loaded or not; if DITFS is cleared, the
frame sync pulse is only generated if the SPORT_TX data register has
been loaded. If the receiver demands regular frame sync pulses,
DITFS should be set, and the processor should keep loading the
SPORT_TX register on time. If the receiver can tolerate occasional

14-52

ADSP-BF59x Blackfin Processor Hardware Reference



SPORT Controller

late frame sync pulses, DITFS should be cleared to prevent the
SPORT from transmitting old data twice or transmitting garbled
data if the processor is late in loading the SPORT_TX register.

* Low transmit frame sync select. (LTFS). This bit selects an active
low TFs (if set) or active high TFS (if cleared).

* Late transmit frame sync. (LATFS). This bit configures late frame
syncs (if set) or early frame syncs (if cleared).

* Clock drive/sample edge select. (TCKFE). This bit selects which
edge of the TCLKx signal the SPORT uses for driving data, for driv-
ing internally generated frame syncs, and for sampling externally
generated frame syncs. If set, data and internally generated frame
syncs are driven on the falling edge, and externally generated frame
syncs are sampled on the rising edge. If cleared, data and internally
generated frame syncs are driven on the rising edge, and externally
generated frame syncs are sampled on the falling edge.

* TxSec enable. (TXSE). This bit enables the transmit secondary side
of the SPORT (if set).

* Stereo serial enable. (TSFSE). This bit enables the stereo serial oper-
ating mode of the SPORT (if set). By default this bit is cleared,

enabling normal clocking and frame sync.

* Left/Right order. (TRFST). If this bit is set, the right channel is
transmitted first in stereo serial operating mode. By default this bit
is cleared, and the left channel is transmitted first.

SPORT Receive Configuration
(SPORT_RCR1 and SPORT_RCR2) Registers

The main control registers for the receive portion of each SPORT are the
receive configuration registers, SPORT_RCR1 and SPORT_RCR2, shown in

Figure 14-27 on page 14-55 and Figure 14-28 on page 14-56.

ADSP-BF59x Blackfin Processor Hardware Reference 14-53



SPORT Registers

A SPORT is enabled for receive if bit 0 (RSPEN) of the receive configura-
tion 1 register is set to 1. This bit is cleared during either a hard reset or a
soft reset, disabling all SPORT reception.

14-54 ADSP-BF59x Blackfin Processor Hardware Reference



SPORT Controller

SPORT Receive Configuration 1 Register (SPORT_RCR1)

15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0
|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|Reset=0x0000

_ | t
RCKFE (Clock Falling RSPEN (Receive Enable)

Edge Select)

0 - Drive internal frame sync
on rising edge of RSCLK.
Sample data and external
frame sync with falling
edge of RSCLK.

1 - Drive internal frame sync
on falling edge of RSCLK.
Sample data and external
frame sync with rising
edge of RSCLK.

LARFS (Late Receive
Frame Sync)

0 - Early frame syncs

1 - Late frame syncs

LRFS (Low Receive Frame
Sync Select)

0 - Active high RFS

1 - Active low RFS

RFSR (Receive Frame Sync

Required Select)
0 - Does not require RFS for
every data word

0 - Receive disabled
1 - Receive enabled

IRCLK (Internal Receive

Clock Select)

0 -External receive clock
selected

1 - Internal receive clock
selected

RDTYPE[1:0] (Data
Formatting Type Select)

00 - Zero fill

01 - Sign-extend

10 - Compand using p-law

11 - Compand using A-law
RLSBIT (Receive Bit Order)
0 - Receive MSB first

1 - Receive LSB first

IRFS (Internal Receive Frame
Sync Select)

0 - External RFS used
1 - Internal RFS used

1 - Requires RFS for every data
word

Figure 14-27. SPORT Receive Configuration 1 Register

When the SPORT is enabled to receive (RSPEN set), corresponding
SPORT configuration register writes are not allowed except for
SPORT_RCLKDIV and multichannel mode channel select registers. Writes to
disallowed registers have no effect. While the SPORT is enabled,
SPORT_RCR1 is not written except for bit 0 (RSPEN). For example,

write (SPORT_RCR1, 0x0001) ; /* SPORT RX Enabled */

write (SPORT_RCRI1, OxFFO1) ; /* dignored, no effect */

write (SPORT_RCR1, OxFFFO) ; /* SPORT disabled, SPORT_RCRI1
still equal to 0x0000 */

ADSP-BF59x Blackfin Processor Hardware Reference 14-55



SPORT Registers

SPORT Receive Configuration 2 Register (SPORT_RCR2)

1514 1312 11 10 9 8 7 6 5 4 3 2 1 0
Io|o|o|o|o|o|0|0|o|o|0|0|0|o|0|0| Reset = 0x0000

[ SLEN[4:0] (SPORT Word

RRFST (Left/Right Order) Length)

0 - Left stereo channel first 00000 - lllegal value

1 - Right stereo channel first 00001 - lllegal value

RSFSE (Receive Stereo Serial word length is value in
Frame Sync Enable) this field plus 1

0 - Normal mode RXSE (RxSEC Enable)

1 - Frame sync becomes L/R clock 0 - Secondary side disabled

1 - Secondary side enabled

Figure 14-28. SPORT Receive Configuration 2 Register

Additional information for the SPORT_RCR1 and SPORTRCR2 receive config-
uration register bits:

* Receive enable. (RSPEN). This bit selects whether the SPORT is
enabled to receive (if set) or disabled (if cleared). Setting the RSPEN
bit turns on the SPORT and causes it to sample data from the data
receive pins as well as the receive bit clock and receive frame sync
pins if so programmed.

Setting RSPEN enables the SPORT receiver, which can generate a
SPORT RX interrupt. For this reason, the code should initialize
the ISR and the DMA control registers, and should be ready to ser-
vice RX interrupts before setting RSPEN. Setting RSPEN also
generates DMA requests if DMA is enabled and data is received.
Set all DMA control registers before setting RSPEN.

Clearing RSPEN causes the SPORT to stop receiving data; it also
shuts down the internal SPORT receive circuitry. In low power

applications, battery life can be extended by clearing RSPEN when-
ever the SPORT is not in use.

14-56 ADSP-BF59x Blackfin Processor Hardware Reference



SPORT Controller

@ All SPORT control registers should be programmed before RSPEN is

set. Typical SPORT initialization code first writes all control regis-
ters, including DMA control if applicable. The last step in the code
is to write SPORT_RCR1 with all of the necessary bits, including
RSPEN.

* Internal receive clock select. (IRCLK). This bit selects the internal
receive clock (if set) or external receive clock (if cleared). The
RCLKDIV MMR value is not used when an external clock is selected.

* Data formatting type select. (RDOTYPE). The two RDTYPE bits specify
one of four data formats used for single and multichannel
operation.

e Bit order select. (RLSBIT). The RLSBIT bit selects the bit order of
the data words received over the SPORTS.

* Serial word length select. (SLEN). The serial word length (the num-
ber of bits in each word received over the SPORTS) is calculated by
adding 1 to the value of the SLEN field. The SLEN field can be set to
a value of 2 to 31; 0 and 1 are illegal values for this field.

@ The frame sync signal is controlled by the SPORT_TFSDIV and
SPORT_RFSDIV registers, not by SLEN. To produce a frame sync pulse
on each byte or word transmitted, the proper frame sync divider
must be programmed into the frame sync divider register; setting
SLEN to 7 does not produce a frame sync pulse on each byte
transmitted.

* Internal receive frame sync select. (IRFS). This bit selects whether
the SPORT uses an internal RFS (if set) or an external RFS (if
cleared).

* Receive frame sync required select. (RFSR). This bit selects whether
the SPORT requires (if set) or does not require (if cleared) a receive
frame sync for every data word.

ADSP-BF59x Blackfin Processor Hardware Reference 14-57



SPORT Registers

* Low receive frame sync select. (LRFS). This bit selects an active low
RFS (if set) or active high RFS (if cleared).

* Late receive frame sync. (LARFS). This bit configures late frame
syncs (if set) or early frame syncs (if cleared).

e Clock drive/sample edge select. (RCKFE). This bit selects which
edge of the RSCLK clock signal the SPORT uses for sampling data,
for sampling externally generated frame syncs, and for driving
internally generated frame syncs. If set, internally generated frame
syncs are driven on the falling edge, and data and externally gener-
ated frame syncs are sampled on the rising edge. If cleared,
internally generated frame syncs are driven on the rising edge, and
data and externally generated frame syncs are sampled on the fall-

ing edge.

* RxSec enable. (RXSE). This bit enables the receive secondary side of
the SPORT (if set).

* Stereo serial enable. (RSFSE). This bit enables the stereo serial oper-
ating mode of the SPORT (if set). By default this bit is cleared,

enabling normal clocking and frame sync.

* Left/Right order. (RRFST). If this bit is set, the right channel is
received first in stereo serial operating mode. By default this bit is
cleared, and the left channel is received first.

Data Word Formats

The format of the data words transferred over the SPORTs is configured
by the combination of transmit SLEN and receive SLEN; RDTYPE; TDTYPE;
RLSBIT; and TLSBIT bits of the SPORT_TCR1, SPORT_TCR2, SPORT_RCR1, and
SPORT_RCR? registers.

14-58 ADSP-BF59x Blackfin Processor Hardware Reference



SPORT Controller

SPORT Transmit Data (SPORT_TX) Register

The SPORT_TX register is a write-only register. Reads produce a peripheral
bus error. Writes to this register cause writes into the transmitter FIFO.
The 16-bit wide FIFO is 8 deep for word length < 16 and 4 deep for word
length > 16. The FIFO is common to both primary and secondary data
and stores data for both. Data ordering in the FIFO is shown in the
Figure 14-29. The SPORT_TX register is shown in Figure 14-30 on

page 14-61.

15 0 15 0
ONLY PRIMARY ENABLED [ PRIMARY w7 PRIMARY AND [SECONDARY W3
DATA LENGTH <= 16 BITS SECONDARY ENABLED
W
PRIMARY 6 DATA LENGTH <= 16 BITS | LRIMARY ws
8 WORDS OF | pRIMARY w5 SECONDARY W2
PRIMARY DATA 4 WORDS OF
w4
INFIFO | CRIMARY PRIMARY DATA AND [ CRIMARY w2
PRIMARY w3 4WORDS OF |SECONDARY W1
PRIMARY w2 SECONDARY DATA | PRIMARY w1
PRIMARY w1 INFIFO |SECONDARY W0
PRIMARY wo PRIMARY wo
15 0 15 0
ONLY PRIMARY ENABLED | PRIMARY W3 LOW PRIMARY AND [SECONDARY W1 LOW
DATA LENGTH > 16 BITS | pPRIMARY W3 HIGH SECONDARY ENABLED  [gECcONDARY W1 HIGH
DATA LENGTH > 16 BITS
4WORDS OF | PRIMARY W2 LOW > PRIMARY W1 LOW
PRIMARY DATA | pRIMARY W2 HIGH PRIMAF?YV\IIJC;\?ADi\l?[F; PRIMARY W1 HIGH
IN FIFO
PRIMARY W1 LOW 2WORDS OF |SECONDARY W0 LOW
PRIMARY W1 HIGH SECONDARY DATA |SECONDARY WO HIGH
PRIMARY WO LOW IN FIFO | PRIMARY W0 LOW
PRIMARY WO HIGH PRIMARY WO HIGH

Figure 14-29. SPORT Transmit FIFO Data Ordering

It is important to keep the interleaving of primary and secondary data in
the FIFO as shown. This means that peripheral bus/DMA writes to the
FIFO must follow an order of primary first, and then secondary, if sec-
ondary is enabled. DAB/peripheral bus writes must match their size to the
data word length. For word length up to and including 16 bits, use a
16-bit write. Use a 32-bit write for word length greater than 16 bits.

When transmit is enabled, data from the FIFO is assembled in the TX
Hold register based on TXSE and SLEN, and then shifted into the primary

ADSP-BF59x Blackfin Processor Hardware Reference 14-59



SPORT Registers

and secondary shift registers. From here, the data is shifted out serially on
the DTPRI and DTSEC pins.

The SPORT TX interrupt is asserted when TSPEN = 1 and the TX FIFO
has room for additional words. This interrupt does not occur if SPORT
DMA is enabled.

The transmit underflow status bit (TUVF) is set in the SPORT_STAT register
when a transmit frame sync occurs and no new data has been loaded into
the serial shift register. In multichannel mode (MCM), TUVF is set when-
ever the serial shift register is not loaded, and transmission begins on the
current enabled channel. The TUVF status bit is a sticky write-1-to-clear

(W1C) bit and is also cleared by disabling the SPORT (writing TXEN = 0).

If software causes the core processor to attempt a write to a full TX FIFO
with a SPORT_TX write, the new data is lost and no overwrites occur to data
in the FIFO. The TOVF status bit is set and a SPORT error interrupt is
asserted. The TOVF bit is a sticky bit; it is only cleared by disabling the
SPORT TX. To find out whether the core processor can access the
SPORT_TX register without causing this type of error, read the register’s sta-
tus first. The TXF bit in the SPORT_STAT register is 0 if space is available for
another word in the FIFO.

The TXF and TOVF status bits in the SPORT_STAT register are updated upon
writes from the core processor, even when the SPORT is disabled.

14-60 ADSP-BF59x Blackfin Processor Hardware Reference



SPORT Controller

SPORT Transmit Data Register (SPORT_TX)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
|o |o |o |o |o |o |o |o |o |o |o |o |o |o |o |0 | Reset = 0x0000 0000
[ J

Transmit Data[31:16]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[ofofolofofofoofofolofofofo]o]e]
| |

Transmit Data[15:0]

Figure 14-30. SPORT Transmit Data Register

SPORT Receive Data (SPORT_RX) Register

The SPORT_RX register is a read-only register. Writes produce a peripheral
bus error. The same location is read for both primary and secondary data.
Reading from this register space causes reading of the receive FIFO. This
16-bit FIFO is 8 deep for receive word length < 16 and 4 deep for
length > 16 bits. The FIFO is shared by both primary and secondary
receive data. The order for reading using peripheral bus/DMA reads is
important since data is stored in differently depending on the setting of
the SLEN and RXSE configuration bits.

Data storage and data ordering in the FIFO are shown in Figure 14-31 on
page 14-62. The SPORT_RX register is shown in Figure 14-32 on
page 14-63.

ADSP-BF59x Blackfin Processor Hardware Reference 14-61



SPORT Registers

FROM Rx HOLD REGISTER FROM Rx HOLD REGISTER
15 L 0 15 0
ONLY PRIMARY ENABLED |PRIMARY w7 PRIMARY AND [SECONDARY W3
DATA LENGTH <= 16 BITS SECONDARY ENABLED
PRIMARY we DATA LENGTH <= 16 BITS | RIMARY w3
8 WORDS OF  |pRIMARY W5 SECONDARY W2
PRIMARY DATA  [oooros Wa 4WORDS OF  [pRiyaRy w2
IN FIFO PRIMARY DATA AND
PRIMARY w3 4WORDS OF |SECONDARY Wi
PRIMARY w2 SECONDARY DATA |PRIMARY w1
PRIMARY w1 INFIFO [SECONDARY W0
PRIMARY wo PRIMARY wo
TO TO
ONLY PRIMARY ENABLED ;ﬁg’ggs gﬁg’ggB
DATA LENGTH > 16 BITS
4WORDs oF FROM Rx HOLD REGISTER FROM Rx HOLD REGISTER
PRIMARY DATA 15 0 15 ¢ o
IN FIFO
PRIMARY W3 LOW PRIMARY AND [SECONDARY W1 LOW
PRIMARY W3 HIGH II;SIEI'(I?\C:_'\I‘E?I/:;‘I'YI-IEN%BEI!-IE'[S) SECONDARY W1 HIGH
PRIMARY W2 LOW > PRIMARY W1 LOW
PRIMARY W2 HIGH CRIMA :YV‘I’D?\?E?\ 3; PRIMARY W1 HIGH
PRIMARY W1 LOW 2WORDS OF |SECONDARY _woLow
PRIMARY W1 HIGH SECONDARY DATA [SECONDARY WO HIGH
PRIMARY W0 LOW INFIFO [PRIMARY W0 LOW
PRIMARY WO HIGH PRIMARY WO HIGH
|_> TO |_’ TO
PAB/DAB PAB/DAB
BUSES BUSES

Figure 14-31. SPORT Receive FIFO Data Ordering

When reading from the FIFO for both primary and secondary data, read
primary first, followed by secondary. DAB/peripheral bus reads must
match their size to the data word length. For word length up to and
including 16 bits, use a 16-bit read. Use a 32-bit read for word length
greater than 16 bits.

When receiving is enabled, data from the DRPRI pin is loaded into the RX
primary shift register, while data from the DRSEC pin is loaded into the RX
secondary shift register. At transfer completion of a word, data is shifted
into the RX hold registers for primary and secondary data, respectively.
Data from the hold registers is moved into the FIFO based on RXSE and
SLEN.

14-62 ADSP-BF59x Blackfin Processor Hardware Reference



SPORT Controller

The SPORT RX interrupt is generated when RSPEN = 1 and the RX FIFO
has received words in it. When the core processor has read all the words in
the FIFO, the RX interrupt is cleared. The SPORT RX interrupt is set
only if SPORT RX DMA is disabled; otherwise, the FIFO is read by
DMA reads.

If the program causes the core processor to attempt a read from an empty
RX FIFO, old data is read, the RUVF flag is set in the SPORT_STAT register,
and the SPORT error interrupt is asserted. The RUVF bit is a sticky bit and
is cleared only when the SPORT is disabled. To determine if the core can
access the RX registers without causing this error, first read the RX FIFO
status (RXNE in the SPORT_STAT register). The RUVF status bit is updated
even when the SPORT is disabled.

The ROVF status bit is set in the SPORT_STAT register when a new word is
assembled in the RX shift register and the RX hold register has not moved
the data to the FIFO. The previously written word in the hold register is
overwritten. The ROVF bit is a sticky bit; it is only cleared by disabling the
SPORT RX.

SPORT Receive Data Register (SPORT_RX)

31 30 20 28 27 26 25 24 23 22 21 20 19 18 17 16
Io |o |0 |o |o |o |o |0 Io |o |o |o Io |0 |o |0 I Reset = 0x0000 0000
| |

Receive Data[31:16]

15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0
fofofolofofofofofofoofofofo]o]o]
| |

Receive Data[15:0]

Figure 14-32. SPORT Receive Data Register

ADSP-BF59x Blackfin Processor Hardware Reference 14-63



SPORT Registers

SPORT Status (SPORT_STAT) Register

The SPORT_STAT register is used to determine if the access to a SPORT RX
or TX FIFO can be made by determining their full or empty status. This
register is shown in Figure 14-33 on page 14-65.

The TXF bit in the SPORT_STAT register indicates whether there is room in
the TX FIFO. The RXNE status bit indicates whether there are words in the
RX FIFO. The TXHRE bit indicates if the TX hold register is empty.

The transmit underflow status bit (TUVF) is set whenever the TFS signal
occurs (from either an external or internal source) while the TX shift regis-
ter is empty. The internally generated TFS may be suppressed whenever
SPORT_TX is empty by clearing the DITFS control bit in the SPORT_TCR1 reg-
ister. The TUVF status bit is a sticky write-1-to-clear (W1C) bit and is also
cleared by disabling the SPORT (writing TXEN = 0).

For continuous transmission (TFSR = 0), TUVF is set at the end of a trans-
mitted word if no new word is available in the TX hold register.

The TOVF bit is set when a word is written to the TX FIFO when it is full.
It is a sticky W1C bit and is also cleared by writing TXEN = 0. Both TXF
and TOVF are updated even when the SPORT is disabled.

When the SPORT RX hold register is full, and a new receive word is
received in the shift register, the receive overflow status bit (ROVF) is set in
the SPORT_STAT register. It is a sticky W1C bit and is also cleared by dis-
abling the SPORT (writing RXEN = 0).

The RUVF bit is set when a read is attempted from the RX FIFO and it is

empty. It is a sticky W1C bit and is also cleared by writing RXEN = 0. The
RUVF bit is updated even when the SPORT is disabled.

14-64 ADSP-BF59x Blackfin Processor Hardware Reference



SPORT Controller

SPORT Status Register (SPORT_STAT)

1514 1312 11 10 9 8 7 6 5 4 3 2 1 0
|o|o|o|o|o|o|o|o|o|1 Iolololololol Reset = 0x0040

TXHRE (Transmit Hold Register Empty) 4 L RXNE (Receive FIFO Not
0 - Not empty Empty Status)
1 - Empty 0 - Empty .
TOVF (Sticky Transmit Overflow Status) - W1C 1 - Data present in FIFO
0 - Disabled RUVF (Sticky Receive Under-
1 - Enabled flow Status) - W1C
TUVF (Sticky Transmit Underflow Status) - W1C —— | 0 - Disabled
) 1 - Enabled
0 - Disabled . .
1 - Enabled ————— ROVF (Sticky Receive Over-
. flow Status) - W1C
TXF (Transmit FIFO Full Status) 0 - Disabled
0 - Not full 1- Enabled
1-Full

Figure 14-33. SPORT Status Register

SPORT Transmit and Receive Serial Clock Divider
(SPORT_TCLKDIV and SPORT_RCLKDIV) Registers

The frequency of an internally generated clock is a function of the system
clock frequency (as seen at the SCLK pin) and the value of the 16-bit serial
clock divide modulus registers (the SPORT_TCLKDIV register, shown in
Figure 14-34, and the SPORT_RCLKDIV register, shown in Figure 14-35 on
page 14-606).

SPORT Transmit Serial Clock Divider Register (SPORT_TCLKDIV)
15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0
Io |o Io Io Io Io Io Io Io Io Io Io Io |0 |0 Io I Reset = 0x0000
| |

Serial Clock Divide
Modulus[15:0]

Figure 14-34. SPORT Transmit Serial Clock Divider Register

ADSP-BF59x Blackfin Processor Hardware Reference 14-65



SPORT Registers

SPORT Receive Serial Clock Divider Register (SPORT_RCLKDIV)
1514 1312 11 10 9 8 7 6 5 4 3 2 1 0
Io Io Io Io Io Io Io Io Io Io Io Io Io Io Io |0 | Reset = 0x0000
[ |

Serial Clock Divide
Modulus[15:0]

Figure 14-35. SPORT Receive Serial Clock Divider Register

SPORT Transmit and Receive Frame Sync Divider
(SPORT_TFSDIV and SPORT_RFSDIV) Registers

The 16-bit SPORT_TFSDIV and SPORT_RFSDIV registers specify how many
transmit or receive clock cycles are counted before generating a TFS or RFS
pulse when the frame sync is internally generated. In this way, a frame
sync can be used to initiate periodic transfers. The counting of serial clock
cycles applies to either internally or externally generated serial clocks.
These registers are shown in Figure 14-36 and Figure 14-37 on

page 14-67.

SPORT Transmit Frame Sync Divider Register (SPORT_TFSDIV)
15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0
|o |o |0 |o |o |o |o |0 |o |o |o |o |0 |o |o |o | Reset = 0x0000
[ |

Frame Sync Divider[15:0]
Number of transmit clock cycles
counted before generating TFS pulse

Figure 14-36. SPORT Transmit Frame Sync Divider Register

14-66 ADSP-BF59x Blackfin Processor Hardware Reference



SPORT Controller

SPORT Receive Frame Sync Divider Register (SPORT_RFSDIV)
1514 1312 1110 9 8 7 6 5 4 3 2 1 0
Io Io lo lo Io Io Io Io Io lo Io Io Io Io Io lo I Reset = 0x0000
| |

L Frame Sync Divider[15:0]

Number of receive clock cycles counted
before generating RFS pulse

Figure 14-37. SPORT Receive Frame Sync Divider Register

SPORT Multichannel Configuration
(SPORT_MCMC1 and SPORT_MCMC?2) Registers

There are two multichannel configuration registers for each SPORT,
shown in Figure 14-38 and Figure 14-39 on page 14-68. These registers
are used to configure the multichannel operation of the SPORT. The two
control registers are shown below.

SPORT Multichannel Configuration Register 1 (SPORT_MCMC1)

1514 1312 11 10 9 8 7 6 5 4 3 2 1 0
|0 |o |o |o |o |o |o |o|o |o |0 |o|o |o |o |o| Reset = 0x0000
| | | |

WSIZE[3:0] (Window Size) \—WOFF[S:O] (Window Offset)

Value in field = [(Desired window size)/8 —1] m:%etsos}%rzt;fc\rl]v:;cri]cgvrzzé\ghere n

Figure 14-38. SPORT Multichannel Configuration Register 1

ADSP-BF59x Blackfin Processor Hardware Reference 14-67



SPORT Registers

SPORT Multichannel Configuration Register 2 (SPORT_MCMC?2)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[oJoJofoJoJoJofofoJoJofoJoJo]o[o] Reset=oxo000
L | L1
MFD[3:0] (Multichannel L MCCRM[1:0] (2X Clock
Frame Delay) —— Recovery Mode)
Delay between frame sync pulse and the 0x - Bypass mode
first data bit in Multichannel mode 10 - Recover 2 MHz clock
FSDR (Frame Sync to Data Relationship) 11 - EZ?oée'\l{ngMHz clock
0 - Normal from 16 MHz
1 - Reversed, H.100 mode L MCDTXPE (Multichannel
MCMEN (Multichannel Frame Mode Enable) ——— DMA Transmit Packing)
0 - Multichannel operations disabled 0 - Disabled
1 - Multichannel operations enabled 1 - Enabled

MCDRXPE (Multichannel
DMA Receive Packing)
0 - Disabled

1 - Enabled

Figure 14-39. SPORT Multichannel Configuration Register 2

SPORT Current Channel (SPORT_CHNL) Register

The 10-bit CHNL field in the SPORT_CHNL register indicates which channel is
currently being serviced during multichannel operation. This field is a
read-only status indicator. The CHNL[9:0] field increments by one as each
channel is serviced. The counter stops at the upper end of the defined win-
dow. The channel select register restarts at 0 at each frame sync. As an
example, for a window size of 8 and an offset of 148, the counter displays
a value between 0 and 156.

Once the window size has completed, the channel counter resets to 0 in
preparation for the next frame. Because there are synchronization delays
between RSCLK and the processor clock, the channel register value is
approximate. It is never ahead of the channel being served, but it may lag

behind. See Figure 14-40 on page 14-69.

14-68 ADSP-BF59x Blackfin Processor Hardware Reference



SPORT Controller

SPORT Current Channel Register (SPORT_CHNL)
RO

15 14 1312 1110 9 8 7 6 5 4 3 2 1 0
Io|o|o|o|o|o|o|o|o|o|o|o|o|0|0|0 Reset = 0x0000
[

CHNL[9:0] (Current
Channel Indicator)

Figure 14-40. SPORT Current Channel Register

SPORT Multichannel Receive Selection
(SPORT_MRCSnN) Registers

The SPORT_MRCSn registers (shown in Figure 14-41 on page 14-70) are
used to enable and disable individual channels. They specify the active
receive channels. There are four registers, each with 32 bits, corresponding
to the 128 channels. Setting a bit enables that channel so that the SPORT
selects that word for receive from the multiple word block of data. For
example, setting bit 0 selects word 0, setting bit 12 selects word 12, and so
on.

Setting a particular bit in the SPORT_MRCSn register causes the SPORT to
receive the word in that channel’s position of the datastream; the received
word is loaded into the RX buffer. When the secondary receive side is
enabled by the RXSE bit, both inputs are processed on enabled channels.
Clearing the bit in the SPORT_MRCSn register causes the SPORT to ignore
the data on either channel.

ADSP-BF59x Blackfin Processor Hardware Reference 14-69



SPORT Registers

SPORT Multichannel Receive Select Registers (SPORT_MRCSn)
For all bits, 0 - Channel disabled, 1 - Channel
enabled, so SPORT selects that word from multi-
ple word block of data.
31 0 Channel number
3 Bit number in register

1 0
MRCS0 |o|o|o|o|o|o|o|o|o|o|o|o|o|o|o|o|o|0|0|0|0|0|0|0|0|0|o|0|0|0|0|0| Reset = 0x0000 0000

63 32 Channel number
31 0 Bit number in register

wrcst  [ofo[ofofo[o[olelelelolele[e[o[o[ofo[oTololo]elele[o[o[e[e[o[o]o] - Reset = ox0000 0000

95 64 Channel number
3 Bit number in register

1 0
mrcs2  [o[o[o[o]ofo[o[o]o[o[o]o[o]o[o]o]o[o[o]o[o[o[o]o[o[o]o[o[o]o[o]o]  Reset = oxo000 0000

127 96 Channel number

31 Bit number in register

0
wncs: (Ao o] - meset - oxaonnaooo

Figure 14-41. SPORT Multichannel Receive Select Registers

SPORT Multichannel Transmit Selection
(SPORT_MTCSN) Registers

The SPORT_MTCSn registers (shown in Figure 14-42 on page 14-71) are
used to enable and disable individual channels. They specify the active
transmit channels. There are four registers, each with 32 bits, correspond-
ing to the 128 channels. Setting a bit enables that channel so that the
SPORT selects that word for transmit from the multiple word block of
data. For example, setting bit 0 selects word 0, setting bit 12 selects word
12, and so on.

Setting a particular bit in a SPORT_MTCSn register causes the SPORT to
transmit the word in that channel’s position of the datastream. When the
secondary transmit side is enabled by the TXSE bit, both sides transmit a

14-70 ADSP-BF59x Blackfin Processor Hardware Reference



SPORT Controller

word on the enabled channel. Clearing the bit in the SPORT_MTCSn register
causes a SPORT controllers’ data transmit pins to three-state during the
time slot of that channel.

SPORT Multichannel Transmit Select Registers (SPORT_MTCSn)

For all bits, 0 - Channel disabled, 1 - Channel enabled, so SPORT
selects that word from multiple word block of data.

MTCSO0

MTCS1

MTCS2

MTCS3

3
3

1 0
1

0
oJolo[ofofe]o]elelele[ofofe]ele]ofe[ofofofe]e]elelofofofele]e]e]

63 32

3

1 0
oJolo[ofofo]oelelele[ofefe]ele]ofe[ofofofo]e]ele]o[ofofo]e]e]o]

95 64

3

1 0
oJolo[ofofe]oelelele[ofofe]ele]ofe[ofofofe]e]elelo[ofofele]e]e]

127 96

3

1 0
oJolo[ofofe]o]elelele[ofofe]e]e]ofefofofofe]e]ele]ofofofo]e]e]e]

Channel number
Bit number in register

Reset = 0x0000 0000

Channel number
Bit number in register

Reset = 0x0000 0000

Channel number
Bit number in register

Reset = 0x0000 0000

Channel number
Bit number in register

Reset = 0x0000 0000

Figure 14-42. SPORT Multichannel Transmit Select Registers

Programming Examples

This section shows an example of typical usage of the SPORT peripheral
in conjunction with the DMA controller. See Listing 14-1 on page 14-72
through Listing 14-4 on page 14-77. These listings assume a processor

with at least two SPORTSs, SPORTO0 and SPORT1.

The SPORT is usually employed for high-speed, continuous serial trans-
fers. The example reflects this, in that the SPORT is set-up for
auto-buffered, repeated DMA transfers.

ADSP-BF59x Blackfin Processor Hardware Reference

14-71



Programming Examples

Because of the many possible configurations, the example uses generic
labels for the content of the SPORT’s configuration registers (SPORT_RCRn
and SPORT_TCRn) and the DMA configuration. An example value is given
in the comments, but for the meaning of the individual bits the user is
referred to the detailed explanation in this chapter.

The example configures both the receive and the transmit section. Since
they are completely independent, the code uses separate labels.

SPORT Initialization Sequence

The SPORT’s receiver and transmitter are configured, but they are not
enabled yet.

Listing 14-1. SPORT Initialization

Program_SPORT_TRANSMITTER_Registers:
/* Set PO to SPORTO Base Address */
PO.h = hi(SPORTO_TCR1);
PO.T = 10(SPORTO_TCR1);
/* Configure Clock speeds */
R1 = SPORT_TCLK_CONFIG; /* Divider SCLK/TCLK (value 0 to
65535) */
W[PO + (SPORTO_TCLKDIV - SPORTO_TCR1)] = RI1;
/* TCK divider register */
/* number of Bitclocks between FrameSyncs -1 (value SPORT_SLEN
to 65535) */
R1 = SPORT_TFSDIV_CONFIG;
WLPO + (SPORTO_TFSDIV - SPORTO_TCR1)] = RI1;
/* TFSDIV register */
/* Transmit configuration */
/* Configuration register 2 (for instance 0x000E for 16-bit
wordlength) */
R1 = SPORT_TRANSMIT_CONF_2;

14-72 ADSP-BF59x Blackfin Processor Hardware Reference



SPORT Controller

W[PO + (SPORTO_TCR2 - SPORTO_TCR1)] = R1;

/* Configuration register 1 (for instance 0x4E12 for inter-
nally generated clk and framesync) */

R1 = SPORT_TRANSMIT_CONF_1;

WLPO] = RI;

ssync;
/* NOTE: SPORTO TX NOT enabled yet (bit 0 of TCR1 must be zero) */

Program_SPORT_RECEIVER_Registers:

/* Set PO to SPORTO Base Address */

PO.h = hi(SPORTO_RCR1);

PO.1 = 10(SPORTO_RCR1);
/* Configure Clock speeds */

R1 = SPORT_RCLK_CONFIG; /* Divider SCLK/RCLK (value 0 to
65535) */

W[PO + (SPORTO_RCLKDIV - SPORTO_RCR1)] = RI1; /* RCK divider
register */

/* number of Bitclock between FrameSyncs -1 (value SPORT_SLEN
to 65535) */

R1 = SPORT_RFSDIV_CONFIG;

WLPO + (SPORTO_RFSDIV - SPORTO_RCR1)] = RI1;

/* RFESDIV register */

/* Receive configuration */

/* Configuration register 2 (for instance 0x000E for 16-bit
wordlength) */

R1 = SPORT_RECEIVE_CONF_2;

WLPO + (SPORTO_RCR2 - SPORTO_RCR1)] = RI1;

/* Configuration register 1 (for instance 0x4410 for external
clk and framesync) */

R1 = SPORT_RECEIVE_CONF_1;

WCPOI = RI;

ssync; /* NOTE: SPORTO RX NOT enabled yet (bit 0 of RCR1 must
be zero) */

ADSP-BF59x Blackfin Processor Hardware Reference 14-73



Programming Examples

DMA Initialization Sequence

Next the DMA channels for receive (channel3 in this example) and for
transmit (channel4 in this example) are set up for auto-buffered,
one-dimensional, 32-bit transfers. Again, there are other possibilities, so
generic labels have been used, with a particular value shown in the
comments.

Note that the DMA channels can be enabled at the end of the configura-
tion since the SPORT is not enabled yet. However, if preferred, the user
can enable the DMA later, immediately before enabling the SPORT. The
only requirement is that the DMA channel be enabled before the associ-
ated peripheral is enabled to start the transfer.

Listing 14-2. DMA Initialization

Program_DMA_Controller:
/* Receiver (DMA channel 3) */

/* Set PO to DMA Base Address */

PO.1 10(DMA3_CONFIG);

PO.h hi(DMA3_CONFIG);

/* Configuration (for instance 0x108A for Autobuffer, 32-bit
wide transfers) */

RO = DMA_RECEIVE_CONF(z);

WLPO] = RO; /* configuration register */

/* rx_buf = Buffer in Data memory (divide count by four because
of 32-bit DMA transfers) */
R1 = (length(rx_buf)/4)(z);
WLPO + (DMA3_X_COUNT - DMA3_CONFIG)] = R1;
/* X_count register */
Rl = 4(z); /* 4 bytes in a 32-bit transfer */
WLPO + (DMA3_X_MODIFY - DMA3_CONFIG)] = R1;
/* X_modify register */

14-74 ADSP-BF59x Blackfin Processor Hardware Reference



SPORT Controller

/* start_address register points to memory buffer
to be filled */
R1.1 = rx_buf;
R1.h rx_buf;
[PO + (DMA3_START_ADDR - DMA3_CONFIG)] = R1;

BITSET(RO,0); /* RO still contains value of CONFIG register -
set bit 0 */
WLPO] = RO; /* enable DMA channel (SPORT not enabled yet) */

/* Transmitter (DMA channel 4) */

/* Set PO to DMA Base Address */

PO.1 1o(DMA4_CONFIG);

PO.h hi(DMA4_CONFIG);

/* Configuration (for instance 0x1088 for Autobuffer, 32-bit
wide transfers) */

RO = DMA_TRANSMIT_CONF(z);

WLPO] = RO; /* configuration register */

/* tx_buf = Buffer in Data memory (divide count by four because
of 32-bit DMA transfers) */
R1 = (length(tx_buf)/4)(z);
WLPO + (DMA4_X_COUNT - DMA4_CONFIG)] = R1;
/* X_count register */
Rl = 4(z); /* 4 bytes in a 32-bit transfer */
WLPO + (DMA4_X_MODIFY - DMA4_CONFIG)] = R1;
/* X_modify register */
/* start_address register points to memory buffer to be
transmitted from */
R1.1T = tx_buf;
Rl1.h = tx_buf;
[PO + (DMA4_START_ADDR - DMA4_CONFIG)] = RI1;

ADSP-BF59x Blackfin Processor Hardware Reference 14-75



Programming Examples

BITSET(RO,0); /* RO still contains value of CONFIG register -
set bit 0 */
WLPO] = RO; /* enable DMA channel (SPORT not enabled yet) */

Interrupt Servicing

The receive channel and the transmit channel will each generate an inter-
rupt request if so programmed. The following code fragments show the
minimum actions that must be taken. Not shown is the programming of
the core and system event controllers.

Listing 14-3. Servicing an Interrupt
RECEIVE_ISR:

[--SP] = RETI; /* nesting of interrupts */
/* clear DMA interrupt request */

PO.h = hi(DMA3_IRQ_STATUS);
PO.1 = To(DMA3_IRQ_STATUS);
R1 =1;

WLPOl = R1.T; /* write one to clear */
RETI = [SP++1;
rti;

TRANSMIT_ISR:
[--SP] = RETI; /* nesting of interrupts */
/* clear DMA interrupt request */

PO.h = hi(DMA4_IRQ_STATUS);
PO.1 = To(DMA4_IRQ_STATUS);
R1 =1;

WLPO]l = R1.1; /* write one to clear */
RETI = [SP++];
rti;

14-76 ADSP-BF59x Blackfin Processor Hardware Reference



SPORT Controller

Starting a Transfer

After the initialization procedure outlined in the previous sections, the
receiver and transmitter are enabled. The core may just wait for interrupts.

Listing 14-4. Starting a Transfer

/* Enable SportO RX and TX */
PO.h = hi(SPORTO_RCR1);
PO.1 = 10(SPORTO_RCR1);
R1 = WLPOI(Z);
BITSET(R1,0);
WLPOI = RI;
ssync; /* Enable Receiver (set bit 0) */
PO.h = hi(SPORTO_TCR1);
PO.1 = 10(SPORTO_TCR1);
R1 = WLPOI(Z);
BITSET(R1,0);
WLPOI = RI;
ssync; /* Enable Transmitter (set bit 0) */

/* dummy wait Toop (do nothing but waiting for interrupts) */
wait_forever:
jump wait_forever;

Unique Information for the ADSP-BF59x
Processor

This section describes Clock Gating Functionality and Modes of Opera-
tion that are unique to the ADSP-BF59x processors.

ADSP-BF59x Blackfin Processor Hardware Reference 14-77



Unique Information for the ADSP-BF59x Processor

Clock Gating Functionality

A proper interface to many precision A/D converters requires that digital

noise be eliminated during conversion quiet zones. These quiet zones can

be created by using a gated clock and a guard-banded convert signal wave-
form. One way to do this is through external logic that properly interfaces
the converter to a SPORT on the processor.

The ADSP-BF59x family has integrated “gated clock” hardware that elim-
inates the need for this external logic and allows the SPORT to interface
directly to the converter. This logic constitutes a four-wire interface that is
flexible enough to handle many serial A/D converters with different clock
rates, converter rates, and converter modes.

Consider an ADC whose digital interface consists of the following four
wires:

* CNV — convert signal

* SCK —data clock

* DIN — configuration data input

* SDO — conversion result read data

An ADSP-BF59x processor’s SPORT can connect to this converter in the
following manner:

e Connect CNV to SPORT TES (transmit frame sync)

e Connect SCK to SPORT TSCLK (transmit SPORT clock)
e Connect DIN to SPORT DTPRI (primary transmit data)
e Connect SD0 to SPORT DRPRI (primary receive data)

Key requirements of the converter are that the digital pins remain quiet
during critical times of the conversion process. In order to meet this
requirement SCK must be active only when necessary to read conversion

14-78 ADSP-BF59x Blackfin Processor Hardware Reference



SPORT Controller

results and write configuration data. This is what is meant by “gated
clock” in this context. In addition, no digital noise should be present in
the vicinity of the CNV rising edge. Therefore, the ADSP-BF59x processor
can delay assertion of the CNV rising edge by one clock period, to create a
guardband between the last SCK edge and the critical CNV rising edge.

Modes of Operation

There are two gated clock modes which are supported. One mode slightly
modifies internal SPORT signals to create an external gated clock and CNv
signal. The other approach uses timers TMR1 and TMRO to create arbi-
trary waveforms for the CNV/TFS signals and gated clocks. In either mode,
the clock can be programmed to idle high or low. Both SPORTO0 and
SPORTT can support gated clock operation, and the chosen modes of
operation for each SPORT are completely independent.

Gated Clock Mode 0 - SPORT Gated Clocks Without Using
TIMERSs

In this mode, the internal TFS is AND’ed (taking polarities into account)
with TSCLK to create a gated clock. The external TFS pin is just the internal
TFS extended by one clock cycle to create the CNV signal. The internal TFS
signal is looped back to RFS (receive frame sync) to allow correct receive
SPORT operation. Configuration data is transmitted on the DTPRI pin at
the same time conversion results are received on the DRPRI pin.

Gated Clock Mode 1 - SPORT Gated Clocks Using TIMERs

In this mode, the SPORT clock is used as the PWM_CLK source for both
TMRO and TMR1. TMRO is programmed to create a valid TFS waveform
and TMRI1 is programmed to create a valid CNV waveform. The TMRO
output is AND’ed (taking polarities into account) with TSCLK to created a
gated clock. The timers are simultaneously enabled via the TIMER_ENABLE
register to ensure that the edges are perfectly synchronized. As in Gated
Clock Mode 0, the TFS signal is looped back to RFS to allow correct

ADSP-BF59x Blackfin Processor Hardware Reference 14-79



Unique Information for the ADSP-BF59x Processor

receive SPORT operation. Again, configuration data is transmitted on the
DTPRI pin at the same time conversion results are received on the DRPRI

pin.

Programming Model

To enable the gated clock modes, refer to the bit definitions located in the
SPORT Clock Gating register (shown in Figure 14-43). No special
pin-multiplexing configuration is required to enable the gated clock

modes. The gated clock appears on the TSCLK pin of the respective
SPORT.

14-80 ADSP-BF59x Blackfin Processor Hardware Reference



SPORT Controller

SPORT Clock Gating Register (SPORT_GATECLK)

1514 1312 1110 9 8 7 6 5 4 3 2 1 0
|o|o|o|o|o|o|o|o|o|o|o|0|o|0|o|0|Reset:0x0000

|
SPORT1 Gated Clock Idle State SPORTO Gated Clock Enable

0 - Clock idle (inactive) state is low ? - gg?éi;‘é?g:fooc?gfkiggzars on
1 - Clock idle (inacti tate is high -
ock idle (inactive) state is hig TSGLKO pin
SPORT1 ADC Interface Mode
0 - Internal TFS1 gated clock, internally loop back TFS1 SPORTO ADC Interface Mode
to RFS1 0 - Internal TFSO gated clock, internally
External TFS1 is tied to A/D CNV signal loop back TFSO to RFSO
1 - TMRO gated clock, loop back TMRO output to RFS1 External TFSO is tied to A/D CNV
signal
SPORT1 Gated Clock Enable 1 - TMRO gated clock, loop back TMRO
0 - Continuous SPORT1 clock output to RESQ
1 - Gated SPORT1 clock appears on TSCLK1 pin TMR1 C?UtPUt is tied to A/D CNV
signa

—— SPORTO Gated Clock Idle State
0 - Clock idle (inactive) state is low
1 - Clock idle (inactive) state is high

Figure 14-43. SPORT Clock Gating Register

Figure 14-44 shows an example of the ADSP-BF59x to AD71090 inter-
face with a 25 MHz data clock and conversion rate of approximately
390 kSPS. In this example, the SPORT is connected in ADC Interface
Mode 0.

In Figure 14-44, note the following:

* 5DO read data is driven by the CNV falling edge (MSB) or the SCK
falling edges.

* DIN configuration data is driven on TSCLK falling edges and sampled
on SCK rising edges.

* Internal RFS delayed internally by one-half clock period for proper
SPORT timing.

* CNV rising edge is delayed by two clock cycles relative to the inter-
nal TFS.

* SDO cannot be three-stated (needs a pull-up resistor).

ADSP-BF59x Blackfin Processor Hardware Reference 14-81



Unique Information for the ADSP-BF59x Processor

Also in Figure 14-44, note the following for SPORT configuration (for
25 MHz TSCLK/RSCLK):

Internal

TFSDIV = 64 cycles

SLEN = 16 bits

TCKFE = 1 (falling edge drive)

RCKFE = 0 (sample SDO on falling edge)

LATFS = 1 (late frame sync)

LTFS = 1 (active low TFS)

ADSP-BF59x
SPORT
Interface

TFS
DTPRI

DRPRI
GATED_TSCLK

CNV

Yy

DIN

SDO

SCK

Y

AD71090
ADC
Interface

ANNANNNANNANNANNNANANNNNT

TSCLK/RSCLK
Internal TFS \ /
Internal RFS \ /
CNV tca (= 680 ns) —
SCK ANNNNNANANNNNNNN
DIN /C13 C12\C11/C10\CQ/CB\C7/CG\CS/C4\CS/02\01 Co

sD0 —/D15\p14/D13\p12/b11\p10/D9\ D8 /D7\ D6 /D5 D4 /D3\ D2 /D1\DO ———

Figure 14-44. ADSP-BF59x to AD71090 Interface Timing (@ 25 MHz)

14-82

ADSP-BF59x Blackfin Processor Hardware Reference



15 PARALLEL PERIPHERAL
INTERFACE

This chapter describes the parallel peripheral interface (PPI). Following an
overview and a list of key features are a description of operation and func-
tional modes of operation. The chapter concludes with a programming
model, consolidated register definitions, and programming examples.

Specific Information for the ADSP-BF59x

For details regarding the number of PPIs for the ADSP-BF59x product,
please refer to the ADSP-BF592 Blackfin Processor Data Sheet.

For PPI DMA channel assignments, refer to Table 5-7 on page 5-107 in
Chapter 5, “Direct Memory Access”.

For PPI interrupt vector assignments, refer to Table 4-3 on page 4-17 in
Chapter 4, “System Interrupts”.

To determine how each of the PPIs is multiplexed with other functional
pins, refer to Table 7-1 on page 7-3 through Table 7-2 on page 7-4 in
Chapter 7, “General-Purpose Ports”.

For a list of MMR addresses for each PPI, refer to Chapter A, “System
MMR Assignments”.

PPI behavior for the ADSP-BF59x that differs from the general informa-
tion in this chapter can be found in the section “Unique Information for
the ADSP-BF59x Processor” on page 15-38

ADSP-BF59x Blackfin Processor Hardware Reference 15-1



Overview

Overview

The PPI is a half-duplex, bidirectional port accommodating up to 16 bits
of data. It has a dedicated clock pin and three multiplexed frame sync
pins. The highest system throughput is achieved with 8-bit data, since two
8-bit data samples can be packed as a single 16-bit word. In such a case,
the earlier sample is placed in the 8 least significant bits (LSBs).

Features

The PPI includes these features:

Half duplex, bidirectional parallel port
Supports up to 16 bits of data
Programmable clock and frame sync polarities

ITU-R 656 support

Interrupt generation on overflow and underrun

Typical peripheral devices that can be interfaced to the PPI port:

A/D converters
D/A converters
LCD panels

CMOS sensors
Video encoders

Video decoders

15-2

ADSP-BF59x Blackfin Processor Hardware Reference



Parallel Peripheral Interface

Interface Overview

Figure 15-1 shows a block diagram of the PPI.

PPI_CONTROL
PPI_CLK
-
<::> PPI_COUNT
PPI_STATUS |<
PAB
> DATA BUS
PPIDELAY |
DMA
CONTROLLER PPI_FRAME

t
A 1 AE

DAB ‘
16BITS [ ' ' Fs1
N PACK/ Fs2
- - -t -
<:> 16;_|I)FEOEP UNPACK GATE SYNC > —

Yvy

A

!

Figure 15-1. PPI Block Diagram

The PPI_CLK pin accepts an external clock input. It cannot source a clock
internally.

When the PPI_CLK is not free-running, there may be additional
latency cycles before data gets received or transmitted. In RX and
TX modes, there may be at least 2 cycles latency before valid data is
received or transmitted.

The PPI_CLK not only supplies the PPI module itself, but it also can clock
one or more GP Timers to work synchronously with the PPI. Depending
on PPI operation mode, the PPI_CLK can either equal or invert the TMRCLK
input. For more information, see Chapter 8, “General-Purpose Timers”.

ADSP-BF59x Blackfin Processor Hardware Reference 15-3



Description of Operation

Description of Operation
Table 15-1 shows all the possible modes of operation for the PPI.

Table 15-1. PPI Possible Operating Modes

PPI Mode # of Syncs PORT_DIR |PORT_CFG|XFR_TYPE[POLC|POLS|FLD_ SEL
RX mode, 0 frame |0 0 11 11 Oorl|Oor |0
syncs, external trig- 1

ger

RX mode, 0 frame |0 0 11 11 Oorl|Oor |1
syncs, internal trig- 1

ger

RX mode, 1 exter- |1 0 00 11 Oorl|0or |0
nal frame sync 1

RX mode, 2 or 3 3 0 10 11 Oorl|0or |0
external frame syncs 1

RX mode, 2 or 3 3 0 01 11 Oorl|0or |0
internal frame syncs 1

RX mode, ITU-R |embed- [0 00 00 Oorl|0 Oorl
656, active field ded

only

RX mode, ITU-R |embed- |0 00 10 Oorl|0 0
656, vertical blank- | ded

ing only

RX mode, ITU-R |embed- |0 00 01 Oorl|0 0
6506, entire field ded

TX mode, 0 frame |0 1 00 00 Oor1{0or |0
syncs 1

TX mode, 1 inter- |1 1 00 11 Oorl|0or |0
nal or external 1

frame sync

TX mode, 2 exter- |2 1 01 11 Oorl|0or |0
nal frame syncs 1

15-4 ADSP-BF59x Blackfin Processor Hardware Reference




Parallel Peripheral Interface

Table 15-1. PPI Possible Operating Modes (Continued)

PPI Mode # of Syncs PORT_DIR |PORT_CFG|XFR_TYPE[POLC|POLS|FLD_ SEL
TX mode, 2 or 3 3 1 01 11 Oorl|0or |0
internal frame 1

syncs, FS3 syncd to
FS1 assertion

TX mode, 2 or 3 3 1 11 11 Oorl|0or [0
internal frame 1
syncs, FS3 syncd to
FS2 assertion

Functional Description

The following sections describe the function of the PPI.

ITU-R 656 Modes

The PPI supports three input modes for ITU-R 656-framed data. These
modes are described in this section. Although the PPI does not explicitly

support an ITU-R 656 output mode, recommendations for using the PPI
for this situation are provided as well.

ITU-R 656 Background

According to the I'TU-R 656 recommendation (formerly known as
CCIR-6506), a digital video stream has the characteristics shown in
Figure 15-2, and Figure 15-3 for 525/60 (NTSC) and 625/50 (PAL) sys-

tems. The processor supports only the bit-parallel mode of ITU-R 656.
Both 8- and 10-bit video element widths are supported.

In this mode, the horizontal (M), vertical (V), and field (F) signals are sent
as an embedded part of the video datastream in a series of bytes that form
a control word. The start of active video (SAV) and end of active video

(EAV) signals indicate the beginning and end of data elements to read in
on each line. SAV occurs on a 1-to-0 transition of H, and EAV begins on a

ADSP-BF59x Blackfin Processor Hardware Reference 15-5



Functional Description

0-to-1 transition of H. An entire field of video is comprised of active video
+ horizontal blanking (the space between an EAV and SAV code) and ver-
tical blanking (the space where V = 1). A field of video commences on a
transition of the F bit. The “odd field” is denoted by a value of F = 0,
whereas F = 1 denotes an even field. Progressive video makes no distinc-
tion between field 1 and field 2, whereas interlaced video requires each
field to be handled uniquely, because alternate rows of each field combine
to create the actual video image.

START OF ACTIVE VIDEO l START OF

| END OF ACTIVE VIDEO |
| | | NEXT LINE
| | |
I EAV SAV I |
I CODE HORIZONTAL cope | I
| He1) BLANKING H=0) | |
J)
Flofo|x[8]|1|8]1 gl 1]rlolo]x{c]v[c]y]c]¥[c|¥] © cly \[;I'SI'ETC’:L
Flof[o]Y[o]|ofo0]O o[o|F|o|o|Y|B R B R 2 R F STREAM

4 | 268 (280 FOR PAL) 1440

| <
|-
I

A
\/

1716 (1728 FOR PAL)

\

Figure 15-2. ITU-R 656 8-Bit Parallel Data Stream for NTSC (PAL)
Systems

15-6 ADSP-BF59x Blackfin Processor Hardware Reference



LINE #

VERTICAL
BLANKING

1

20

FIELD 1
ACTIVE VIDEO

264

VERTICAL
BLANKING

HORIZONTAL
BLANKING

FIELD 2
ACTIVE VIDEO

283

525

EAV  SAV

VERTICAL
BLANKING

FIELD 1
ACTIVE VIDEO

23

VERTICAL
BLANKING

BLANKING

311

336

HORIZONTAL

FIELD 2
ACTIVE VIDEO

VERTICAL
BLANKING

624

625

.

EAV  SAV

— LINE 4

— LINE 266

— LINE 3

—LINE 1

—LINE 313

— LINE 625

Parallel Peripheral Interface

FIELD 1

FIELD 2

FIELD 1

FIELD 2

LINE
NUMBER

(EAV)

(SAV)

1-3,
266-282

4-19,
264-265

20-263

283-525

LINE
NUMBER

1-22,
311-312

23-310

313-335,
624-625

336-623

Figure 15-3. Typical Video Frame Partitioning for NTSC/PAL Systems for

ITU-R BT.656-4

The SAV and EAV codes are shown in more detail in Table 15-2. Note
there is a defined preamble of three bytes (0xFF, 0x00, 0x00), followed by
the XY status word, which, aside from the F (field), v (vertical blanking)
and H (horizontal blanking) bits, contains four protection bits for sin-
gle-bit error detection and correction. Note F and V are only allowed to
change as part of EAV sequences (that is, transition from H =0 to H = 1).
The bit definitions are as follows:

e F=0forfield 1

e =1 forfield 2

ADSP-BF59x Blackfin Processor Hardware Reference

15-7



Functional Description

* V=1 during vertical blanking

* V=0 when not in vertical blanking
* H=0atSAV

* H=1at EAV

e P3=VXORH

e pP2=FXORH

e P1=FXORV

e pP0=FXORVXORH

In many applications, video streams other than the standard NTSC/PAL
formats (for example, CIF, QCIF) can be employed. Because of this, the
processor interface is flexible enough to accommodate different row and
field lengths. In general, as long as the incoming video has the proper
EAV/SAV codes, the PPI can read it in. In other words, a CIF image
could be formatted to be “656-compliant,” where EAV and SAV values
define the range of the image for each line, and the V and F codes can be
used to delimit fields and frames.

Table 15-2. Control Byte Sequences for 8-bit and 10-bit ITU-R 656
Video

8-bit Data 10-bit Data
D9 D8 D7 D6 D5 D4 D3 D2 D1 DO
(MSB)
Preamble 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
Control Byte 1 F \% H P3 P2 P1 PO 0 0

15-8 ADSP-BF59x Blackfin Processor Hardware Reference



Parallel Peripheral Interface

ITU-R 656 Input Modes

Figure 15-4 shows a general illustration of data movement in the ITU-R
656 input modes. In the figure, the clock CLK is either provided by the
video source or supplied externally by the system.

ITU-R 656 INPUT MODE PRI
c OM:f\%BLE 8- OR 10-BIT DATA WITH PPIx
Praolti EMBEDDED CONTROL
CLK PPI_CLK

Figure 15-4. ITU-R 656 Input Modes

There are three submodes supported for ITU-R 656 inputs: entire field,
active video only, and vertical blanking interval only. Figure 15-5 shows
these three submodes.

BLANKING BLANKING BLANKING

FIELD 1 FIELD 1 FIELD 1

ACTIVE VIDEO ACTIVE VIDEO ACTIVE VIDEO
BLANKING BLANKING BLANKING

FIELD 2 FIELD 2 FIELD 2

ACTIVE VIDEO ACTIVE VIDEO ACTIVE VIDEO
BLANKING BLANKING BLANKING

ENTIRE FIELD SENT ACTIVE VIDEO ONLY SENT BLANKING ONLY SENT

Figure 15-5. ITU-R 656 Input Submodes

Entire Field

In this mode, the entire incoming bitstream is read in through the PPI.
This includes active video as well as control byte sequences and ancillary
data that may be embedded in horizontal and vertical blanking intervals.
Data transfer starts immediately after synchronization to field 1 occurs,

ADSP-BF59x Blackfin Processor Hardware Reference 15-9



Functional Description

but does not include the first EAV code that contains the F = 0
assignment.

Note the first line transferred in after enabling the PPI will be miss-
ing its first 4-byte preamble. However, subsequent lines and frames
should have all control codes intact.

One side benefit of this mode is that it enables a “loopback” feature
through which a frame or two of data can be read in through the PPI and
subsequently output to a compatible video display device. Of course, this
requires multiplexing on the PPI pins, but it enables a convenient way to
verify that 656 data can be read into and written out from the PPIL.

Active Video Only

This mode is used when only the active video portion of a field is of inter-
est, and not any of the blanking intervals. The PPI ignores (does not read
in) all data between EAV and SAV, as well as all data present when v = 1.
In this mode, the control byte sequences are not stored to memory; they
are filtered out by the PPI. After synchronizing to the start of field 1, the
PPI ignores incoming samples until it sees an SAV.

In this mode, the user specifies the number of total (active plus ver-
tical blanking) lines per frame in the PPI_FRAME MMR.

Vertical Blanking Interval (VBI) only

In this mode, data transfer is only active while V = 1 is in the control byte
sequence. This indicates that the video source is in the midst of the verti-
cal blanking interval (VBI), which is sometimes used for ancillary data
transmission. The ITU-R 656 recommendation specifies the format for
these ancillary data packets, but the PPI is not equipped to decode the
packets themselves. This task must be handled in software. Horizontal
blanking data is logged where it coincides with the rows of the VBI.
Control byte sequence information is always logged. The user specifies the
number of total lines (active plus vertical blanking) per frame in the

PPI_FRAME MMR.

15-10 ADSP-BF59x Blackfin Processor Hardware Reference



Parallel Peripheral Interface

Note the VBI is split into two regions within each field. From the PPI’s
standpoint, it considers these two separate regions as one contiguous
space. However, keep in mind that frame synchronization begins at the
start of field 1, which doesn’t necessarily correspond to the start of vertical
blanking. For instance, in 525/60 systems, the start of field 1 (F = 0) cor-
responds to line 4 of the VBI.

ITU-R 656 Output Mode

The PPI does not explicitly provide functionality for framing an ITU-R
656 output stream with proper preambles and blanking intervals. How-
ever, with the TX mode with 0 frame syncs, this process can be supported
manually. Essentially, this mode provides a streaming operation from
memory out through the PPI. Data and control codes can be set up in
memory prior to sending out the video stream. With the 2D DMA
engine, this could be performed in a number of ways. For instance, one
line of blanking (H + V) could be stored in a buffer and sent out N times by
the DMA controller when appropriate, before proceeding to DMA active
video. Alternatively, one entire field (with control codes and blanking) can
be set up statically in a buffer while the DMA engine transfers only the
active video region into the buffer, on a frame-by-frame basis.

Frame Synchronization in ITU-R 656 Modes

Synchronization in ITU-R 656 modes always occurs at the falling edge
of F, the field indicator. This corresponds to the start of field 1. Conse-
quently, up to two fields might be ignored (for example, if field 1 just
started before the PPI-to-camera channel was established) before data is
received into the PPI.

Because all H and V signaling is embedded in the datastream in ITU-R 656
modes, the PPI_COUNT register is not necessary. However, the PPI_FRAME
register is used in order to check for synchronization errors. The user pro-
grams this MMR for the number of lines expected in each frame of video,
and the PPI keeps track of the number of EAV-to-SAV transitions that

ADSP-BF59x Blackfin Processor Hardware Reference 15-11



Functional Description

occur from the start of a frame until it decodes the end-of-frame condition
(transition from F = 1 to F = 0). At this time, the actual number of lines
processed is compared against the value in PPI_FRAME. If there is a mis-
match, the FT_ERR bit in the PPI_STATUS register is asserted. For instance,
if an SAV transition is missed, the current field will only have NUM_ROUWS -
1 rows, but resynchronization will reoccur at the start of the next frame.

Upon completing reception of an entire field, the field status bit is toggled
in the PPI_STATUS register. This way, an interrupt service routine (ISR)
can discern which field was just read in.

General-Purpose PPl Modes

The general-purpose PPI modes are intended to suit a wide variety of data
capture and transmission applications. Table 15-3 summarizes these
modes. If a particular mode shows a given PPI_FSx frame sync not being
used, this implies that the pin is available for its alternate, multiplexed
functions.

Table 15-3. General-Purpose PPI Modes

GP PPI Mode PPI_FS1 PPI_FS2 PPI_FS3 Data
Direction Direction Direction Direction

RX mode, 0 frame syncs, external Input Not used Not used Input

trigger

RX mode, 0 frame syncs, internal Not used Not used Not used Input

trigger

RX mode, 1 external frame sync Input Not used Not used Input

RX mode, 2 or 3 external frame syncs | Input Input Input (if Input
used)

RX mode, 2 or 3 internal frame syncs | Output Output Output (if | Input
used)

TX mode, 0 frame syncs Not used Not used Not used Output

TX mode, 1 external frame sync Input Not used Not used Output

15-12 ADSP-BF59x Blackfin Processor Hardware Reference



Parallel Peripheral Interface

Table 15-3. General-Purpose PPI Modes (Continued)

GP PPI Mode PPI_FS1 PPI_FS2 PPI_FS3 Data
Direction Direction Direction Direction
TX mode, 2 external frame syncs Input Input Not used Output
TX mode, 1 internal frame sync Output Not used Not used Output
TX mode, 2 or 3 internal frame syncs | Output Output Output (if | Output
used)

Figure 15-6 illustrates the general flow of the general purpose PPI modes.
The top of the diagram shows an example of RX mode with one external
frame sync. After the PPI receives the hardware frame sync pulse
(PPI_FS1), it delays for the duration of the PPI_CLK cycles programmed
into PPI_DELAY. The DMA controller then transfers in the number of sam-
ples specified by PPI_COUNT. Every sample that arrives after this, but before
the next PPI_FS1 frame sync arrives, is ignored and not transferred onto

the DMA bus.

If the next PPI_FS1 frame sync arrives before the specified
PPI_COUNT samples have been read in, the sample counter reinitial-
izes to 0 and starts to count up to PPI_COUNT again. This situation
can cause the DMA channel configuration to lose synchronization
with the PPI transfer process.

The bottom of Figure 15-6 shows an example of TX mode, one internal
frame sync. After PPI_FS1 is asserted, there is a latency of one PPI_CLK
cycle, and then there is a delay for the number of PPI_CLK cycles pro-
grammed into PPI_DELAY. Next, the DMA controller transfers out the

ADSP-BF59x Blackfin Processor Hardware Reference 15-13



Functional Description

number of samples specified by PPI_COUNT. No further DMA takes place
until the next PPI_FS1 sync and programmed delay occur.

If the next PPI_FS1 frame sync arrives before the specified
PPI_COUNT samples have been transferred out, the sync has priority
and starts a new line transfer sequence. This situation can cause the
DMA channel configuration to lose synchronization with the PPI
transfer process.

FRAME PROG PPI_COUNT SAMPLES
SYNC DELAY IGNORED
(PPI_FS1) (PPI_DELAY)
I
_Ir
INPUT
_r
FRAME 1 CYCLE PROG PPI_COUNT
SYNC DELAY DELAY
(PPI_FS1) (PPI_DELAY)
_Ir _ E—
_r - -
OUTPUT
_r —

Figure 15-6. General Flow for GP Modes (Assumes Positive Assertion of
PPI_FS1)

Data Input (RX) Modes

The PPI supports several modes for data input. These modes differ chiefly
by the way the data is framed. Refer to Table 15-1 on page 15-4 for infor-
mation on how to configure the PPI for each mode.

15-14 ADSP-BF59x Blackfin Processor Hardware Reference



Parallel Peripheral Interface

No Frame Syncs

These modes cover the set of applications where periodic frame syncs are
not generated to frame the incoming data. There are two options for start-
ing the data transfer, both configured by the PPI_CONTROL register.

* External trigger: An external source sends a single frame sync (tied
to PPI_FS1) at the start of the transaction, when FLD_SEL = 0 and
PORT_CFG = b#11.

* Internal trigger: Software initiates the process by setting
PORT_EN = 1 with FLD_SEL = 1 and PORT_CFG = b#11.

All subsequent data manipulation is handled via DMA. For example, an
arrangement could be set up between alternating 1K byte memory buffers.
When one fills up, DMA continues with the second buffer, at the same
time that another DMA operation is clearing the first memory buffer for
reuse.

Due to clock domain synchronization in RX modes with no frame
syncs, there may be a delay of at least two PPI_CLK cycles between
when the mode is enabled and when valid data is received. There-
fore, detection of the start of valid data should be managed by
software.

ADSP-BF59x Blackfin Processor Hardware Reference 15-15



Functional Description

1, 2, or 3 External Frame Syncs

The frame syncs are level-sensitive signals. The 1-sync mode is intended
for analog-to-digital converter (ADC) applications. The top part of
Figure 15-7 shows a typical illustration of the system setup for this mode.

A/D
CONVERTER PPI
FRAMESYNC PPI_FS1

DATA 8-16 BITS DATA > |PPIx
CLK PPI_CLK

VIDEO

SOURCE PPI
HSYNC PPI_FS1
VSYNC PPI_FS2
FIELD PPI_FS3

DATA | |8-16 BITS DATAY | PPIx
CLK PPI_CLK

Figure 15-7. RX Mode, External Frame Syncs

The 3-sync mode shown at the bottom of Figure 15-7 supports video
applications that use hardware signaling (HSYNC, VSYNC, FIELD) in accor-
dance with the ITU-R 601 recommendation. The mapping for the frame
syncs in this mode is PPI_FS1 = HSYNC, PPI_FS2 = VSYNC, PPI_FS3 = FIELD.
Please refer to “Frame Synchronization in GP Modes” on page 15-20 for
more information about frame syncs in this mode.

A 2-sync mode is supported by not enabling the PPI_FS3 pin. See the
Product Specific Implementation section for information on how this is
achieved on this processor.

2 or 3 Internal Frame Syncs

This mode can be useful for interfacing to video sources that can be slaved
to a master processor. In other words, the processor controls when to read
from the video source by asserting PPI_FS1 and PPI_FS2, and then reading

15-16 ADSP-BF59x Blackfin Processor Hardware Reference



Parallel Peripheral Interface

data into the PPI. The PPI_FS3 frame sync provides an indication of
which field is currently being transferred, but since it is an output, it can
simply be left floating if not used. Figure 15-8 shows a sample application
for this mode.

IMAGE
PPI SOURCE

PPI_FS1 HSYNC
PPI_FS2 VSYNC

PPIx 8-16 BITS DATA | | DATA

PPI_CLK CLK

] @ 7

Figure 15-8. RX Mode, Internal Frame Syncs

Data Output (TX) Modes

The PPI supports several modes for data output. These modes differ
chiefly by the way the data is framed. Refer to Table 15-1 on page 15-4
for information on how to configure the PPI for each mode.

No Frame Syncs

In this mode, data blocks specified by the DMA controller are sent out
through the PPI with no framing. That is, once the DMA channel is con-
figured and enabled, and the PPI is configured and enabled, data transfers

ADSP-BF59x Blackfin Processor Hardware Reference 15-17



Functional Description

will take place immediately, synchronized to PPI_CLK. See Figure 15-9 for
an illustration of this mode.

In this mode, there is a delay of up to 16 SCLK cycles (for > 8-bit
data) or 32 SCLK cycles (for 8-bit data) between enabling the PPI
and transmission of valid data. Furthermore, DMA must be config-
ured to transmit at least 16 samples (for > 8-bit data) or 32 samples

(for 8-bit data).
PPIx RECEIVER
PPI_CLK —| CLK

Figure 15-9. TX Mode, 0 Frame Syncs

1 or 2 External Frame Syncs

In these modes, an external receiver can frame data sent from the PPI.
Both 1-sync and 2-sync modes are supported. The top diagram in

15-18 ADSP-BF59x Blackfin Processor Hardware Reference



Parallel Peripheral Interface

Figure 15-10 shows the 1-sync case, while the bottom diagram illustrates
the 2-sync mode.

There is a mandatory delay of 1.5 PPI_CLK cycles, plus the value
programmed in PPI_DELAY, between assertion of the external frame
sync(s) and the transfer of valid data out through the PPI.

DATA

RECEIVER PPI
FRAMESYNC ———— | PPI_FS1
PPIx
DATA 8-16 BITS DATA
CLK PPI_CLK
DATA
RECEIVER PPI
FRAMESYNC1 PPI_Fs1
FRAMESYNC2 PPI_FS2
DATA 8-16 BITS DATA | | PPIx
CLK PPI_CLK

Figure 15-10. TX Mode, 1 or 2 External Frame Syncs

1, 2, or 3 Internal Frame Syncs

The 1-sync mode is intended for interfacing to digital-to-analog convert-
ers (DACs) with a single frame sync. The top part of Figure 15-11 shows
an example of this type of connection.

The 3-sync mode is useful for connecting to video and graphics displays,
as shown in the bottom part of Figure 15-11. A 2-sync mode is implicitly
supported by leaving PPI_FS3 unconnected in this case.

ADSP-BF59x Blackfin Processor Hardware Reference 15-19



Functional Description

D/A

PPI CONVERTER
PPI_FS1 FRAMESYNC
1 FRAME PPIx 8-16 BITS DATA DATA
SYNC LK
PPI_CLK @
PPI VIDEO DISPLAY
PPI_FS1 HSYNC
PPI_FS2 VSYNC
3 FRAME PPI_FS3 FIELD
SYNCS
PPIx 8-16 BITS DATA CLK

PPI_CLK |-

@1

Figure 15-11. PPI GP Output

Frame Synchronization in GP Modes

Frame synchronization in general purpose modes operates differently in
modes with internal frame syncs than in modes with external frame syncs.

Modes With Internal Frame Syncs

In modes with internal frame syncs, PPI_FS1 and PPI_FS2 link directly to
the pulsewidth modulation (PWM) circuits of general purpose timers. See
the Chapter 8, “General-Purpose Timers” for information on how this is
achieved on this processor. This allows for arbitrary pulse widths and peri-
ods to be programmed for these signals using the existing TIMERx registers.
This capability accommodates a wide range of timing needs. Note these
PWM circuits are clocked by PPI_CLK, not by SCLK (as during conven-
tional timer PWM operation). If PPI_FS2 is not used in the configured
PPI mode, its corresponding timer operates as it normally would, unre-
stricted in functionality. The state of PPI_FS3 depends completely on the

15-20 ADSP-BF59x Blackfin Processor Hardware Reference



Parallel Peripheral Interface

state of PPI_FS1 and/or PPI_FS2, so PPI_FS3 has no inherent
programmability.

@ To program PPI_FS1 and/or PPI_FS2 for operation in an internal
frame sync mode:

1. Configure and enable DMA for the PPI. See “DMA Operation” on
page 15-23.

2. Configure the width and period for each frame sync signal via the
appropriate TIMER_WIDTH and TIMER_PERIOD registers.

3. Set up the appropriate TIMER_CONFIG register(s) for PWM_0UT mode.
This includes setting CLK_SEL to 1 and TIN_SEL to 1 for each timer
involved.

4. Write to PPI_CONTROL to configure and enable the PPI.
5. Write to TIMER_ENABLE to enable the appropriate timer(s).

@ It is important to guarantee proper frame sync polarity between the

PPI and timer peripherals. To do this, make sure that if
PPI_CONTROL[15:14] = b#10 or b#11, the PULSE_HI bit is cleared in
the appropriate TIMER_CONFIG register(s). Likewise, if
PPI_CONTROL[15:14] = b#00 or b#01, the PULSE_HI bit should be
set in the appropriate TIMER_CONFIG register(s).

To switch to another PPI mode not involving internal frame syncs:
1. Disable the PPI (using PPI_CONTROL).

2. Disable the appropriate timer(s) (using TIMER_DISABLE).

Modes With External Frame Syncs

In RX modes with external frame syncs, the PPI_FS1 and PPI_FS? pins
become edge-sensitive inputs. In such modes the timers associated with
the PPI_FS1 and PPI_FS2 pins can still be used for a purpose not involving
the actual pin. However, timer access to a TMRx pin is disabled when the

ADSP-BF59x Blackfin Processor Hardware Reference 15-21



Programming Model

PPI is using that pin for a PPI_FSx frame sync input function. For modes
that do not require PPI_FS?2, the associated timer is not restricted in func-
tionality and can be operated as if the PPI were not being used (that is, the
TMR1 pin becomes available for timer use as well). For more information
on configuring and using the timers, please refer to the General-Purpose
Timers chapter.

In RX mode with 3 external frame syncs, the start of frame detec-
tion occurs where a PPI_FS2 assertion is followed by an assertion of
PPI_FS1 while PPI_FS3 is low. This happens at the start of field 1.
Note that PPI_FS3 only needs to be low when PPI_FS1 is asserted,
not when PPI_FS2 asserts. Also, PPI_FS3 is only used to synchro-
nize to the start of the very first frame after the PPI is enabled. It is
subsequently ignored.

In TX modes with external frame syncs, the PPI_FS1 and PPI_FS2 pins are
treated as edge-sensitive inputs. In this mode, it is not necessary to config-
ure the timer(s) associated with the frame sync(s) as input(s), or to enable
them via the TIMER_ENABLE register. Additionally, the actual timers them-
selves are available for use, even though the timer pin(s) are taken over by
the PPI. In this case, there is no requirement that the timebase (configured
by TIN_SEL in TIMERX_CONFIG) be PPI_CLK.

However, if using a timer whose pin is connected to an external frame
sync, be sure to disable the pin via the 0UT_DIS bit in TIMER_CONFIG. Then
the timer itself can be configured and enabled for non-PPI use without
affecting PPI operation in this mode. For more information, see the Gen-
eral-Purpose Timers chapter.

Programming Model

The following sections describe the PPI programming model.

15-22 ADSP-BF59x Blackfin Processor Hardware Reference



Parallel Peripheral Interface

DMA Operation

The PPI must be used with the processor’s DMA engine. This section dis-
cusses how the two interact. For additional information about the DMA
engine, including explanations of DMA registers and DMA operations,
please refer to the Direct Memory Access chapter.

The PPI DMA channel can be configured for either transmit or receive
operation, and it has a maximum throughput of (PPI_CLK) x

(16 bits/transfer). In modes where data lengths are greater than eight bits,
only one element can be clocked in per PPI_CLK cycle, and this results in
reduced bandwidth (since no packing is possible). The highest throughput
is achieved with 8-bit data and PACK_EN = 1 (packing mode enabled). Note
for 16-bit packing mode, there must be an even number of data elements.

Configuring the PPI’s DMA channel is a necessary step toward using the
PPI interface. It is the DMA engine that generates interrupts upon com-
pletion of a row, frame, or partial-frame transfer. It is also the DMA
engine that coordinates the origination or destination point for the data
that is transferred through the PP

The processor’s 2D DMA capability allows the processor to be interrupted
at the end of a line or after a frame of video has been transferred, as well as
if a DMA error occurs. In fact, the specification of the DMA_XCOUNT and
DMA_YCOUNT MMRs allows for flexible data interrupt points. For example,
assume the DMA registers XMODIFY = YMODIFY = 1. Then, if a data frame

ADSP-BF59x Blackfin Processor Hardware Reference 15-23



Programming Model

contains 320 x 240 bytes (240 rows of 320 bytes each), these conditions

hold:

Setting XCOUNT = 320, YCOUNT = 240, and DI_SEL = 1 (the DI_SEL
bit is located in DMA_CONFIG) interrupts on every row transferred,
for the entire frame.

Setting XCOUNT = 320, YCOUNT = 240, and DI_SEL = 0 interrupts
only on the completion of the frame (when 240 rows of 320 bytes
have been transferred).

Setting XCOUNT = 38,400 (320 x 120), YCOUNT = 2, and DI_SEL = 1
causes an interrupt when half of the frame has been transferred,
and again when the whole frame has been transferred.

The general procedure for setting up DMA operation with the PPI
follows.

1.

AT

Configure DMA registers as appropriate for desired DMA operat-
ing mode.

Enable the DMA channel for operation.
Configure appropriate PPI registers.
Enable the PPI by writing a 1 to bit 0 in PPI_CONTROL.

If internally generated frame syncs are used, write to the
TIMER_ENABLE register to enable the timers linked to the PPI frame
syncs.

Figure 15-12 shows a flow diagram detailing the steps on how to config-
ure the PPI for the various modes of operation.

15-24

ADSP-BF59x Blackfin Processor Hardware Reference



Parallel Peripheral Interface

Y
PROGRAM ”
Y_COUNT AND 2D DMA?
Y_MODIFY

A

Enable necessary PPI pins through
PORT_MUX and PORT_FER registers

PROGRAM
PPI_DELAY
Y
TniGoERT P LNKEDWITHFS
TRIGGER?
N N

PROGRAM -
PPI_FRAME
PROGRAM -
PPI_COUNT

i:

WRITE DMA_CONFIG TO ENABLE DMA

{

WRITE PPI_CONTROL TO ENABLE PPI

WRITE TIMER_ENABLE TO ENABLE TIMERS

Figure 15-12. PPI Flow Diagram

ADSP-BF59x Blackfin Processor Hardware Reference 15-25



PPI Registers

PPl Registers

The PPI has five memory-mapped registers (MMRs) that regulate its oper-
ation. These registers are the PPI control register (PPI_CONTROL), the PPI
status register (PPI_STATUS), the delay count register (PPI_DELAY), the
transfer count register (PPI_COUNT), and the lines per frame register
(PPI_FRAME).

Descriptions and bit diagrams for each of these MMRs are provided in the
following sections.

PPl Control Register (PPI_CONTROL)

The PPI_CONTROL register configures the PPI for operating mode, control
signal polarities, and data width of the port. See Figure 15-13 for a bit dia-
gram of this MMR.

The POLC and POLS bits allow for selective signal inversion of the PPI_CLK
and PPI_FS1/PPI_FS2 signals, respectively. This provides a mechanism to
connect to data sources and receivers with a wide array of control signal
polarities. Often, the remote data source/receiver also offers configurable
signal polarities, so the POLC and POLS bits simply add increased flexibility.

The DLEN[2:0] field is programmed to specify the width of the PPI port in
any mode. Note any width from 8 to 16 bits is supported, with the excep-
tion of a 9-bit port width. Any pins unused by the PPI as a result of the
DLEN setting are free for use in their other functions.

In ITU-R 656 modes, the DLEN field should not be configured for
anything greater than a 10-bit port width. If it is, the PPI will
reserve extra pins, making them unusable by other peripherals.

The SKIP_EN bit, when set, enables the selective skipping of data elements
being read in through the PPI. By ignoring data elements, the PPI is able
to conserve DMA bandwidth.

15-26 ADSP-BF59x Blackfin Processor Hardware Reference



Parallel Peripheral Interface

PPI Control Register (PPI_CONTROL)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Io |0 |o |o Io Io Io Iolo lo Io lolo Io Io lol Reset = 0x0000

POLS

0 - PPI_FS1 and
PPI_FS2 are treated
as rising edge
asserted

1-PPI_FS1 and
PPI_FS2 are treated
as falling edge
asserted

POLC
0 - PPl samples data on rising
edge and drives data on
falling edge of PPI_CLK
1 - PPl samples data on falling
edge and drives data on
rising edge of PPI_CLK

DLEN[2:0] (Data Length)

000 - 8 bits

001 - 10 bits

010 - 11 bits

011 - 12 bits

100 - 13 bits

101 - 14 bits

110 - 15 bits

111 - 16 bits

SKIP_EO (Skip Even Odd)

In ITU-R 656 and GP Input modes:

0 - Skip odd-numbered elements

1 - Skip even-numbered elements

SKIP_EN (Skip Enable)

In ITU-R 656 and GP Input modes:

0 - Skipping disabled

1 - Skipping enabled

PACK_EN (Packing Mode Enable)

0 - Disabled

1 - Output mode, unpacking enabled;
Input mode, packing enabled

FLD_SEL (Active Field Select)

In ITU-R 656 modes, when XFR_TYPE = 00:

0 - Field 1

1 - Fields 1 and 2

In RX mode with external frame sync, when PORT_CFG = 11:

0 - External trigger

1 - Internal trigger

Figure 15-13. PPI Control Register

[ I | L
ORT_EN (Enable)

0 - PPI disabled
1 - PPl enabled
ORT_DIR (Direction)
0 - PPI in Receive mode (input)
1 - PPl in Transmit mode
(output)

L XFR_TYPE[1:0] (Transfer

Type)

In Input mode:

00 - ITU-R 656, Active Field Only

01 - ITU-R 656, Entire Field

10 - ITU-R 656, Vertical Blanking
Only

11 - Non-ITU-R 656 mode

In Output mode:

00, 01, 10 - Sync-less Output

mode

11 - Output mode with 1, 2, or

3 frame syncs

L PORT_CFG[1:0] (Port

Configuration)

In non-ITU-R 656 Input modes

(PORT_DIR = 0, XFR_TYPE = 11):

00 - 1 external frame sync

01 - 2 or 3 internal frame syncs

10 - 2 or 3 external frame syncs

11 - 0 frame syncs, triggered

In Output modes with frame syncs

(PORT_DIR =1, XFR_TYPE = 11):

00 - 1 frame sync

01 - 2 or 3 frame syncs

10 - Reserved

11 - Sync PPI_FS3 to assertion of
PPI_FS2 rather than of
PPI_FS1.

ADSP-BF59x Blackfin Processor Hardware Reference

15-27



PPI Registers

When the SKIP_EN bit is set, the SKIP_EO bit allows the PPI to ignore
either the odd or the even elements in an input datastream. This is useful,
for instance, when reading in a color video signal in YCbCr format (Cb,
Y, Cr, Y, Cb, Y, Cr, Y...). Skipping every other element allows the PPI to
only read in the luma (Y) or chroma (Cr or Cb) values. This could also be
useful when synchronizing two processors to the same incoming video
stream. One processor could handle luma processing and the other (whose
SKIP_EO bit is set differently from the first processor’s) could handle
chroma processing. This skipping feature is valid in [TU-R 656 modes
and RX modes with external frame syncs.

The PACK_EN bit only has meaning when the PPI port width (selected by
DLEN[2:01) is eight bits. Every PPI_CLK-initiated event on the DMA bus
(that is, an input or output operation) handles 16-bit entities. In other
words, an input port width of ten bits still results in a 16-bit input word
for every PPI_CLK; the upper 6 bits are Os. Likewise, a port width of eight
bits also results in a 16-bit input word, with the upper eight bits all 0s. In
the case of 8-bit data, it is usually more efficient to pack this information
so that there are two bytes of data for every 16-bit word. This is the func-
tion of the PACK_EN bit. When set, it enables packing for all RX modes.

Consider this data transported into the PPI via DMA:
O0xCE, OxFA, OxFE, OxCA....
*  With PACK_EN set:
This is read into the PPI, configured for an 8-bit port width:
O0xCE, OxFA, OxFE, OxCA...
This is transferred onto the DMA bus:
OxFACE, OxCAFE,...

e With PACK_EN cleared:

15-28 ADSP-BF59x Blackfin Processor Hardware Reference



Parallel Peripheral Interface

This is read into the PPI:

OxCE, OxFA, OxFE, OxCA,...

This is transferred onto the DMA bus:
0x00CE, OxO00FA, OxOO0FE, O0xO0O0CA,...

For TX modes, setting PACK_EN enables unpacking of bytes. Consider this
data in memory, to be transported out through the PPI via DMA:

OxFACE CAFE....

(0xFA and 0xCA are the two most significant bits (MSBs) of their respec-
tive 16-bit words)

e With PACK_EN set:
This is DMAed to the PPI:
OxFACE, OxCAFE, ...

This is transferred out through the PPI, configured for an 8-bit
port width (note LSBs are transferred first):

0xCE, OxFA, OxFE, OxCA,...
e With PACK_EN cleared:

This is DMAed to the PPI:

OxFACE, OxCAFE, ...

This is transferred out through the PPI, configured for an 8-bit
port width:

0xCE, OxFE,...

The FLD_SEL bit is used primarily in the active field only ITU-R 656
mode. The FLD_SEL bit determines whether to transfer in only field 1 of

ADSP-BF59x Blackfin Processor Hardware Reference 15-29



PPI Registers

each video frame, or both fields 1 and 2. Thus, it allows a savings in DMA
bandwidth by transferring only every other field of active video.

The PORT_CFGL1:0] field is used to configure the operating mode of the
PPI. It operates in conjunction with the PORT_DIR bit, which sets the
direction of data transfer for the port. The XFR_TYPE[1:0] field is also
used to configure operating mode and is discussed below. See Table 15-1
on page 15-4 for the possible operating modes for the PPI.

The XFR_TYPEL1:0] field configures the PPI for various modes of opera-
tion. Refer to Table 15-1 on page 15-4 to see how XFR_TYPE[1:0]
interacts with other bits in PPI_CONTROL to determine the PPI operating
mode.

The PORT_EN bit, when set, enables the PPI for operation.

When configured as an input port, the PPI does not start data
transfer after being enabled until the appropriate synchronization
signals are received. If configured as an output port, transfer
(including the appropriate synchronization signals) begins as soon
as the frame syncs (timer units) are enabled, so all frame syncs must
be configured before this happens. Refer to the section “Frame
Synchronization in GP Modes” on page 15-20 for more
information.

PPl Status Register (PPI_STATUS)

The PPI_STATUS register, shown in Figure 15-14, contains bits that pro-
vide information about the current operating state of the PPI.

The ERR_DET bit is a sticky bit that denotes whether or not an error was
detected in the ITU-R 656 control word preamble. The bit is valid only in

15-30 ADSP-BF59x Blackfin Processor Hardware Reference



Parallel Peripheral Interface

ITU-R 656 modes. If ERR_DET = 1, an error was detected in the preamble.
If ERR_DET = 0, no error was detected in the preamble.

PPI Status Register (PPI_STATUS)

15 14 1312 11 10 9 8 7 6 5 4 3 2 1
|o|o|o|0|o|o|o|o|0|o|o|o|o|0|0|o| Reset = 0x0000

ERR_NCOR (Error L————LT_ERR_OVR (Horizontal Tracking
Not Corrected) Overflow Error) - W1C
-wic
Used only in ITU-R 656 Used only in ITU-R 656
modes modes
0 - No uncorrected 0 - No horizontal tracking
preamble error overflow error
has occurred 1 - PPI_COUNT expired before
1 - Preamble error receiving SAV code

detected but not
corrected

ERR_DET (Error
Detected) - W1C

LT_ERR_UNDR (Horizontal Track-
ing Underflow Error) - W1C

0 - No horizontal tracking
underflow error

Used only in ITU-R 656 1 - PPI_FS1 (or SAV code)
modes received before
0 - No preamble error PPI_COUNT expired for
detected that line
1 - Preamble error
detected -—— FLD (Field Indicator)
UNDR (FIFO Underrun) 0 - Field 1
-wi¢c —— @@ 1 - Field 2
0 - No interrupt —— FT_ERR (Frame Track Error)
1 - FIFO Underrun Error -w1icC

interrupt occurred 0-No interrupt
OVR (FIFO Overflow) - WiC — 1 - Frame Track Error
0 - No interrupt interrupt occurred

1 - FIFO Overflow Error
interrupt occurred

Figure 15-14. PPI Status Register

The ERR_NCOR bit is sticky and is relevant only in ITU-R 656 modes. If
ERR_NCOR = 0 and ERR_DET = 1, all preamble errors that have occurred have
been corrected. If ERR_NCOR = 1, an error in the preamble was detected but
not corrected. This situation generates a PPI error interrupt, unless this
condition is masked off in the SIC_IMASK register.

The FT_ERR bit is sticky and indicates, when set, that a frame track error
has occurred. In this condition, the programmed number of lines per

ADSP-BF59x Blackfin Processor Hardware Reference 15-31



PPI Registers

frame in PPI_FRAME does not match up with the “frame start detect” con-
dition (see the information note on page 15-35). A frame track error
generates a PPI error interrupt, unless this condition is masked off in the
SIC_IMASK register.

The FLD bit is set or cleared at the same time as the change in state of F (in
ITU-R 656 modes) or PPI_FS3 (in other RX modes). It is valid for input
modes only. The state of FLD reflects the current state of the F or PPI_FS3
signals. In other words, the FLD bit always reflects the current video field

being processed by the PPI.

The 0VR bit is sticky and indicates, when set, that the PPI FIFO has over-
flowed and can accept no more data. A FIFO overflow error generates a
PPI error interrupt, unless this condition is masked off in the SIC_IMASK
register.

@ The PPI FIFO is 16 bits wide and has 16 entries.

The UNDR bit is sticky and indicates, when set, that the PPI FIFO has
underrun and is data-starved. A FIFO underrun error generates a PPI
error interrupt, unless this condition is masked off in the SIC_IMASK
register.

The LT_ERR_OVR and LT_ERR_UNDR bits are sticky and indicate, when set,
that a line track error has occurred. These bits are valid for RX modes with
recurring frame syncs only. If one of these bits is set, the programmed
number of samples in PPI_COUNT did not match up with the actual number
of samples counted between assertions of PPI_FS1 (for general-purpose
modes) or start of active video (SAV) codes (for ITU-R 656 modes). If the
PPI error interrupt is enabled in the SIC_IMASK register, an interrupt
request is generated when one of these bits is set.

The LT_ERR_OVR flag signifies that a horizontal tracking overflow has
occurred, where the value in PPI_COUNT was reached before a new SAV
code was received. This flag does not apply for non ITU-R 656 modes; in
this case, once the value in PPI_COUNT is reached, the PPI simply stops
counting until receiving the next PPI_FS1 frame sync.

15-32 ADSP-BF59x Blackfin Processor Hardware Reference



Parallel Peripheral Interface

The LT_ERR_UNDR flag signifies that a horizontal tracking underflow has
occurred, where a new SAV code or PPI_FS1 assertion occurred before the
value in PPI_COUNT was reached.

PPl Delay Count Register (PPI_DELAY)

The PPI_DELAY register, shown in Figure 15-15, can be used in all config-
urations except ITU-R 656 modes and GP modes with 0 frame syncs. It
contains a count of how many PPI_CLK cycles to delay after assertion of
PPI_FS1 before starting to read in or write out data.

Note in TX modes using at least one frame sync, there is a
one-cycle delay beyond what is specified in the PPI_DELAY register.

PPI Delay Count Register (PPI_DELAY)

1514 1312 11 10 9 8 7 6 5 4 3 2 1 0
|o |o |0 |o |o |o |o |0 |0 |o |o |o |0 |0 |o |o | Reset = 0x0000
[ |
| PPI_DELAY[15:0]
Number of PPI_CLK cycles to
delay after assertion of

PPI_FS1 before latching in or
sending out data

Figure 15-15. PPI Delay Count Register

PPI Transfer Count Register (PPI_COUNT)

The PPI_COUNT register, shown in Figure 15-16, is used in all modes
except “RX mode with 0 frame syncs, external trigger” and “TX mode
with 0 frame syncs.” For RX modes, this register holds the number of sam-
ples to read into the PPI per line, minus one. For TX modes, it holds the
number of samples to write out through the PPI per line, minus one. The
register itself does not actually decrement with each transfer. Thus, at the
beginning of a new line of data, there is no need to rewrite the value of

ADSP-BF59x Blackfin Processor Hardware Reference 15-33



PPI Registers

this register. For example, to receive or transmit 100 samples through the
PPI, set PPT_COUNT to 99.

Take care to ensure that the number of samples programmed into
PPI_COUNT is in keeping with the number of samples expected dur-
ing the “horizontal” interval specified by PPI_FS1.

PPI Transfer Count Register (PPI_COUNT)

15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0
Io Io Io Io Io Io Io Io Io Io Io Io Io Io Io |0| Reset = 0x0000
[ |

| PPI_COUNT[15:0]
In RX modes, holds one less
than the number of samples to
read in to the PPI per line. In
TX modes, holds one less
than the number of samples to
write out through the PPI per
line.

Figure 15-16. PPI Transfer Count Register

PPI Lines Per Frame Register (PPI_FRAME)

The PPI_FRAME register, shown in Figure 15-17, is used in all TX and RX
modes with two or three frame syncs. For ITU-R 656 modes, this register
holds the number of lines expected per frame of data, where a frame is
defined as field 1 and field 2 combined, designated by the F indicator in
the ITU-R stream. Here, a line is defined as a complete ITU-R 656
SAV-EAV cycle.

For non ITU-R 656 modes with external frame syncs, a frame is defined as
the data bounded between PPI_FS2 assertions, regardless of the state of
PPI_FS3. A line is defined as a complete PPI_FS1 cycle. In these modes,
PPI_FS3 is used only to determine the original “frame start” each time the
PPI is enabled. It is ignored on every subsequent field and frame, and its
state (high or low) is not important except during the original frame start.

15-34 ADSP-BF59x Blackfin Processor Hardware Reference



Parallel Peripheral Interface

If the start of a new frame (or field, for ITU-R 656 mode) is detected
before the number of lines specified by PPI_FRAME have been transferred, a
frame track error results, and the FT_ERR bit in PPI_STATUS is set. How-
ever, the PPI still automatically reinitializes to count to the value
programmed in PPI_FRAME, and data transfer continues.

In ITU-R 656 modes, a frame start detect happens on the falling
edge of F, the field indicator. This occurs at the start of field 1.

In RX mode with three external frame syncs, a frame start detect
refers to a condition where a PPI_FS2 assertion is followed by an
assertion of PPI_FS1 while PPI_FS3 is low. This occurs at the start
of field 1. Note that PPI_FS3 only needs to be low when PPI_FS1 is
asserted, not when PPI_FS2 asserts. Also, PPI_FS3 is only used to
synchronize to the start of the very first frame after the PPI is
enabled. It is subsequently ignored.

When using RX mode with three external frame syncs, and only
two syncs are needed, configure the PPI for 3-frame-sync operation
and provide an external pull-down to GND for the PPI_FS3 pin.

PPI Lines Per Frame Register (PPI_FRAME)

1514 1312 1110 9 8 7 6 5 4 3 2 1 0
Io |0 |o |o Io |o |0 |o Io |o |o |0 Io |o |o |0 I Reset = 0x0000
| |

PPI_FRAME[15:0]
Holds the number of lines
expected per frame of data

Figure 15-17. PPI Lines Per Frame Register

ADSP-BF59x Blackfin Processor Hardware Reference 15-35



Programming Examples

Programming Examples

The PPI can be configured to receive data from a video source in several
RX modes. The following programming examples (Listing 15-1 through
Listing 15-5) describe the ITU-R 656 entire field input mode.

Listing 15-1. Configure DMA Registers
config_dma:

/*Assumes PPI is mapped to DMA channel 0.*/
/* DMAO_START_ADDR */

RO.L = rx_buffer;

RO.H = rx_buffer;

PO.L = 10(DMAO_START_ADDR);
PO.H = hi(DMAO_START_ADDR);
[PO] = RO;

/* DMAO_CONFIG */

RO.L = DI_EN | WNR;
PO.L = To(DMAO_CONFIG);
PO.H = hi(DMAO_CONFIG);
WLPOJ = RO.L;

/* DMAO_X_COUNT */

RO.L = 256;

PO.L = To(DMAO_X_COUNT);
PO.H = hi(DMAO_X_COUNT);
WLPOJ = RO.L;

/* DMAO_X_MODIFY */

RO.L = 0x0001;
PO.L = To(DMAO_X_MODIFY);
PO.H = hi(DMAO_X_MODIFY);
WLPOJ = RO.L;

15-36 ADSP-BF59x Blackfin Processor Hardware Reference



Parallel Peripheral Interface

ssync;
config_dma.END: RTS;

Listing 15-2. Configure PPI Registers
config_ppi:

/* PPI_CONTROL */

PO.L = 1o(PPI_CONTROL);

PO.H = hi(PPI_CONTROL);

RO.L = 0x0004;

WLPO] = RO.L;

ssync;
config_ppi.END: RTS;

Listing 15-3. Enable DMA

/* DMAO_CONFIG */

PO.L = 1o(DMAO_CONFIG);
PO.H = hi(DMAO_CONFIG);
RO.L = W[POJ;
bitset(R0O,0);

WLPO] = RO.L;

ssync;

Listing 15-4. Enable PPI

/* PPI_CONTROL */

PO.L = 1To(PPI_CONTROL);
PO.H = hi(PPI_CONTROL);
RO.L = WLPOT;

bitset(R0O,0);

ADSP-BF59x Blackfin Processor Hardware Reference 15-37



Unique Information for the ADSP-BF59x Processor

WLPO] = RO.L;
ssync;

Listing 15-5. Clear DMA Completion Interrupt

/* DMAQ_IRQ_STATUS */

P2.L = 1To(DMAO_IRQ_STATUS);
P2.H = hi(DMAO_IRQ_STATUS);
R2.L = W[P2];

BITSET(R2,0);

W[P2] = R2.L;

ssync;

Unique Information for the ADSP-BF59x
Processor

None.

15-38 ADSP-BF59x Blackfin Processor Hardware Reference



16 SYSTEM RESET AND
BOOTING

This document contains material that is subject to change without notice.
The content of the boot ROM as well as hardware behavior may change

across silicon revisions. See the anomaly list for differences between silicon
revisions. This document describes functionality of silicon revision 0.0 of

the ADSP-BF59x processors.

Overview

When the RESET input signal releases, the processor examines the state of

the boot mode select pins (BMODE2-0) to determine the starting address for
instruction execution. Based on the settings of these pins, instruction exe-
cution starts from either the base address of L1 ROM or the base address

of Boot ROM.

The internal boot ROM includes a small boot kernel that loads applica-
tion data from an external memory or host device. The application data is
expected to be available in a well-defined format called the boot stream. A
boot stream consists of multiple blocks of data and special commands that
instruct the boot kernel how to initialize on-chip L1 memories as well as
off-chip volatile memories.

The boot kernel processes the boot stream block-by-block until it is
instructed by a special command to terminate the procedure and jump to
the application’s programmable start address, which traditionally is at
0xFFAO0 0000 in on-chip L1 memory. This process is called “booting.”

ADSP-BF59x Blackfin Processor Hardware Reference 16-1



Overview

The processor features three dedicated input pins BMODE[2: 0] that select
the booting mode. The boot kernel evaluates the BMODE pins and performs
booting from respective sources. Table 16-1 describes the modes of the
BMODE pins.

Table 16-1. Booting Modes

BMODEZ2-0

Boot Source

Description

000

No boot — idle

The processor does not boot. Rather, the boot
kernel executes an IDLE instruction.

001

Reserved

Reserved

010

Boot from external serial SPI
memory using SPI1

After an initial device detection routine, the kernel
boots from either 8-bit, 16-bit, 24-bit or 32-bit
addressable SPI flash or EEPROM memory that
connects to SPT1_SSEL5.

011

Boot from SPI host using SPI1

In this slave mode, the kernel expects the boot
stream to be applied to SPI1 by an external host
device.

100

Boot from external serial SPI
memory using SPI0

After initial device detection routine, the kernel
boots from either 8-bit, 16-bit, 24-bit, or 32-bit
addressable SPI flash or EEPROM memory that
connects to SPTO_SSEL2.

101

Boot from PPI host

In this boot mode, the kernel expects data to be
received over the 16-bit PPI port. Data transfers are
controlled with the incoming PPI_FS1 signal. The
processor uses the PPI_FS2 signal to indicate when
it is ready to receive data and how much data is
expected.

110

Boot from UARTO host

In this slave mode, the kernel expects the boot
stream to be applied to UARTO by an external host
device. Prior to providing the boot stream, the host
device is expected to send a 0x40 (ASCII '@") char-
acter that is examined by the kernel to adjust the
bit rate.

111

Boot from internal L1 ROM
(full user control)

In this mode, the processor starts instruction execu-
tion at the base address of on-chip L1 instruction
ROM, entirely bypassing the boot ROM.

16-2

ADSP-BF59x Blackfin Processor Hardware Reference




Reset and Power-up

System Reset and Booting

Table 16-2 describes the six types of resets.

Note that each type resets the core except for the System Software

resct.

Table 16-2. Resets

Reset Source Result

Hardware The RESET pin causes a hard- | Resets both the core and the peripherals, includ-

reset ware reset. ing the dynamic power management controller
(DPMC).
Resets bits [15:4] of the SYSCR register. For more
information, see “System Reset Configuration
(SYSCR) Register” on page 16-55.

Power-on Internal circuitry recognizes | Resets all registers (core and system) provided

reset initial power-up condition. that the power up guidelines are followed for the

RESET pin.

timer reset timer causes a watchdog timer

reset.

System soft- | Calling the Resets only the peripherals, excluding most of the
ware reset bfrom_SysControl() rou- | DPMC. The system software reset clears bits
tine with the [15:13] and bits [11:4] of the SYSCR register, but
SYSCTRL_SYSRESET option not the WURESET bit. The core is not reset and a
triggers a system reset. boot sequence is not triggered. Sequencing con-
tinues at the instruction after
bfrom_SysControl() returns.
Watchdog Programming the watchdog | Resets both the core and the peripherals, exclud-

ing most of the DPMC. (Because of the partial
reset to the DPMC, the watchdog timer reset is
not functional when the processor is in Sleep or
Deep Sleep modes.)

The SWRST or the SYSCR register can be read to
determine whether the reset source was the
watchdog timer.

ADSP-BF59x Blackfin Processor Hardware Reference

16-3




Reset and Power-up

Table 16-2. Resets (Continued)

Reset Source Result

Core A core double fault occurs Resets both the core and the peripherals, exclud-
double-fault | when an exception happens | ing most of the DPMC. The SWRST or SYSCR
reset while the exception handler is | registers can be read to determine whether the

executing. If the core enters a | reset source was a core double-fault.
double-fault state, and the
Core Double Fault Reset
Enable bit (DOUBLE_FAULT) is
set in the SWRST register, then
a software reset will occur.

Core-only This reset is caused by execut- | Resets all core registers. Program execution vec-
software reset | ing a RAISE 1 instruction or | tors to the 0xEF00 0000 address. The boot code
by setting the software reset | executes an immediate system reset to ensure sys-
(SYSRST) bit in the core tem consistency.

debug control register
(DBGCTL) through emulation
software through the JTAG
port. The DBGCTL register is
not visible to the memory
map.

Hardware Reset

The processor chip reset is an asynchronous reset event. The RESET input
pin must be deasserted after a specified asserted hold time to perform a
hardware reset. For more information, see the product data sheet.

A hardware-initiated reset results in a system-wide reset that includes both
core and peripherals. After the RESET pin is deasserted, the processor
ensures that all asynchronous peripherals have recognized and completed a
reset. After the reset, the processor transitions into the boot mode
sequence configured by the state of the BMODE pins.

The BMODE pins are dedicated mode control pins. No other functions are
shared with these pins, and they may be permanently strapped by tying
them directly to either Vhpgxr or GND. The pins and the corresponding

16-4 ADSP-BF59x Blackfin Processor Hardware Reference




System Reset and Booting

bits in the SYSCR register configure the boot mode that is employed after
hardware reset or system software reset. See the Blackfin Processor Pro-
gramming Reference for further information.

Software Resets

A software reset may be initiated in three ways.
* By the watchdog timer, if appropriately configured

* Calling the bfrom_SysControl() API function residing in the
on-chip ROM. For further information, see Chapter 6, “Dynamic
Power Management”.

* By the RAISE 1 instruction

The watchdog timer resets both the core and the peripherals, as long as the
processor is in Active or Full-On mode. A system software reset results in a
reset of the peripherals without resetting the core and without initiating a
booting sequence.

In order to perform a system reset, the bfrom_SysControl () rou-
tine must be called while executing from L1 memory.

After either the watchdog or system software reset is initiated, the proces-
sor ensures that all asynchronous peripherals have recognized and
completed a reset.

For a reset generated by formatting the watchdog timer, the processor
transitions into the boot mode sequence. The boot mode is configured by
the state of the BMODE bit field in the SYSCR register.

A software reset is initiated by executing the RAISE 1 instruction or setting
the software reset (SYSRST) bit in the core debug control register (DBGCTL)
(DBGCTL is not visible to the memory map) through emulation software

through the JTAG port.

ADSP-BF59x Blackfin Processor Hardware Reference 16-5



Reset and Power-up

A software reset only affects the state of the core. The boot kernel immedi-
ately issues a system reset to keep consistency with the system domain.

Reset Vector

When reset releases, the processor starts fetching and executing instruc-
tions from either address OxEF00 0000 or 0xFFA1 0000, based on the
settings of boot mode select pins.

On a hardware reset, the boot kernel initializes the EVT1 register to
0xFFA0 0000. When the booting process completes, the boot kernel
jumps to the location provided by the EVT1 vector register. The content of
the EVT1 register is overwritten by the TARGET ADDRESS field of the first
block of the applied boot stream. If the BCODE field of the SYSCR register is
set to 3 (no boot option), the EVT1 register is not modified by the boot
kernel on software resets. Therefore, programs can control the reset vector
for software resets through the EVT1 register. This process is illustrated by
the flow chart in Figure 16-1.

16-6 ADSP-BF59x Blackfin Processor Hardware Reference



System Reset and Booting

The content of the EVT1 register may be undefined in emulator sessions.

START at
0xEF00 0000

HARDWARE WAKEUP
RESET

ELSE l

Issue System Reset
(SWRST = 0x0007)

|

ELSE BCODE_QUICKBOOT
< BCODE »>
A 4 v
PREPARE PREPARE
ALLBOOT QUICKBOOT
(BFLAG_WAKEUP = 0) (BFLAG_WAKEUP = 1)

BOOT KERNEL

BCODE_NOBOOT

JUMP TO EVT1 VECTOR

Figure 16-1. Global Boot Flow

Servicing Reset Interrupts

The processor services a reset event like other interrupts. The reset inter-
rupt has top priority. Only emulation events have higher priority. When

ADSP-BF59x Blackfin Processor Hardware Reference 16-7



Basic Booting Process

coming out of reset, the processor is in supervisor mode and has full access
to all system resources. The boot kernel can be seen as part of the reset ser-
vice routine. It runs at the top interrupt priority level.

Even when the boot process has finished and the boot kernel passes con-

trol to the user application, the processor is still in the reset interrupt. To
enter user mode, the reset service routine must initialize the RETI register
and terminate with an RTI instruction.

For a programming example, see “System Reset” on page 16-74.

Listing 16-1 and Listing 16-2 on page 16-75 show code examples that
handle the reset event. See the Blackfin Processor Programming Reference
for details on user and supervisor modes.

Systems that do not work in an operating system environment may not
enter user mode. Typically, the interrupt level needs to be degraded down
to IVG15. Listing 16-3 and Listing 16-4 on page 16-76 show how this is

accomplished.

Since the boot kernel is running at reset interrupt priority, NMI
events, hardware errors and exceptions are not serviced at boot
time. As soon as the reset service routine returns, the processor can
service the events that occurred during the boot sequence. It is rec-
ommended that programs install NMI, hardware error, and
exception handlers before leaving the reset service routine. This
includes proper initialization of the respective event vector registers
EVTxX.

Basic Booting Process

After evaluating the BMODE pins, the boot kernel residing in the on-chip
boot ROM starts processing the boot stream. The boot stream is either
read from memory or received from a host processor. A boot stream repre-
sents the application data and is formatted in a special manner. The

16-8 ADSP-BF59x Blackfin Processor Hardware Reference



System Reset and Booting

application data is segmented into multiple blocks of data. Each block
begins with a block header. The header contains control words such as the
destination address and data length information.

As Figure 16-2 on page 16-9 illustrates, the Visual DSP++ tools suite fea-
tures a loader utility (e1f1oader.exe). The loader utility parses the input
executable file (.DXE), segments the application data into multiple blocks,
and creates the header information for each block. The output is stored in
a loader file (.LDR). The loader file contains the boot stream and is made
available to hardware by programming or burning it into non-volatile
external memory. Refer to the VisualDSP++ Loader Manual for informa-
tion on switches for loader files.

.ASM/.C/.CPP .DOJ(s) .DXE(s)
ASSEMBLER
sglllj_:ge »>| AND/OR > LINKER »| LOADER
COMPILER
.LDR
TARGET SYSTEM

an/{/%

BOOTING

UPON RESET EXTERNAL

MEMORY

Figure 16-2. Project Flow for a Standalone System

Figure 16-3 on page 16-10 shows the parallel or serial boot stream con-
tained in a flash memory device. In host boot scenarios, the non-volatile
memory more likely connects to the host processor rather than directly to
the Blackfin processor. After reset, the headers are read and parsed by the

ADSP-BF59x Blackfin Processor Hardware Reference 16-9



Basic Booting Process

on-chip boot ROM, and processed block-by-block. Payload data is copied

to destination addresses in on-chip L1 memory.

Booting into scratchpad memory (0xFFBO 0000-0xFFBO OFFF) is
not supported. If booting to scratchpad memory is attempted, the
processor hangs within the on-chip boot ROM. Similarly, booting
into the upper 16 bytes of L1 data bank B (0xFF80 7FF0-
0xFF80 7FFF by default) is not supported. These memory loca-
tions are used by the boot kernel for intermediate storage of block
header information. These memory regions cannot be initialized at
boot time. After booting, they can be used by the application dur-
ing runtime.

When the BFLAG_INDIRECT flag for any block is set, the boot kernel uses
another memory block in L1 data bank B (by default, 0xFF80 7F00—
0xFF80 7FEF) for intermediate data storage. To avoid conflicts, the
Visual DSP++ elfloader utility ensures this region is booted last.

.LDR FILE

FLASH/PROM ’ 16-BYTE HEADER FOR BLOCK 1

L| MEMOR
BLOCK 1 [«

Blﬂﬂl{/% BLOCK 3 [+

BLOCK 1

16-BYTE HEADER FOR BLOCK 2

APPLICATION | "~~~
|- CODE/DATA _‘\ BLOCK 2

* .| 16-BYTE HEADER FOR BLOCK 3

OXEF00 0000
ON-CHIP DR BLOCK 3
BOOT ROM oh

MY
. %| 16-BYTE HEADER FOR BLOCK n
BLOCK n

Figure 16-3. Booting Process

The entire source code of the boot ROM is shipped with the
Visual DSP++ tools installation. Refer to the source code for any addi-
tional questions not covered in this manual. Note that minor maintenance

16-10 ADSP-BF59x Blackfin Processor Hardware Reference



System Reset and Booting

work may be done to the content of the boot ROM when silicon is
updated.

Block Headers

A boot stream consists of multiple boot blocks, as shown in Figure 16-3
on page 16-10. Every block is headed by a 16-byte block header. How-
ever, every block does not necessarily have a payload, as shown in

Figure 16-4 on page 16-11.

The 16 bytes of the block header are functionally grouped into four 32-bit
words, the BLOCK CODE, the TARGET ADDRESS, the BYTE COUNT, and the
ARGUMENT fields.

\
BLOCK 0 HEADER N
\
\
\ \
BLOCK 0 PAYLOAD \\ N
\ \\
\
\ 3 2 1 0
BLOCK 1 HEADER \\ | BLOCK CODE | OFFSET 0X0000
\
\ 7 6 5 4
\
\ | TARGET ADDRESS | OFFSET 0X0004
\
\\ 11 10 9 8
BLOCK 2 HEADER \\ | BYTE COUNT | OFFSET 0X0008
\\ 15 14 13 12
\ | ARGUMENT | OFFSET 0X000C
\
BLOCK 2 PAYLOAD

Figure 16-4. Boot Stream Headers

ADSP-BF59x Blackfin Processor Hardware Reference 16-11



Basic Booting Process

Block Code

The first 32-bit word is the BLOCK CODE. See Figure 16-5.

Block Code, 31-16
’ 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

[l el Tel JeleTe e o o o o]
HDRSGN | LHDRCHK
Header Sign Header XOR Checksum

Block Code, 15-0
15 14 13 12 11 10 7 6 5 3 2 1.0
[ofofofofofofofofofofofofofofofo]

I
BFLAG_FINAL

DMACODE
BFLAG_FIRST DMA Coding
BFLAG_INDIRECT BFLAG_SAVE
BFLAG_IGNORE BFLAG_AUX

BFLAG_INIT
BFLAG_CALLBACK
BFLAG_QUICKBOOT
BFLAG_FILL

Figure 16-5. Block Code, 31-0

DMA Code Field

The DMA code (DMACODE) field instructs the boot kernel whether to use
8-bit, 16-bit or 32-bit DMA and how to program the source modifier of a
memory DMA. Particularly in case of memory boot modes, this field is
interrogated by the boot kernel to differentiate the 8-bit, 16-bit, and
32-bit cases.

16-12 ADSP-BF59x Blackfin Processor Hardware Reference



System Reset and Booting

The boot kernel tests this field only on the first block and ignores the field

in further blocks (See Table 16-3).

Table 16-3. Bus and DMA Width Coding

DMA Code |DMA Width |Source DMA  |Application
Modify
0 reserved!
1 8-bit 1 Default 8-bit boot from 8-bit source?
2 8-bit 2 reserved?
3 8-bit 4 reserved?
4 8-bit 8 reserved?
5 8-bit 16 reserved?
6 16-bit 2 Default 16-bit boot from 16-bit source
7 16-bit 4 reserved’
8 16-bit 8 reserved?
9 16-bit 16 reserved?
10 32-bit 4 Default 32-bit boot from 32-bit source?
11 32-bit 8 reserved®
12 32-bit 16 reserved’
13 G4-bit 8 Default 64-bit boot from 64-bit source?
14 G4-bit 16 reserved?
15 128-bit 16 Default 128-bit boot from 128-bit source’
1 Reserved to differentiate from ADSP-BF53x boot streams.
2 Used by all byte-wise serial boot modes.
3 Not supported by ADSP-BF59x Blackfin products.
4 Applicable only to memory boot modes.

ADSP-BF59x Blackfin Processor Hardware Reference

16-13




Basic Booting Process

Block Flags Field

Table 16-4. Block Flags

Bit [Name Description

4 | BFLAG_SAVE Saves the memory of this block to off-chip memory in case of
power failure or a hibernate request. This flag is not used by the
on-chip boot kernel.

5 | BELAG_AUX Nests special block types as required by special purpose sec-
ond-stage loaders. This flag is not used by the on-chip boot kernel.

6 | Reserved

7 | Reserved

8 | BFLAG_FILL Tells the boot kernel to not process any payload data. Instead the

target memory (specified by the TARGET ADDRESS and

BYTE COUNT fields) is filled with the 32-bit value provided by the
ARGUMENT word. The fill operation is always performed by 32-bit
DMA; therefore target address and byte count must be divisible by
four.

9 | BELAG_QUICKBOOT | Processes the block for full boot only. Does not process this block

for a quick boot (warm boort).

10 | BFLAG_CALLBACK Calls a subfunction that may reside in on-chip or off-chip ROM or
is loaded by an initcode in advance. Often used with the
BFLAG_INDIRECT switch. If BFLAG_CALLBACK is set for any block,
an initcode must register the callback function first. The function
is called when either the entire block is loaded or the intermediate
storage memory is full. The callback function can do advanced
processing such as CRC checksum.

11 | BFLAG_INIT This flag causes the boot kernel to issue a CALL instruction to the
target address of the boot block after the entire block is loaded.
The initcode should return by an RTS instruction. It may or may
not be overwritten by application data later in the boot process. If
the code is loaded earlier or resides in ROM, the init block can be
zero sized (no payload).

16-14 ADSP-BF59x Blackfin Processor Hardware Reference



System Reset and Booting

Table 16-4. Block Flags (Continued)

Bit

Name

Description

12

BFLAG_IGNORE

Indicates a block that is not booted into memory. It instructs the
boot kernel to skip the number of bytes of the boot stream as spec-
ified by BYTE COUNT. In master boot modes, the boot kernel sim-
ply modifies its source address pointer. In this case the

BYTE COUNT value can be seen as a 32-bit two's-complement offset
value to be added to the source address pointer. In slave boot
modes, the boot kernel actively loads and changes the payload of
the block. In slave modes the byte count must be a positive value.

13

BFLAG_INDIRECT

Boots to an intermediate storage place, allowing for calling an
optional callback function, before booting to the destination. This
flag is used when the boot source does not have DMA support and
either the destination cannot be accessed by the core (L1 instruc-
tion SRAM) or cannot be efficiently accessed by the core. This flag
is also used when CALLBACK requires access to data to calculate a
checksum, or when performing tasks such as decryption or decom-
pression.

14

BFLAG_FIRST

This flag, which is only set on the first block of a DXE, tells the
boot kernel about the special nature of the TARGET ADDRESS and
the ARGUMENT fields. The TARGET ADDRESS field holds the start
address of the application. The ARGUMENT field holds the offset to
the next DXE.

15

BFLAG_FINAL

This flag causes the boot kernel to pass control over to the applica-
tion after the final block is processed. This flag is usually set on the
last block of a DXE unless multiple DXEs are merged.

The BFLAG_FIRST flag must not be combined with the BFLAG_FILL flag.
The BFLAG_FIRST flag may be combined with the BFLAG_IGNORE flag to
deposit special user data at the top of the boot stream. Note the special
importance of the VisualDSP++ elfloader -readall switch.

Header Checksum Field

The header checksum (HDRCHK) field holds a simple XOR checksum of the
other 31 bytes in the boot block header. The boot kernel jumps to the
error routine if the result of an XOR operation across all 32 header bytes
(including the HDRCHK value) differs from zero. The default error routine is

ADSP-BF59x Blackfin Processor Hardware Reference 16-15




Basic Booting Process

a simple IDLE; instruction. The user can overwrite the default error han-
dler using the initcode mechanism.

Header Sign Field

The header signature (HDRSGN) byte always reads as 0xAD and is used to
verify whether the block pointer actually points to a valid block.

Target Address

This 32-bit field holds the target address where the boot kernel loads the
block payload data. When the BFLAG_FILL flag is set, the boot kernel fills
the memory with the value stored in the ARGUMENT field starting at this
address. If the BFLAG_INIT flag is set the kernel issues a

CALL(TARGET ADDRESS) instruction after the optional payload is loaded.

If the BFLAG_FIRST flag is set, the TARGET ADDRESS field contains the start
address of the application to which the boot kernel jumps at the end of the
boot process. This address will also be stored in the EVT1 register. By
default the Visual DSP++ elfloader utility sets this value to 0xFFAO 0000
for compatibility with other Blackfin products.

The target address should be divisible by four, because the boot kernel
uses 32-bit DMA for certain operations. The target address must point to
valid on-chip memory locations. When booting through peripherals that
do not support DMA transfers, the BFLAG_INDIRECT flag must be set if the
target address points to L1 instruction memory.

Booting to scratchpad memory is not supported. The scratchpad
memory functions as a stack for the boot kernel. The L1 data mem-
ory locations 0xFF80 7FF0 to 0xFF80 7FFF are used by the boot
kernel and should not be overwritten by the application. The mem-
ory range used for intermediate storage as controlled by the
BFLAG_INDIRECT switch should only be booted after the last
BFLAG_INDIRECT bit is processed. By default the address range
0xFF80 7F00-0xFF80 7FEF is used for intermediate storage.

16-16 ADSP-BF59x Blackfin Processor Hardware Reference



System Reset and Booting

For normal boot operation, the target address points to RAM memory.
There are however a few exceptions where the target address can point to
on-chip or off-chip ROM. For example a zero-sized BFLAG_INIT block
would instruct the boot kernel to call a subroutine residing in ROM or
flash memory. This method is used to activate the CRC32 feature.

Byte Count

This 32-bit field tells the boot kernel how many bytes to process. Nor-
mally, this is the size of the payload data of a boot block. If the
BFLAG_FILL flag is set there is no payload. In this case the BYTE COUNT field
uses the value in its ARGUMENT field to tell the boot kernel how many bytes
to process.

The byte count is a 32-bit value that should be divisible by four. Zero val-
ues are allowed in all block types. Most boot modes are based upon DMA
operation which are only 16-bit words for Blackfin processors. The boot
kernel may therefore start multiple DMA work units for large boot blocks.
This enables a single block to fill to zero the memory, for example, result-
ing in compact boot streams. The HWAIT signal may toggle for each work
unit.

If the BFLAG_IGNORE flag is set, the byte count is used to redirect the boot
source pointer to another memory location. In master boot modes, the
byte count is a two’s-complement (signed long integer) value. In slave
boot modes, the value must be positive.

Argument

This 32-bit field is a user variable for most block types. The value is acces-
sible by the initcode or the callback routine and can therefore be used for
optional instructions to these routines. When the CRC32 feature is acti-
vated, the ARGUMENT field holds the checksum over the payload of the
block.

ADSP-BF59x Blackfin Processor Hardware Reference 16-17



Basic Booting Process

When the BFLAG_FILL flag is set there is no payload. The argument con-
tains the 32-bit fill value, which is most likely a zero.

If the BFLAG_FIRST flag is set, the argument contains the relative
next-DXE pointer for multi-DXE applications. For single-DXE applica-
tions the field points to the next free boot source address after the current

DXE’s boot stream.

Boot Host Wait (HWAIT) Feedback Strobe

The HWAIT feedback strobe is a handshake signal that is used to hold off
the host device from sending further data while the boot kernel is busy.

On ADSP-BF59x processors, this feature is implemented by a GPIO that
is toggled by the boot kernel as required. The PG4 GPIO is used for this

purpose.

The signal polarity of the HWAIT strobe is programmable by an external
resistor in the 10 k€ range.

A pull-up resistor instructs the HWAIT signal to be active high. In this case
the host is permitted to send header and footer data when HWAIT is low,
but should pause while HWAIT is high. This is the mode used in SPI slave
boot on other Blackfin products.

Similarly, a pull-down resistor programs active-low behavior.

@ Note that the HWAIT signal is implemented slightly differently than

on ADSP-BF53x Blackfin processors. In the ADSP-BF59x proces-
sors, the meaning of the pulling resistor is inverted and HWAIT is
asserted by default during reset.

The boot kernel first senses the polarity on the respective HWAIT pin. Then
it enables the output driver but keeps the signal in its asserted state. The
signal is not released until the boot kernel is ready for data, or when a
receive DMA is started. As soon as the DMA completes, HWAIT becomes
active again.

16-18 ADSP-BF59x Blackfin Processor Hardware Reference



System Reset and Booting

The boot host wait signal holds the host from booting in any slave boot
mode and prevents it from being overrun with data. The HWAIT signal is,
however, available in all boot modes.

In general the host device must interrogate the HWAIT signal before every
word that is sent. This requirement can be relaxed for boot modes using
on-chip peripherals that feature larger receive FIFOs. However, the host
must not rely on the DMA FIFO since its content is cleared at the end of
a DMA work unit.

While the HWAIT signal is only used for boot purposes, it may also play a
significant role after booting. In slave boot modes, for example, the host
device does not necessarily know whether the Blackfin processor is in an
active mode or a power-down mode. For example, the HWAIT signal can be
used to signal when the processor is in hibernate mode.

Using HWAIT as Reset Indicator

While the HWAIT signal is mandatory in some boot modes, it is optional in
others.

If using a pull-up resistor, the HWAIT signal is driven low for the rest of the
boot process (and beyond). If using a pull-down resistor, HWAIT is driven

high.

With a pull-down resistor, this feature can be used to simulate an
active-low reset output. When the processor is reset, or in hibernate, the
GPIO is in a high impedance state and HWAIT is pulled low by the resistor.
As soon as the processor recovers and has settled the PLL again, the HWATT
is driven high and can alert external circuits.

Boot Termination

After the successful download of the application into the bootable mem-
ory, the boot kernel passes control to the user application. By default this
is performed by jumping to the vector stored in the EVT1 register. The

ADSP-BF59x Blackfin Processor Hardware Reference 16-19



Basic Booting Process

boot kernel provides options to execute an RTS instruction or a RAISE 1
instruction instead. The default behavior can be changed by an initcode
routine. The EVT1 register is updated by the boot kernel when processing
the BFLAG_FIRST block. See “Servicing Reset Interrupts” on page 16-7 to
learn how the application can take control.

Before the boot kernel passes program control to the application it does
some housekeeping. Most of the registers that were used are changed back
to their default state but some register values may differ for individual
boot modes. DMA configuration registers and primary register control
registers (UARTx_LCR, SPIx_CTL, etc.) are restored, while others are pur-
posely not restored. For example SPIx_BAUD, UARTx_DLH and UARTx_DLL
remain unchanged so that settings obtained during the booting process are
not lost.

Single Block Boot Streams

The simplest boot stream consists of a single block header and one contig-
uous block of instructions. With appropriate flag instructions the boot
kernel loads the block to the target address and immediately terminates by
executing the loaded block.

Table 16-5 shows an example of a single block boot stream header that
could be loaded from any serial boot mode. It places a 256-byte block of
instructions at L1 instruction SRAM address 0xFFA0 0000. The flags
BFLAG_FIRST and BFLAG_FINAL are both set at the same time. Advanced
flags, such as BFLAG_IGNORE, BFLAG_INIT, BFLAG_CALLBACK and
BFLAG_FILL, do not make sense in this context and should not be used.

Table 16-5. Header for a Single Block Boot Stream

Field Value Comments

BLOCK CODE 0xAD33 C001| 0xAD00 0000 | XORSUM | BFLAG_FINAL |
BFLAG_FIRST | (DMACODE & 0x1)

TARGET ADDRESS | 0xFFA0 0000 | Start address of block and application code

16-20 ADSP-BF59x Blackfin Processor Hardware Reference



System Reset and Booting

Table 16-5. Header for a Single Block Boot Stream

Field Value Comments
BYTE COUNT 0x0000 0100 | 256 bytes of code
ARGUMENT 0x0000 0100 | Functions as next-DXE pointer in multi-DXE boot streams

With the BFLAG_FIRST flag set, the ARGUMENT field functions as the
next-DXE pointer. This is a relative pointer to the next free source address
or to the next DXE start address in a multi-DXE stream.

Advanced Boot Techniques

The following sections describe advanced boot techniques. These tech-
niques are useful for customers developing custom boot routines.

Initialization Code

Initcode routines are subroutines that the boot kernel calls during the
booting process. The user can customize and speed up the booting mecha-
nisms using this feature. Traditionally, an initcode is used to set up system
PLL, bit rates, and other system settings. If executed early in the boot pro-
cess, the boot time can be significantly reduced.

After the payload data is loaded for a specific boot block, if the
BFLAG_INIT flag is set, the boot kernel issues a CALL instruction to the tar-
get address of the block.

On ADSP-BF59x Blackfin processors, initcode routines follow the
C language calling convention so they can be coded in C language or
assembly.

The expected prototype is:

void initcode(ADI_BOOT_DATA* pBootStruct);

ADSP-BF59x Blackfin Processor Hardware Reference 16-21



Advanced Boot Techniques

The Visual DSP++ header files define the ADI_BOOT_INITCODE_FUNC type:

typedef void ADI_BOOT_INITCODE_FUNC (ADI_BOOT_DATA* )

Optionally, the initcode routine can interrogate the formatting structure
and customize its own behavior or even manipulate the regular boot pro-
cess. A pointer to the structure is passed in the RO register. Assembly
coders must ensure that the routine returns to the boot kernel by a termi-
nating RTS instruction.

Initcodes can rely on the validity of the stack, which resides in scratchpad
memory. The ADI_BOOT_DATA structure resides on the stack. Rules for reg-
ister usage conform to the compiler conventions. See the VisualDSP++
C/C++ Compiler and Library Manual for more information.

In the simple case, initcodes consist of a single instruction section and are
represented by a single block within the boot stream. This block has the
BFLAG_INIT bit set.

An init block can consist of multiple sections where multiple boot blocks
represent the initcode within the boot stream. Only the last block has the
BFLAG_INIT bit set.

The VisualDSP++ elfloader utility ensures that the last of these blocks vec-
tors to the initcode entry address. The utility instructs the on-chip boot
ROM to execute a CALL instruction to the given target address.

When the on-chip boot ROM detects a block with the BFLAG_INIT bit set,
it boots the block into Blackfin memory and then executes it by issuing a
CALL to its target address. For this reason, every initcode must be termi-
nated by an RTS instruction to ensure that the processor vectors back to

the on-chip boot ROM for the rest of the boot process.

Sometimes initcode boot blocks have no payload and the BYTE COUNT field
is set to zero. Then the only purpose of the block may be to instruct the
boot kernel to issue the CALL instruction.

16-22 ADSP-BF59x Blackfin Processor Hardware Reference



System Reset and Booting

Initcode routines can be very different in nature. They might reside in
ROM or SRAM. They might be called once during the booting process or
multiple times. They might be volatile and be overwritten by other boot
blocks after executing, or they might be permanently available after boot
time. The boot kernel has no knowledge of the nature of initcodes and has
no restrictions in this regard. Refer to the VisualDSP++ Loader and Utili-
ties Manual for how this feature is supported by the tools chain.

It is the user’s responsibility to ensure that all code and data sections that
are required by the initcode are present in memory by the time the
initcode executes. Special attention is required if initcodes are written in
C or C++ language. Ensure that the initcode does not contain calls to the
runtime libraries. Do not assume that parts of the runtime environment,
such as the heap are fully functional. Ensure that all runtime components
are loaded and initialized before the initcode executes.

The Visual DSP++ elfloader utility provides two different mechanisms to
support the initcode feature.

e The -init initcode.dxe command line switch
e The -initcall address/symbol command line switch

If enabled by the VisualDSP++ elfloader -init initcode.DXE command
line switch, the initcode is added to the beginning of the boot stream.
Here, initcode.DXE refers to the user-provided custom initialization exe-
cutable— a separate Visual DSP++ project. Figure 16-6 on page 16-24
shows a boot stream example that performs the following steps.

1. Boot initcode into L1 memory.
Execute initcode.
Overwrite initcode with final application code.

Boot data/code into memory.

AN

Continue program execution with block n.

ADSP-BF59x Blackfin Processor Hardware Reference 16-23



Advanced Boot Techniques

ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ FIash/PROMorSPIDevice\

T Header for Init Block

| — L1 Memory i P — i

T— Init Block - —] Init Block

= — —

[— Fr Header for L1 Block

= — —

0 — L1 Block

E % # App Code/Data
o — — |

| — — 1. Init block
[ — T 2l t add
— Header for Block n owest address
| — " —1

c—|  OxEF000000  Blackfin Processor — Block n

o] — J

| — On-Chip Boot O 4

= —

Before Init Code
Execution

After Init Code

H H H H H H H |:| |:| H ﬁﬁ |:| |:| H H |:| |:| H H H Flash/PROM or SPI Device Execution

] — Header for Init Block
- — —
p— L1 Memory [ it Block — Init Block

F-- L1Block--- —
g Fr Header for L1 Block
- — —
pr— = L1 Block
| — —

> App Code/Data

- — /1
- — /0
| — — Header for Block n
- — /0
o — 0xEF00 0000 Blackfin Processor — Block n
- — — /
| On-Chip Boot = $
—
| —
- —
| —

Figure 16-6. Initialization Code Execution/Boot

Although initcode.DXE files are built as VisualDSP++ projects, they differ
from standard projects. Initcodes provide only a callable sub-function, so
they look more like a library than an application. Nevertheless, unlike

16-24 ADSP-BF59x Blackfin Processor Hardware Reference



System Reset and Booting

library files (.DLB file extension), the symbol addresses have already been
resolved by the linker.

An initcode is always a heading for the regular application code. Conse-
quently whether the initcode consists of one or multiple blocks, it is not
terminated by a BFLAG_FINAL bit indicator—this would cause the boot
ROM to terminate the boot process.

It is advantageous to have a clear separation between the initcode and the
application by using the -init switch. If this separation is not needed, the
elfloader -initcall command-line switch might be preferred. It enables
fractions of the application code to be traded as initcode during the boot
process. See the VisualDSP++ Loader and Utilities Manual for further
details.

Initcode examples are shown in “Programming Examples” on page 16-74.

Quick Boot

In some booting scenarios, not all memories need to be re-initialized.

The ADSP-BF59x processor’s boot kernel can conditionally process boot
blocks. The normal scenario is all boot, the shortened version is quick
boot. It relies on the following primitives.

* The SYSCR register is read to determine what kind of boot is
expected from the boot kernel. Refer to Figure 16-20 on
page 16-55.

The WURESET bit is used to distinguish between cold boot and warm
boot situations and to identify wake-up from hibernate situations.

The BCODE bit field in the SYSCR register can overrule the native
decision of the boot kernel for a software boot. See the flowchart in
Figure 16-1 on page 16-7.

ADSP-BF59x Blackfin Processor Hardware Reference 16-25



Advanced Boot Techniques

e The BFLAG_WAKEUP bit in the dF1ag word of the ADI_BOOT_DATA
structure indicates that the final decision was to perform a quick
boot. If the boot kernel is called from the application, then the
application can control the boot kernel behavior by setting the
BFLAG_WAKEUP flag accordingly. See the dF1ags variable on
Figure 16-25 on page 16-66.

e The BFLAG_QUICKBOOT flag in the BLOCK CODE word of the block
header controls whether the current block is ignored for quick
boot.

If both the global BFLAG_WAKEUP and the block-specific BFLAG_QUICKBOOT
flags are set, the boot kernel ignores those blocks. But since the
BFLAG_INIT, BFLAG_CALLBACK, BFLAG_FINAL, and B FLAG_AUX ﬂags are inter-
nally cleared and the BFLAG_IGNORE flag is toggled, through double
negation, the “ignore the ignore block” command instructs the boot ker-
nel to process the block.

Although the BFLAG_INIT flag is suppressed in quick boot, the user may
not want to combine the BFLAG_INIT flag with the BFLAG_QUICKBOOT flag.
The initialization code can interrogate the BFLAG_WAKEUP flag and execute
conditional instructions.

Indirect Booting

The processor’s boot kernel provides a control mechanism to let blocks
either boot directly to their final destination or load to an intermediate
storage place, then copy the data to the final destination in a second step.

16-26 ADSP-BF59x Blackfin Processor Hardware Reference



System Reset and Booting

This feature is motivated by the following requirements:

* Some boot modes do not use DMA. They load data by core
instruction. The core cannot access some memories directly (for
example L1 instruction SRAM), or is less efficient than the DMA

in accessing some memories.

* In some advanced booting scenarios, the core needs to access the
boot data during the booting process, for example in processing
decompression, decryption and checksum algorithms at boot time.
The indirect booting option helps speed-up and simplify such sce-
narios. Software accesses off-chip memory less efficiently and
cannot access data directly if it resides in L1 instruction SRAM.

Indirect booting is not a global setting. Every boot block can control its
own processing by the BFLAG_INDIRECT flag in the block header.

In general a boot block may not fit into the temporary storage memory so
the boot kernel processes the block in multiple steps. The larger the tem-
porary buffer, the faster the boot process. By default the L1 data memory
region between 0xFF80 7F00 and 0xFF80 7FEF is used for intermediate
storage. Initialization code can alter this region by modifying the
pTempBuffer and dTempByteCount variables in the ADI_BOOT_DATA struc-
ture. The default region is at the upper end of a physical memory block.
When increasing the dTempByteCount value, pTempBuffer also has to
change.

Callback Routines

Callback routines, like initialization codes, are user-defined subroutines
called by the boot kernel at boot time. The BFLAG_CALLBACK flag in the
block header controls whether the callback routine is called for a specific

block.

There are several differences between initcodes and callback routines.
While the BFLAG_INIT flag causes the boot kernel to issue a CALL instruc-

ADSP-BF59x Blackfin Processor Hardware Reference 16-27



Advanced Boot Techniques

tion to the target address of the specific boot block, the BFLAG_CALLBACK
flag causes the boot kernel to issue a CALL instruction to the address held
by the pCal1BackFunction pointer in the ADI_BOOT_DATA structure. While
a boot stream can have multiple individual initcodes, it can have just one
callback routine. In the standard boot scenario, the callback routine has to
be registered by an initcode prior to the first block that has the
BFLAG_CALLBACK flag set.

The purpose of the callback routine is to apply standard processing to the
block data. Typically, callback routines contain checksum, decryption,
decompression, or hash algorithms. Checksum or hash words can be

passed through the block header ARGUMENT field.

Since callback routines require access to the payload data of the boot
blocks, the block data must be loaded before it can be processed. Unlike
initcodes, a callback usually resides permanently in memory. If the block
is loaded to L1 instruction memory, the BFLAG_CALLBACK flag is likely
combined with the BFLAG_INDIRECT bit. The boot kernel performs these
steps in the following order.

1. Data is loaded into the temporary buffer defined by the
pTempBuffer variable.

2. The CALL to the pCal1BackFunction is issued.

3. After the callback routine returns, the memory DMA copies data to
the destination.

If a block does not fit into the temporary buffer, for example when the
BLOCK COUNT is greater than the dTempByteCount variable, the three steps
are executed multiple times until all payload data is loaded and processed.
The boot kernel passes the parameter dCbFlags to the callback routine to
tell it chat it is being invoked the first or the last time for a specific block.
To store intermediate results across multiple calls the callback routine can
use the uwUserShort and dUserLong variables in the ADI_BOOT_DATA
structure.

16-28 ADSP-BF59x Blackfin Processor Hardware Reference



System Reset and Booting

Callback routines meet C language calling conventions for subroutines.
The prototype is as follows.

s32 CallBackFunction (ADI_BOOT_DATA* pBootStruct,
ADI_BOOT_BUFFER* pCallbackStruct, s32 dCbFlags);

The Visual DSP++ header file defines the ADI_BOOT_CALLBACK_FUNC type
the following way:

typedef s32 ADI_BOOT_CALLBACK_FUNC (ADI_BOOT_DATA*,
ADI_BOOT_BUFFER*, s32 )

The pBootStruct argument is passed in RO and points to the
ADI_BOOT_DATA structure used by the boot kernel. These are handled by
the pTempBuffer and dTempByteCount variables as well as the pHeader
pointer to the ARGUMENT field. The callback routine may process the block
further by modifying the pTempBuffer and dTempByteCount variables.

The pCallbackStruct structure passed in R1 provides the address and
length of the data buffer. When the BFLAG_INDIRECT flag is not set, the
pCallbackStruct contains the target address and byte count of the boot
block. If the BFLAG_INDIRECT flag is set, the pCallbackStruct contains a
copy of the pTempBuffer. Depending on the size of the boot block and
processing progress, the byte count provided by pCallbackStruct equals
either dTempByteCount or the remainder of the byte count.

When the BFLAG_INDIRECT flag is set along with the BFLAG_CALLBACK flag,
memory DMA is invoked by the boot kernel after the callback routine
returns. This memory DMA relies on the pCallbackStruct structure not
the global pTempBuffer and dTempByteCount variables.

The callback routine can control the source of the memory DMA by alter-
ing the content of the pCallbackStruct structure, as may be required if
the callback routine performs data manipulation such as decompression.

The dCbFlags parameter passed in R? tells the callback routine whether it
is invoked the first time (CBFLAG_FIRST) or whether it is called the last
time (CBFLAG_FINAL) for a specific block. The CBFLAG_DIRECT flag indi-
cates that the BFLAG_INDIRECT bit is not active so that the callback routine

ADSP-BF59x Blackfin Processor Hardware Reference 16-29



Advanced Boot Techniques

will only be called once per block. When the CBFLAG_DIRECT flag is set, the
CBFLAG_FIRST and CBFLAG_FINAL flags are also set.

f#define CBFLAG_FINAL 0x0008
j#define CBFLAG_FIRST 0x0004
j#define CBFLAG_DIRECT 0x0001

A callback routine also has a boolean return parameter in register RO. If the
return value is non-zero, the subsequent memory DMA does not execute.
When the CBFLAG_DIRECT flag is set, the return value has no effect.

Error Handler

While the default handler simply puts the processor into idle mode, an
initcode routine can overwrite this pointer to create a customized error
handler. The expected prototype is

void ErrorfFunction (ADI_BOOT_DATA* pBootStruct, void
*pFailingAddress);

Use an initcode to write the entry address of the error routine to the
pErrorFunction pointer in the ADI_BOOT_DATA structure. The error han-
dler has access to the boot structure and receives the instruction address
that triggered the error.

CRC Checksum Calculation

The ADSP-BF59x Blackfin processors provide an initcode and a callback
routine in ROM that can be used for CRC32 checksum generation during
boot time. The checksum routine only verifies the payload data of the
blocks. The block headers are already protected by the native XOR check-

sum mechanism.

Before boot blocks can be tagged with the BFLAG_CALLBACK flag to enable
checksum calculation on the blocks, the boot stream must contain an
initcode block with no payload data and with the CRC32 polynomial in
the block header ARGUMENT word.

16-30 ADSP-BF59x Blackfin Processor Hardware Reference



System Reset and Booting

The initcode registers a proper CRC32 wrapper to the pCal1BackFunction
pointer. The registration principle is similar to the XOR checksum exam-
ple shown in “Programming Examples” on page 16-74.

Load Functions

All boot modes are processed by a common boot kernel algorithm. The
major customization is done by a subroutine that must be registered to the
pLoadFunction pointer in the ADI_BOOT_DATA structure. Its simple proto-
type is as follows.

void LoadFunction (ADI_BOOT_DATA* pBootStruct);

The Visual DSP++ header files define the following type:
typedef void ADI_BOOT_LOAD_FUNC (ADI_BOOT_DATA* )

For a few scenarios some of the flags in the dF1ags word of the
ADI_BOOT_DATA structure, such as BFLAG_PERIPHERAL and BFLAG_SLAVE,
slightly modify the boot kernel algorithm.

The boot ROM contains several load functions. One performs a memory
DMA, others perform peripheral DMAs or load data from booting source
by polling operation. The first is reused for fill operation and indirect
booting as well.

In second-stage boot schemes, the user can create customized load func-
tions or reuse the original BFROM_PDMA routine and modify the
pDmaControlRegister, pControlRegister and dControlValue values in
the ADI_BOOT_DATA structure. The pDmaControlRegister points to the
DMAx_CONFIG or MDMA_Dx_CONFIG register. When the BFLAG_SLAVE flag is
not set, the pControlRegister and dControlValue variables instruct the
peripheral DMA routine to write the control value to the control register
every time the DMA is started.

ADSP-BF59x Blackfin Processor Hardware Reference 16-31



Advanced Boot Techniques

Load functions written by users must meet the following requirements.
* DProtect against dByteCount values of zero.

* Multiple DMA work units are required if the dByteCount value is
greater than 65536.

* The pSource and pDestination pointers must be properly updated.

In slave boot modes, the boot kernel uses the address of the dArgument
field in the pHeader block as the destination for the required dummy
DMAs when payload data is consumed from BFLAG_IGNORE blocks. If the
load function requires access to the block's ARGUMENT word, it should be
read early in the function.

The most useful load functions BFROM_MDMA and BFROM_PDMA are accessible
through the jump table. Others, do not have entries in the jump table.
Their start address can be determined with the help of the hook routine
when calling the respective BFROM_SPIBOOT or other functions. In this way,
they can be re-purposed for runtime utilization.

Calling the Boot Kernel at Runtime

The boot kernel’s primary purpose is to boot data to memory after
power-up and reset cycles. However some of the routines used by the boot
kernel might be of general value to the application. The boot ROM sup-
ports reuse of these routines as C-callable subroutines. Programs such as
second-stage boot kernels, boot managers, and firmware update tools may
call the function in the ROM at runtime. This could load entirely differ-
ent applications or a fraction of an application, such as a code overlay or a
coefficient array.

To call these boot kernel subroutines, the boot ROM provides an API at
address 0xEF00 0000 in the form of a jump table.

16-32 ADSP-BF59x Blackfin Processor Hardware Reference



System Reset and Booting

When calling functions in the boot ROM, the user must ensure the pres-
ence of a valid stack following C language conventions. See the
Visual DSP++ Compiler documentation for details.

Debugging the Boot Process

If the boot process fails, very little information can be gained by watching
the chip from outside. In master boot modes, the interface signals can be
observed. In slave boot modes only the HWAIT or the RTS signals tell about
the progress of the boot process.

However, by using the emulator, there are many possibilities for debug-
ging the boot process. The entire source code of the boot kernel is
provided with the Visual DSP++ installation. This includes the project exe-
cutable (DXE) file. The LOAD SYMBOLS feature of the VisualDSP++ IDDE
helps to navigate the program. Note that the content of the ROM might
differ between silicon revisions. Hardware breakpoints and single-stepping
capabilities are also available.

Table 16-6 identifies the program symbols in the boot kernel for debug.

Table 16-6. Boot Kernel Symbols for Debug

Symbol Comment

_bootrom.assert.default If the program counter halts at the IDLE instruction at the
_bootrom.assert.default address, the boot kernel has
detected an error condition and will not continue the boot pro-
cess. A misformatted boot stream is the most likely cause of
such an error. The RETS register points to the failing routine.
When stepping a couple of instructions further, there is a way
to ignore the error and to continue the boot process by clearing
the >ASTAT register while the emulator steps over the subse-
quent IF CC JUMP 0 instruction.

_bootrom.bootmenu If the emulator hits a hardware breakpoint at the
_bootrom.bootmenu address, this indicates that a valid boot
mode is being used.

ADSP-BF59x Blackfin Processor Hardware Reference 16-33



Advanced Boot Techniques

Table 16-6. Boot Kernel Symbols for Debug (Continued)

Symbol

Comment

_bootrom.bootkernel.entry

If the emulator hits a hardware breakpoint at the
_bootrom.bootkernel.entry label, this indicates that device
detection or autobaud returned properly.

_bootrom.bootkernel.breakpoint

This is a good address to place a hardware breakpoint. The
boot kernel loads a new block header at this breakpoint. The
block header can be watched at address 0xFF80 7FF0 or wher-
ever the pHeader points to.

_bootrom.bootkernel.initcode

All payload data of the current block is loaded by the time the
program passes the _bootrom.bootkernel.initcode label.
The boot kernel is about to interrogate the BFLAG_INIT flag. If
set, the initcode can be debugged.

_bootrom.bootkernel.exit

Once the boot kernel arrives at the _bootrom.bootkernel
exit label, it detects a BFLAG_FINAL flag. After some house-
keeping, it jumps to the EVT1 vector.

The boot kernel also generates a circular log file in scratch pad memory.
While the pLogBuffer and the dLogByteCount variables describe the loca-
tion and dimension of the log buffer, the pLogCurrent points to the next
free location in the buffer. The log file is updated whenever the kernel
passes the _bootrom.bootkernel.breakpoint label.

At each pass, nine 32-bit words are written to the log file, as follows.

* block code word (dBlockCode) of the block header

* target address (pTargetAddress) of the block header

* Dbyte count (dByteCount) of the block header

e argument word (dArgument) of the block header

* source pointer (pSource) of the boot stream

* block count (dBlockCount)

* internal copy of the dBlockCode word OR’ed with dF1ags

16-34 ADSP-BF59x Blackfin Processor Hardware Reference




System Reset and Booting

* content of the SEQSTAT register
e 0xFFFF FFFA (-6) constant

The ninth word is overwritten by the next entry set, so that 0OxFFFF FFFA
always marks the last entry in the log file.

Most of the data structures used by the boot kernel reside on the stack in
scratchpad memory. While executing the boot kernel routine (excluding
subroutines), the P5 points to the ADI_BOOT_DATA structure. Type
“(ADI_BOOT_DATA*) $P5” in the VisualDSP++ expression window to see
the structure content.

Boot Management

Blackfin processor hardware platforms may be required to run different
software at different times. An example might be a system with at least one
application and one in-the-field firmware upgrade utility. Other systems
may have multiple applications, one starting then terminating, to be
replaced by another application. Conditional booting is called boot man-
agement. Some applications may self-manage their booting rules, while
others may have a separate application that controls the process, namely a
boot manager.

In a master boot mode where the on-chip boot kernel loads the boot
stream from memory, the boot manager is a piece of Blackfin software
which decides at runtime what application is booted next. This may sim-
ply be based on the state of a GPIO input pin interrogated by the boot
manager, or it may be the conclusion of complex system behavior.

Slave boot scenarios are different from master boot scenarios. In slave boot
modes, the host masters boot management by setting the Blackfin proces-
sor to reset and then applying alternate boot data. Optionally, the host
could alter the BMODE configuration pins, resulting in little impact to the
Blackfin processor since the intelligence is provided by the host device.

ADSP-BF59x Blackfin Processor Hardware Reference 16-35



Boot Management

Booting a Different Application

The boot ROM provides a set of user-callable functions that help to boot
a new application (or a fraction of an application). Usually there is no
need for the boot manager to deal with the format details of the boot
stream.

One such function is BFROM_SPIB0O0T, which is discussed in “SPI Master
Boot Modes” on page 16-40.

The user application, the boot manager application, or an initcode can call
these functions to load the requested boot data. Using the BFLAG_RETURN
flag the user can control whether the routine simply returns to the calling
function or executes the loaded application immediately.

These ROM functions expect the start address of the requested boot
stream as an argument. For BFROM_SPIBOOT, it is a serial address. The SPI
function can also accept the code for the GPIO pin that controls the
device select strobe of the SPI memory.

Multi-DXE Boot Streams

If the start addresses of all the boot streams are predefined, the boot man-
ager needs only to call the ROM functions directly. However since the
addresses tend to vary from build to build they may have to be calculated
at runtime.

In the world of the VisualDSP++ elfloader, a boot stream is always gener-
ated from a DXE file. It is therefore common to talk about multi-DXE or
multi-application booting. When the elfloader utility accepts multiple
DXE files on its command line, it generates a contiguous boot image by
default. The second boot stream is appended immediately to the first one.
Since the utility updates the ARGUMENT field of all BFLAG_FIRST blocks, the
ARGUMENT field of a BFLAG_FIRST block is called next-DXE pointer (NDP).

16-36 ADSP-BF59x Blackfin Processor Hardware Reference



System Reset and Booting

B, multidxe.ldr - LdrViewer E]@

File Tools Help

=

/- DXE 0 at 00000000 |~ Target ... |EPROM ... | Data
00000130 (Next DXE) || [FFA00000 00000150 00 11 22 33 44 55 66 77 86 99 Ak BE C DD EE FF
-1 Block 0 at 00000000 FFADOO10 00000160 00 11 22 33 44 55 66 77 88 99 Ak BE CC DD EE FF
= AD955006 (Flags) FF400020 00000170 00 11 22 33 44 55 66 77 98 99 A4 BE CC DD EE FF
e FFAD0030 00000180 00 11 22 33 44 55 66 77 88 99 Ak BB CC DD EE FF
: FFA00040 00000190 00 11 22 33 44 55 6F 77 98 99 A4 BB CC DD EE FF
i FFADOOS0  000001AD 00 11 22 33 44 55 66 77 BA 99 Ak BB CC DD EE FF
FFAD000D (Target Address) FFA00060  OODOO1ERG 00 11 22 33 44 55 A6 77 88 99 Ak BRE CC DD EE FF
00000010 (Byte Count) FFADOO70  0O0001CO 00 11 22 33 44 55 66 77 86 99 Ak BB CC DD EE FF
00000120 (Argument) | ||FFaonogn  nnonoibon 00 11 22 33 44 E5 GG 77 88 99 Ak EE CC DD EE FF
%1 Block 1 at 00000020 FFADOOS0  O0O000LED 00 11 22 33 44 55 66 77 88 99 Ak BE CC DD EE FF
= ADFC0806 (Flags) FFAQ00A0  0QO0O0LFQ 00 11 22 33 44 55 &E 77 898 99 Ak BB CC DD EE FF

FFA000BD ooopozon 00 11 22 33 44 55 66 77 88 99 Ak BB CC DD EE FF

= FFA000CO ooopozio 00 11 22 33 44 65 66 77 88 99 Ak BB CC DD EE FF

FFA10000 (Target Address) FFAODODO 00000220 00 11 22 33 44 55 66 77 98 9% &4 BB CC DD EE FF
00000100 (Byte Count) FFL000ED 00000230 00 11 22 33 44 G5 66 77 88 99 A4 BB CC DD EE FF
00000000 (Argument) FFA000F0D 00000240 00 11 22 33 44 55 66 77 88 93 A4 BE CC DD EE FF

= DXE 1 at 00000130 FF&00100 00000250 00 11 22 33 44 55 66 77 88 93 A4 BE CC DD EE FF
00000350 (Next DXE) FF&00110 00000260 00 11 22 33 44 55 66 77 88 99 44 BB CC DD EE FF

%1 Block 0 at 00000130 FFAO0120 00000270 00 11 22 33 44 55 66 77 BA 99 Ak BB CC DD EE FF

FFA00130 aononzan 00 11 22 33 44 55 66 77 88 99 44 BE CC DD EE FF

) ADBES006 (Fiags) FFA00140 00000290 00 11 22 33 44 55 66 77 B8 99 Ak BE CC DD EE FF

FFADDOOD (Target Address) FFADO1S0  0ODO02A0 00 11 22 33 44 55 66 77 88 99 Ak BB CC DD EE FF
00000000 (Byte Count) FFADOL60  O0O00DZED 00 11 22 33 44 55 66 77 88 99 Ak BE CC DD EE FF
00000220 (Argument) FFADOL70  000002C0 00 11 22 33 44 55 66 77 88 99 Ak BE CC DD EE FF
=1 Block 1 at 00000140 FFADOLE0  000002D0 00 11 22 33 44 55 66 77 88 99 Ak BE CC DD EE FF
ADFE0006 (Flags) FFADOL1S0  000002ED 00 11 22 33 44 55 66 77 88 99 Ak BE CC DD EE FF
FFA0000 (Target Address) FFADOL1AD  000002F0 00 11 22 33 44 55 66 77 88 99 Ak BE CC DD EE FF
00000200 gt Consrd) FFADOLED 00000300 00 11 22 33 44 55 66 77 88 99 Ak BE CC DD EE FF
FFADOLCO 00000310 00 11 22 33 44 55 66 77 88 99 Ak BE CC DD EE FF
00000000 (Argument) FFADOLDO 00000320 00 11 22 33 44 55 66 77 88 99 Ak BE CC DD EE FF
= Block 2 at 00000350 FFL001E0D 00000330 00 11 22 33 44 55 65 77 BB 99 A4 BB CC DD EE FF
= ADDS58 106 (Flags) FFADOLFO 00000340 00 11 22 33 44 55 66 77 88 99 Ak BB CC DD EE FF
Fill
Final
FFB00000 (Target Address)
00008000 (Byte Count)

ASASASAS (Argument)
-I- DXE 2 at 00000360
00001370 {Next DXE)
Block 0 at 00000350
I ADB45006 (Flags)
Ignore
First
FFAQD000 (Target Address)
00000000 (Byte Count)
00001000 (Argument)
Block 1at 00000370
Block 2 at 00000380
Block 3 at 00000330
Block 4 at 00000340
Block 5 at 00000380
Block 6 at 000003C0
Block 7 at 00000300 ™ I >

16-bit ADSP-B52x/BF54x Blackfin compatible (ASCII) boot siream

Figure 16-7. LdrViewer Screen Shot

o [ [ [

The next-DXE pointer of the first DXE boot stream points relatively to
the start address of the second DXE boot stream. A multi-DXE boot
image can be seen as a linked list of boot streams. The next-DXE pointer
of the last DXE boot stream points relatively to the next free address.

ADSP-BF59x Blackfin Processor Hardware Reference 16-37



Boot Management

Figure 16-7 on page 16-37 shows a screenshot of the Blackfin loader file
viewer utility. The LdrViewer utility is not part of the Visual DSP++ tools
suite. It is a third-party freeware product available on
http://www.dolomitics.com.

Determining Boot Stream Start Addresses

The ROM functions (BFROM_SPIBOOT and others) not only allow the appli-
cation to boot a subroutine residing at a given start address, they also assist
in walking through linked multi-DXE streams.

When the BFLAG_NEXTDXE bit in dF1ags is set and these functions are
called, the system does not boot but instead walks though the boot stream
following the next-DXE pointers. The dBlockCount parameter can be used
to specify the DXE of interest. The routines then return the start address
of the requested DXE’s boot stream.

Initialization Hook Routine

When the ROM functions (BFROM_SPIB0OOT and others) are called, they
create an instance of the ADI_BOOT_DATA structure on the stack and fill the
items with default values. If the BFLAG_HOOK is set, the boot kernel invokes
a callback routine which was passed as the fourth argument of the ROM
routines, after the default values have been filled. The hook routine can be
used to overwrite the default values. Every hook routine should fit the

prototype:
void hook (ADI_BOOT_DATA* pBS);

The Visual DSP++ header files define the ADI_BOOT_HOOK_FUNC type the
following way:
typedef void ADI_BOOT_HOOK_FUNC (ADI_BOOT_DATA*);

The hook function also gives access to the DMA load function used by the
respective boot mode, which can be used for general purposes at runtime.
For example, in the BFROM_SPIBOOT case, an instance of the load function:
ADI_BOOT_LOAD_FUNC *pSpilLoadFunction;

16-38 ADSP-BF59x Blackfin Processor Hardware Reference


http://www.dolomitics.com

System Reset and Booting

can be initialized by equipping the hook function with the instruction:
pSpilLoadFunction = pBS->plLoadFunction;

Specific Boot Modes

This section discusses individual boot modes and the required hardware
connections.

The boot modes differ in terms of the booting source— for example
whether data is loaded through the SPI or the parallel interface. Boot
modes can also be grouped into slave boot modes and master boot modes.

In slave boot modes, the Blackfin processor functions as a slave to any host
device, which is typically another embedded processor, an FPGA device or
even a desktop computer. Likely, the Blackfin processor RESET input is
controlled by the host device. So, usually the host sets RESET first, then
waits until the host senses the HWAIT output, and finally provides the boot
data.

If a Blackfin processor, configured to operate in any of the slave boot
modes, awakens from hibernate, it cannot boot by its own control. A feed-
back mechanism has to be implemented at the system level to inform the
host device whether the processor is in hibernate state or not. The HWATT
strobe is an important primitive in such systems.

In the master boot modes, the Blackfin processor usually does not need to
be synchronized and can load the boot data by itself. Master modes typi-
cally read from memory. This can be serial memory that is read through
SPI interfaces.

Whether from the host (slave booting mode) or from memory (master
booting mode), the boot source does not need to know about the structure
of the boot stream.

ADSP-BF59x Blackfin Processor Hardware Reference 16-39



Specific Boot Modes

No Boot Mode

When the BMODE pins are all tied low (BMODE = 000), the Blackfin processor
does not boot. Instead, it executes an IDLE instruction, preventing it from
executing any instructions provided by the regular boot source. The pur-
pose of this mode is to bring the processor up to a clean state after reset.

When connecting an emulator and starting a debug session, the processor
awakens from an idle due to the emulation interrupt and can be debugged
in the normal manner.

The no boot mode is not the same as the bypass mode featured by
the ADSP-BF53x Blackfin processor.

SPI Master Boot Modes

The ADSP-BF59x processors feature booting from off-chip SPI memory
using either SPI1 or SPIO.

The external SPI boot modes (BMODE = 010 or 100) boot from SPI memo-
ries connected to the SPT1_SSEL5 (SPI1) or SPT0_SSELZ (SPIO) interface.
8-, 16-, 24-, and 32-bit address words are supported. Standard SPI memo-

ries are read using either the standard 0x03 SPI read command or the
0x0B SPI fast read command.

Unlike other Blackfin processors, the ADSP-BF59x Blackfin pro-
cessors have no special support for DataFlash devices from Atmel.
Nevertheless, DataFlash devices can be used for booting and are
sold as standard 24-bit addressable SPI memories. They also sup-
port the fast read mode. If used for booting, DataFlash memory
must be programmed in the power-of-2 page mode.

16-40 ADSP-BF59x Blackfin Processor Hardware Reference



System Reset and Booting

For booting, the SPI memory is connected as shown in Figure 16-8 (SPI1)
or Figure 16-9 (SP10).

BLACKFIN v SPI MEMORY
(MASTER SPI DEVICE) DDEXT (SLAVE SPI DEVICE)
10KQ 3 310K
SPI1_SCK (PG8) »{ sck
SPI1_SSELS (PG11) » TS
SPI1_MOSI (PGY) »| mosi
SPI1_MISO (PG10) [¢ MISO

Figure 16-8. Blackfin to SPI1 Memory Connections

BLACKFIN SPI MEMORY

(MASTER SPI DEVICE) VDDEXT (SLAVE SPI DEVICE)
10KQ 3 S10KQ
SPI0_SCK (PF15) »| sck
SPI0_SSEL2 (PF8) » CS
SPI0_MOSI (PF13) »| mosI
SPI0_MISO (PF14) [¢ MISO

Figure 16-9. Blackfin to SPI0 Memory Connections

The pull-up resistor on the MIS0 line is required for automatic device
detection. The pull-up resistor on the SPTI_SSEL5 or SPT0_SSEL? line
ensures that the memory is in a known state when the Blackfin GPIO is in
a high-impedance state (for example, during reset). A pull-down resistor
on the SPI clock line (SPT1_SCK or SP10_SCK) displays cleaner oscilloscope
plots during debugging.

ADSP-BF59x Blackfin Processor Hardware Reference 16-41



Specific Boot Modes

For SPI master boot, the SPE, MSTR and S7 bits are set in the SPI1_CTL or
SPI0_CTL register. For details see Chapter 13, “SPI-Compatible Port Con-
troller”. With TIMOD = 2, the receive DMA mode is selected. Clearing both
the CPOL and CPHA bits results in SPI mode 0. The boot kernel does not
allow SPI1 or SPI0 hardware to control the SPT1_SSEL5 or SPI0_SSEL?
pin. Instead, this pin is toggled in GPIO mode by software. Initialization
code is allowed to manipulate the uwSsel variable in the ADI_B0OOT_DATA
structure to extend the boot mechanism to a second SPI memory con-
nected to another GPIO pin.

By default, the boot kernel sets the SPI1_BAUD or SPI0_BAUD register to a
value of 133, resulting in a bit rate of SCLK/266 (as shown in Table 16-7).

Table 16-7. Bit Rate

SPI_BAUD Bit Rate

133 SCLK/(2x133) << default
Reserved

2 SCLK/(2x2)

4 SCLK/(2x4)

8 SCLK/(2x8)

16 SCLK/(2x16)

32 SCLK/(2x32)

64 SCLK/(2x64)

Similarly, the boot kernel uses the standard 0x03 SPI read command, by
default.

SPI Device Detection Routine

Because BMODE = 010 or 100 supports booting from various SPI memories,
the boot kernel automatically detects what type of memory is connected.
To determine whether the SPI memory device requires an 8-, 16-, 24- or

16-42 ADSP-BF59x Blackfin Processor Hardware Reference



System Reset and Booting

32-bit addressing scheme, the boot kernel performs a device detection
sequence prior to booting. The MIS0 signal requires a pull-up resistor,
since the routine relies on the fact that memories do not drive their data
outputs unless the right number of address bytes are received.

Initially, the boot kernel transmits a read command (either 0x03 or 0x0B)
on the M0ST line, which is immediately followed by two zero bytes. Once
the transmission is finished, the boot kernel interrogates the data received
on the MIS0 line. If it does not equal OxFF (usually a DMACODE value of
0x01 is expected), then an 8-bit addressable device is assumed.

If the received value equals OxFF, it is assumed that the memory device has
not driven its data output yet and that the OxFF value is due to the pull-up
resistor. Thus, another zero byte is transmitted and the received data is
tested again. If it differs from OxFF, either a 16-bit addressable device
(standard mode) or an 8-bit addressable device (fast read mode) is
assumed.

If the value still equals OxFF, device detection continues. Device detection
aborts immediately if a byte different than 0xFF is received. The boot ker-
nel continues with normal boot operation and it re-issues a read command
to read from address 0 again. The first block header is loaded by two read
sequences, further block headers and block payload fields are loaded by

separate read sequences.

ADSP-BF59x Blackfin Processor Hardware Reference 16-43



Specific Boot Modes

Figure 16-10 illustrates how individual devices would behave.

MoslI <0x03 IOxOB>< 0x00 X 0x00 >< 0x00 >< 0x00 >< 0x00 >< 0x00 >

MISO< OxFF >< OxFF

0x01 > STANDARD 8-BIT

MISO< OxFF >< OxFF

oFF X ox01 > STANDARD 16-BIT,
FAST READ 8-BIT

M|50< OxFF >< OxFF OxFF >< OxFF >< 0x01 > STANDARD 24-BIT,

FAST READ 16-BIT

XX X X

MISO< OXFF >< OXFF OXFF >< OXFF >< OXFF >< 0x01 > .-~ STANDARD 32-BIT,

FAST READ 24-BIT

'V"S°< OxFF >< OXFF >< OXFF >< OXFF >< OxFF >< OXFF >< 0x01 > FAST READ

32-BIT

Figure 16-10. SPI Device Detection Principle

Figure 16-11 on page 16-45 shows the initial signaling when a 24-bit
addressable SPI memory is connected in SPI master boot mode. After
RESET releases, a 0x03 command is transmitted to the MOSI output, fol-
lowed by a number of 0x00 bytes. The 24-bit addressable memory device
returns a first data byte at the fourth zero byte. Then, the device detection

16-44 ADSP-BF59x Blackfin Processor Hardware Reference



System Reset and Booting

has completed and the boot kernel re-issues a 0x00 address to load the
boot stream.

SPI0_CLK ©

SPI0_SSEL2 1 0 1 0

1 |
SPI0_MOSI_0 Mo 1] 0 mo | 0 Mo |
SPIO_MISO 1 Y U o Jo]o T
HWAIT 0 1 0 1 0

RESET 1

Figure 16-11. Typical SPI Master Boot Waveforms

SPI Slave Boot Mode

For SPI slave mode boot (BMODE = 011), the Blackfin processor is consum-
ing boot data from an external SPI host device. SPI1 is configured as an
SPI slave device. The hardware configuration is shown in Figure 16-12. As
in all slave boot modes, the host device controls the Blackfin processor
RESET input.

HOST VDDEXT BLACKFIN
(MASTER SPI DEVICE) (SLAVE SPI DEVICE)
J> 3
D3
SPICLK » SPI1_SCK (PG8)
S_SEL » SPI1_SS (PG13)
MOSI » SPI1_MOSI (PG9)
MISO [« SPI1_MISO (PG10)
FLAG/INTERRUPT ¢ HWAIT (PG4)

Figure 16-12. Connections Between Host (SPI Master) and Blackfin Pro-
cessor (SPI Slave)

ADSP-BF59x Blackfin Processor Hardware Reference 16-45



Specific Boot Modes

The host drives the SPI clock and is responsible for the timing. The host
must provide an active-low chip select signal that connects to the SPTI_SS
input of the Blackfin processor. It can toggle with each byte transferred or
remain low during the entire procedure. 8-bit data is expected. The 16-bit
mode is not supported.

In SPI slave boot mode, the boot kernel sets the CPHA bit and clears the
CPOL bit in the SPI1_CTL register. Therefore the MISO pin is latched on the
falling edge of the M0OSI pin. For details see Chapter 13, “SPI-Compatible
Port Controller”.

In SPI slave boot mode, HWAIT functionality is critical. When high, the
resistor shown in Figure 16-12 programs HWAIT to hold off the host. HWAIT
holds the host off while the Blackfin processor is in reset. Once HWAIT
turns inactive, the host can send boot data. The SPI module does not pro-
vide very large receive FIFOs, so the host must test the HWAIT signal for
every byte. Figure 16-14 on page 16-47 illustrates the required program
flow on the host side.

Figure 16-13 on page 16-46 shows the initial waveform for an SPI slave
boot case. As soon as the Blackfin processor releases HWAIT after reset, the
host device pulls the SPTI_SS pin low and starts transmitting data. After
the eighth data word has been received, the boot kernel asserts HWAIT again
as it has to process the DMACODE field of the first block header. When the
host detects the asserted HWAIT it gracefully finishes the transmission of the
on-going word. Then, it pauses transmission until HWAIT releases again.

SPI1_CLK

sPiss - | o -
111 1 1
SPI1_MOSI o THEL Y 1™ W1 o UL _] | )
]

SPI1_MISO
RESET

HwAT ] o — o
Figure 16-13. Typical SPI Slave Boot Waveforms

=

16-46 ADSP-BF59x Blackfin Processor Hardware Reference



System Reset and Booting

Asserted

Deasserted

Assert SPI/SS

Asserted

Deasserted

Send Next Byte

Yes More Bytes

No

Release SPI /SS

!

EXIT

Figure 16-14. SPI Program Flow on Host Device

ADSP-BF59x Blackfin Processor Hardware Reference 16-47



Specific Boot Modes

PPl Boot Mode

The ADSP-BF59x processors feature a 16-bit PPI boot mode
(BMODE = 101). The PPI is a half-duplex bi-directional port consisting of
up to 16 data lines, 3 frame synchronization signals and a clock signal.

In PPI boot mode, the PPI mode of operation is configured as follows:
* Receive mode with 1 external frame sync
* 16-bit bus width
* Data sampled on falling edge of clock
* Frame sync configured for falling edge asserted
* PPI_DELAY value of 0x0

The external frame sync signal is on PPI_FS1. This signal is driven low by
the host at the start of a data transfer with a 16-bit word being transferred
on each PPI_CLK cycle that the PPI_FS1 signal is asserted low.

In order to simplify the PPI host design, PPI boot mode also configures
Timerl for PWM mode of operation. The PWM circuits of the timer are
configured to be clocked by the externally provided PPI_CLK signal allow-
ing for arbitrary pulse widths and pulse periods to be programmed thus
simulating an internally generated frame sync signal on the PPI_FS2 signal.
This configuration lets the processor inform the host when the processor is
ready to receive data and also how much data is expected. This feature
removes the need for the host to process the actual contents of the boot
stream to identify the size of the data transfer.

16-48 ADSP-BF59x Blackfin Processor Hardware Reference



System Reset and Booting

The PPI host can synchronize the PPI_FS2 signal to PPI_CLK signal and
initiate all data transfers accordingly. The PPI_FS2 signal can be looped
back to the PPI_FS1. (See Figure 16-15.)

HOST v BLACKFIN
(MASTER PPI DEVICE) DDEXT (SLAVE PPI DEVICE)
33
PPI_CLK »| PPI_CLK
[PPLFS1 PPI_FS1
PPI_FS2 |¢ PPI_FS2
16
PPI_DATA15-0 PPI_DATA15-0

Figure 16-15. PPI Slave Boot Mode Connections

The Timerl is configured to generate a periodic pulse as opposed to a sin-
gle shot pulse. The pulse period is set to the maximum of OxFFFFFFFF
allowing for any transfer size supported by the kernel. Note the current
16-bit DMA X Count limits the maximum width of a pulse to OxFFFF

words.

After completion of the DMA transfer, the PWM_0UT out mode is termi-
nated and cleared in the required manner. This mode of operation does
impose some restrictions on the amount of time that the PPI host device
can hold off a transfer. If a DMA transfer consists of OxFFFF words, the
timer period will be reached OxFFFF0000 PPI_CLK cycles after the
de-assertion of the PPI_FS2/TMRI signal. This will result in the genera-
tion of an identical PPI_FS2/TMR1 pulse if the DMA transfer has not
completed and the PWM_OUT timer has not been disabled.

In the unlikely event that a user requires a transfer to be held off for this
significant amount of time, the PPI host must be able to ignore any fur-
ther PPI_FS2/TMRI1 assertions until the currently pending transaction

ADSP-BF59x Blackfin Processor Hardware Reference 16-49



Specific Boot Modes

that was delayed has completed. If the master is not capable of ignoring
further PPI_FS2/TMRI1 assertions, the master must ensure that the DMA
completes allowing for the PWM_0UT timer to be disabled prior to the com-
pletion of the timer pulse period of OxFFFFFFFF PPI_CLK cycles.

After PPI boot completion the PPI interface is disabled and the
PPI_CONTROL register is cleared, this register-clearing operation is
not done for the Timerl registers. Although the timer is disabled,
the TIMERI_CONFIG register is not reloaded with the default reset
value.

UART Slave Mode Boot

Figure 16-16 on page 16-50 shows the interconnection required for boot-
ing. The figure does not show physical line drivers and level shifters that
are typically required to meet the individual UART-compatible standards.

HOST Vv BLACKFIN
DDEXT

(MASTER UART DEVICE) (SLAVE UART DEVICE)
14
= <
> <
X » UAO_RX
RX [« UAO_TX
INTERRUPT [« HWAIT

Figure 16-16. UART Slave Boot Mode Connections

For BMODE = 101, the ADSP-BF59x processor consumes boot data from a
UART host device connected to the UARTO interface.

The host downloads programs formatted as boot streams using an auto-
baud detection sequence. The host selects a bit rate within the UART

16-50 ADSP-BF59x Blackfin Processor Hardware Reference



System Reset and Booting

clocking capabilities. To determine the bit rate when performing the auto-
baud, the boot kernel expects an “@” character (0x40, eight data bits, one
start bit, one stop bit, no parity bit) on the UART UA0_RX input. The boot
kernel acknowledges, and the host then downloads the boot stream. The
acknowledgement consists of four bytes: 0xBF, UARTx_DLL, UARTx_DLH,
0x00. The host is requested to not send further bytes until it has received
the complete acknowledge string. Once the 0x00 byte is received, the host
can send the entire boot stream. The host should know the total byte
count of the boot stream, but it is not required to have any knowledge
about the content of the boot stream. Further information regarding auto-
baud detection is given in “Autobaud Detection” on page 11-14.

LN 1

UAO_TX N L 0 0
1 1 1
UAO_RX Lo U Lo 0 o Lo Mol
N 1
RESET _ 0 i
HWAIT T "o 1 0

Figure 16-17. UART Autobaud Waveform

When the boot kernel is processing fill or initcode blocks it might require
extra processing time and needs to hold the host off from sending more
data. This is signalled with the HWAIT output. When equipped with a
pull-up resistor the HWAIT signal imitates the behavior of an UAO_RTS out-
put and could be connected to the CTS input of the booting host. The host
is not allowed to send data until HWAIT turns inactive after a reset cycle.
Therefore a pulling resistor on the HWAIT signal is required.

If the resistor pulls to ground, the host must pause transmission when
HWAIT is low and is permitted to send when HWAIT is high. A pull-up resis-
tor inverts the signal polarity of HWAIT. The host should test HWAIT at every
transmitted byte.

Figure 16-18 shows the initial case of the UART boot mode. As soon as
HWAIT releases after reset, the boot kernel expects to receive a 0x40 byte for

ADSP-BF59x Blackfin Processor Hardware Reference 16-51



Specific Boot Modes

bit rate detection. After the bit rate is known, the UART is enabled and
the kernel transmits for bytes.

1 1 1 1

UAO_TX * o flo Mo 0 0

UAO_RX
RESET * 1
HWAIT 0 1 0

Figure 16-18. UART Boot - Host relying on HWAIT

For UART boot, it is not obvious on how to change the PLL by an
initcode routine. This is because the UARTx_DLL and UARTx_DLH registers
have to be updated to keep the required bit rate constant after the SCLK
frequency has changed. It must be ensured that the host does not send
data while the PLL is changing. The initcode examples provided along
with the Visual DSP++ tools installation demonstrate how this can be
accomplished.

L1 ROM Boot Mode

This boot mode may be chosen only by customers who have the custom
product with its L1 IROM mask programmed by the factory.

In this boot mode, the processor starts instruction execution at address
0xFFA1 0000 of the on-chip L1 instruction ROM, entirely bypassing the
boot ROM. This option provides users with full control over the booting
process. It is highly recommended that users review the contents of the
factory provided boot ROM in the course of developing their own L1
ROM boot sequence.

@ Analog Devices does not provide technical support for custom boot

code development. For more information about custom product
and custom IROM mask production, contact your Analog Devices
representative.

16-52 ADSP-BF59x Blackfin Processor Hardware Reference



System Reset and Booting

Reset and Booting Registers

Two registers are used for reset and booting—the software reset register
(SWRST) and the system reset configuration register (SYSCR).

Software Reset (SWRST) Register

A software reset can be initiated by setting bits [2:0] in the system soft-
ware reset field in the software reset register (SWRST) shown in

Figure 16-19 on page 16-53.

Software Reset Register (SWRST)

15 14 13 12 11 10 9 8

0xFFCO 0100 Iololglololololololo |0|0|0|0|0|0 Reset = 0x0000
SYSTEM_RESET
RESET_SOFTWARE———— (System Software Reset)
(Software Reset Status) — RO 0x0—O0x6 — No SW reset
0 — No SW reset since last 0x7 — Reset system
SWRST read
1 — SW reset occurred since DOUBLE_FAULT
last SWRST read (Core-Double-Fault Reset
Enable)
RESET_WDOG —7M——— 0 — Do not generate reset
(Software Watchdog Timer Source) on core-double-fault
— Read only 1 — Generate reset
0 — Software reset not generated on core-double-fault

by watchdog
1 — Software reset generated
by watchdog

RESET_DOUBLE
(Core-Double-Fault Reset) — RO
0 — SW reset not generated

by core-double-fault
1 — SW reset generated

by core-double-fault

Figure 16-19. Software Reset Register

Bit 3 can be used to generate a reset upon core-double-fault. A core-dou-
ble-fault resets both the core and the peripherals, but not most of the
DPMC. Bit 15 indicates whether a software reset has occurred since the

ADSP-BF59x Blackfin Processor Hardware Reference 16-53



Reset and Booting Registers

last time SWRST was read. Bit 14 indicates the software watchdog timer has
generated the software reset. Bit 13 indicates the core-double-fault has
generated the software reset. Bits [15:13] are read-only and cleared when
the register is read. Reading the SWRST also clears bits [15:13] in the SYSCR
register. Bits [3:0] are read/write.

Only writing to bits[2:0], resets only the modules in the SCLK domain. It
does not clear the core. The program executes normally at the instruction
after the MMR write to SWRST. The system is kept in the reset state as long
as the bits[2:0] are set to b#111. To release reset, write a zero again. Exam-
ples for this are available in assembly (Listing 16-1 on page 16-74) and C
(Listing 16-2 on page 16-75). It is not recommended that this functional-
ity be used directly. Rather, call the ROM function bfrom_SysControl ()
to perform a system reset.

16-54 ADSP-BF59x Blackfin Processor Hardware Reference



System Reset and Booting

System Reset Configuration (SYSCR) Register

The software reset configuration register (SYSCR) is shown in Figure 16-20

on page 16-55.

System Reset Configuration Register (SYSCR)
X — state is initialized from BMODE pins during hardware reset

1514 1312 1110 9 8 7 6 5 4 3 2 1 0
0xFFCO 0104 IolOlolOllololololllolololollo!x|X|x Reset = dependent on pin

values

SWRESET.-
Software Reset — RO
A software reset BMODE [2:0] (Boot Mode) — RO
0 — last reset was not 000 — BMODE_BYPASS
1 - last reset was Bypass boot ROM, execute from
WDRESET 16-bit external memory
Watchdog Reset — RO 001 — Reserved
A watchdog reset 010 - BMODE_SPI1MEM
0 — last reset was not Boot from serial SPI memory
1 — last rest was using SPI1(master mode)

011 — BMODE_SPIHOST
DFRESET— | Boot from SPI1 host (slave mode)
Double-fault Reset — RO 100 - BMODE_SPIOMEM
A double-fault reset Boot from serial SPI memory using
0 — last reset was not SPI0(master mode)
1 — last reset was 101 - BMODE_PPIHOST

Boot from PPI host

WURESET 110 - BMODE_UARTOHOST
Wake-up Reset — RO
Since last hardware reset Boot from UARTO host

111 - BMODE_L1ROM

0 — no wake-up event

1 — there was a wake-up Boot from Internal L1 ROM

Reserved

BCODE[3:0] Reserved
Boot Code — RW
0000 — BCODE_NORMAL
Perform quick boot as WURESET. Update power management.
0001 — BCODE_NOBOOT
Do not boot, directly jump to EVT1 vector.
0010 — BCODE_QUICKBOOT
Ignore WURESET, always perform quick boot.
0100 - BCODE_ALLBOOT
Ignore WURESET, do not perform quick boot.
0110 - BCODE_FULLBOOT
Ignore WURESET, do not perform quick boot.
Update power management
1xxx — reserved

Figure 16-20. System Reset Configuration Register

ADSP-BF59x Blackfin Processor Hardware Reference 16-55



Reset and Booting Registers

The values sensed from the BMODE[2:0] pins are mirrored into the system
reset configuration register (SYSCR). The values are available for software
access and modification after the hardware reset sequence. Software can
modify only bits[7:4] in this register to customize boot processing upon a
software reset.

The WURESET indicates whether there was a wake up from hibernate since
the last hardware reset. The bit cannot be cleared by software.

The bits [15:13] are exact copies of the same bits in the SWRST register.
Unlike the SWRST register, SYSCR can be read without clearing these bits.
Reading SWRST also causes SYSCR[15:13] to clear.

16-56 ADSP-BF59x Blackfin Processor Hardware Reference



System Reset and Booting

Boot Code Revision Control (BK_REVISION)

The boot ROM reserves the 32-bits at address 0xEF00 0040 for a four

byte version code as shown in Figure 16-21.

Boot Code Revision BK_REVISION Word, 31-16

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

O0xEF00 0040 [o]ofoJofoJoJofoJoJoo]o]o]o]00]
L I _ ]
Bit 31:24— BK_ID L Bit 23:16— BK_PROJECT
(Boot Kernel Identifier) (Boot Kernel Project)
Reads as OxAD Reads as 0x05 on ADSP-BF59x processors

Boot Code Revision BK_REVISION Word, 15-0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0xEF00 0040 Io_|o|o|o|o|o|o|o|o|o|0|0|0|0|0|0|

L BK_UPDATE
(Boot Kernel Update
Enhancements/Bug fix version specifically made for
the specific project. Refer to the specific processor
anomaly sheet for the version control of a specific
silicon revision.

BK_VERSION |
(Boot Kernel Version)
Global boot kernel version number

Figure 16-21. Boot Code Revision Code (BK_REVISION)

ADSP-BF59x Blackfin Processor Hardware Reference 16-57



Reset and Booting Registers

Boot Code Date Code (BK_DATECODE)

The boot ROM reserves the 32-bits at address 0xEF00 0050 for the build
date as shown in Figure 16-22.

Boot Code Date Code BK_DATECODE Word, 31-16

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
OxEF00 0050 [ofofofofefofofo]efofofo]ofo o] 0]

Bit 31:16 — BK_YEAR

Boot Code Date Code BK_DATECODE Word, 15-0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0XxEF00 0050 |o|o|o|o|o|o|0|0|0|0|0|0|0|0|0|0|
L IL ]

‘ \— BK_DAY

BK_MONTH

Figure 16-22. Boot Code Date Code (BK_DATECODE)

16-58 ADSP-BF59x Blackfin Processor Hardware Reference



System Reset and Booting

Zero Word (BK_ZERQOS)

The boot ROM reserves the 32-bits at address 0xEF00 0048 which always
reads as 0x0000 000 as shown in Figure 16-23.

Zero Word BK_ZEROS, 31-16

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
OxEF00 0048 [elofefofefofo oo o oofo o] 0]
L 1

Read only.

Zero Word BK_ZEROS, 15-0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0xEF00 0048 mo|o|o|o|o|o|o|o|o|o|o|o|o|o|o|
]

Read only- ‘

Figure 16-23. Zero Word (BK_ZEROS)

ADSP-BF59x Blackfin Processor Hardware Reference 16-59



Data Structures

Ones Word (BK_ONEYS)

The boot ROM reserves the 32-bits at address 0xEF00 004C which always
reads OxFFFF FFFF as shown in Figure 16-24.

Ones Word BK_ONES, 31-16

31 30 29 28 27 26 25 24 23 22 20 19 18 17 16
0XEFO00 004C |1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|

Read only.

Ones Word BK_ONES, 15-0

15 14 13 12 11 10
0XEF00 004C |_|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|

Read only ‘

Figure 16-24. Ones Word (BK_ONEY)

Data Structures

The boot kernel uses specific data structures for internal processing.
Advanced users can customize the booting process by changing the con-
tent of the structure within the initcode routines. This section uses C
language definitions for documentation purposes. VisualDSP++ users can
use these structures directly in assembly programs by using the . IMPORT
directive. The structures are supplied by the bfrom.h header file in your
Visual DSP++ installation directory.

16-60 ADSP-BF59x Blackfin Processor Hardware Reference



System Reset and Booting

ADI_BOOT HEADER

typedef struct
s32 dBlockCode;
void* pTargetAddress;
s32 dByteCount;
s32 dArgument;

} ADI_BOOT_HEADER;

The structure ADI_BOOT_HEADER is used by the boot kernel to load and pro-
cess a block header.

Every block header is loaded to L1 data memory location 0xFF80 7FF0-
0xFF80 7FFF first or where pHeader points to. There it is analyzed by the
boot kernel.

ADI_BOOT BUFFER

typedef struct {
void* pSource;
s32 dByteCount;
} ADI_BOOT_BUFFER;

The structure ADI_BOOT_BUFFER is used for any kind of buffer. For the
user, this structure is important when implementing advanced callback

mechanisms.

ADI_BOOT DATA

typedef struct ({
void* pSource;
void* pDestination;
slex pControlRegister;
slée* pDmaControlRegister;
$32 dControlValue;

ADSP-BF59x Blackfin Processor Hardware Reference 16-61



Data Structures

s32 dByteCount;

s32 dFlags;

sl6 uwDataWidth;

s16 uwSrcModifyMult;
s16 uwDstModifyMult;

s16 uwHwait;
s1l6 uwSsel;
s16 uwUserShort;

s32 dUserlLong;
s32 dReserved;

ADI_BOOT_ERROR_FUNC* pErrorFunction;
ADI_BOOT_LOAD_FUNC* plLoadFunction;
ADI_BOOT_CALLBACK_FUNC* pCallBackFunction;
ADI_BOOT_HEADER* pHeader;
void* pTempBuffer;
void* pTempCurrent;
s32 dTempByteCount;
s32 dBTockCount;
$32 dClock;
void* plogBuffer;
void* plogCurrent;
s32 dLogByteCount;
} ADI_BOOT_DATA;

The structure ADI_BOOT_DATA is the main data structure. A pointer to a
ADI_BOOT_DATA structure is passed to most complex subroutines, including
load functions, initcode, and callback routines. The structure has two
parts. While the first is closely related to internal memory load routines,
the second provides access to global boot settings.

16-62 ADSP-BF59x Blackfin Processor Hardware Reference



System Reset and Booting

Table 16-8 on page 16-63 describes the data structures.

Table 16-8. Structure Variables, ADI_BOOT_DATA

Variable

Description

pSource

In the context of the boot kernel, the pSource pointer points either to
the start address of the entire boot stream or to the header of the next
boot block. In the context of memory load routines pSource points to
the source address of the DMA work unit.

pDestination

The pDestination pointer is only used in memory load routines. It
points to the destination address of the DMA work unit. It points to
either 0xFF80 7FF0 when a header is loaded, or the target address
when the payload data is loaded.

pControlRegister

This pointer holds the MMR address of the peripheral’s main control
register (for example UARTX_LCR or SPIx_CTL)

pDmaControlRegister

This pointer holds the MMR address of the DMAX_CONFIG register for
the DMA channel in use.

dControlValue

The lower 16 bits of this value are written to the pControlRegister
location each time a DMA work unit is started.

dByteCount Number of bytes to be transferred.

dFlags The lower 16 bits of this variable hold the lower 16 bits of the current
block code. The upper 16 bits hold global flags. See “dFlags Word” on
page 16-66.

uwDataWidth This instructs the memory load routine to use:

0 — 8-bit DMA
1 - 16-bit DMA
2 — 32-bit DMA

uwSrcModifyMult

This is the multiplication factor used by the DMA source. A value of 1
sets the source modifier to 1 for 8-bit DMA, 2 for 16-bit DMA, or 4
for 32-bit DMA.

uwDstModifyMult

This is the multiplication factor used by the DMA destination. A value
of 1 sets the destination modifier to 1 for 8-bit DMA, 2 for 16-bit
DMA, or 4 for 32-bit DMA.

uwHwait

This 16-bit value holds the GPIO used for HWAIT signaling. The PG4
pin is configured as HWAIT signal on ADSP-BF59x processors. The
upper eight bits designate the port number (for example 01 for Port A,
02 for Port B). The lower four bits designate the GPIO in the port.

ADSP-BF59x Blackfin Processor Hardware Reference 16-63




Data Structures

Table 16-8. Structure Variables, ADI_B00T_DATA (Continued)

Variable Description

uwSsel This 16-bit value holds the GPIO used for SPI slave select. The upper
eight bits designate the port number (for example 01 for Port A, 02 for
Port B). The lower four bits designate the GPIO in the port.

uwUserShort The programmer can use this 16-bit value for passing parameters
between modules of a customized booting scheme.

dUserLong The programmer can use this 32-bit value for passing parameters
between modules of a customized booting scheme.

dReserved This 32-bit value is reserved for future development.

pErrorFunction

This is the pointer to the error handler. See “Error Handler” on

page 16-30.

pLoadFunction

This is the pointer to the function responsible for loading data. See
“Load Functions” on page 16-31

pCallBackFunction;

This is the pointer to the callback function. See “Callback Routines” on
page 16-27

pHeader

The pHeader pointer holds the address for intermediate storage of the
block header. By default this value is set to 0xFF80 7FFO0.

pTempBuffer

This pointer tells the boot kernel what memory to use for intermediate
storage when the BFLAG_INDIRECT flag is set for a given block. The
pointer defaults to 0xFF80 7F00. The value can be modified by the
initcode routine, but there would be some impact to the VisualDSP++
tools.

pTempCurrent

Defaults to the pTempBuffer value. A load function can modify this
value to manipulate subsequent callback and memory DMA routines.

dTempByteCount

This is the size of the intermediate storage buffer used when the
BFLAG_INDIRECT flag is set for a given block. This value defaults to
256 and can be modified by an initcode routine. When increasing this
value, the pTempBuffer must also be changed since by default the
block is at the end of a physical data memory block.

dBTockCount

This 32-bit variable counts the boot blocks that are processed by the
boot kernel. If the user sets this value to a negative value, the boot ker-
nel exits when the variable increments to zero.

dClock

The dC1ock variable holds information about the clock divider used by
individual (serial) boot modes.

16-64

ADSP-BF59x Blackfin Processor Hardware Reference




System Reset and Booting

Table 16-8. Structure Variables, ADI_B00T_DATA (Continued)

Variable Description

pLogBuffer Pointer to the circular log buffer. By default the log buffer resides in L1
scratch pad memory at address 0xFFBO 0400.

pLogCurrent Pointer to the next free entry of the circular log buffer.

dLogByteCount Size of the circular log buffer, default is 0x400 bytes.

ADSP-BF59x Blackfin Processor Hardware Reference

16-65



Data Structures

dFlags Word

Figure 16-26 and Figure 16-25 on page 16-66 describe the dF1ags word.
dFlags [15-0] is a copy of Block Code[15-0] of the block currently being

processed.

dFlags Word, Bits 31-16

31 30 29 28 27 26 25 24 23 22 21

17 16

[efefolofofefefo]ofofo]ofo]o [ofel]
 IN—

BFLAG_NONRESTORE

0 — restore control registers
on exit

1 —do not restore control
registers on exit

BFLAG_RESET

0 — do not issue system reset
on exit

1 —issue system reset on exit

BFLAG_RETURN
0 — jump to EVT1 address on exit
1 —issue RTS instruction on exit

BFLAG_NEXTDXE
0 — perform exit
1 — look for DXE start address

BFLAG_WAKEUP

0 — no wakeup case, perform boot
1 — wakeup case, perform
quick boot

BFLAG_SLAVE

0 — master boot mode
1 — slave boot mode

BFLAG_PERIPHERAL

0 — memory boot mode
1 — peripheral boot mode

BFLAG_NOAUTO

0 — perform automatic device
detection

1 — suppress automatic device
detection

Figure 16-25. dFlags Word (Bits 31-16)

BFLAG_HOOK

0 — Do not callback initialization
hook routine

1 - Do callback initialization hook
routine

BFLAG_HDRINDIRECT
0 — Headers are loaded directly
1 — Headers are loaded indirectly

BFLAG_TYPE

00 — (BFLAG_TYPE1) one SPI
address byte

01 — (BFLAG_TYPEZ2) two SPI
address bytes

10 — (BFLAG_TYPER) three SPI
address bytes

11 — (BFLAG_TYPE4) four SPI
address bytes

BFLAG_FASTREAD
0 — normal SPI mode
1 — SPI fast read operation

BFLAG_ALTERNATE
(ADSP-BF59x only)
0 - regular boot

1 - alternate boot

16-66

ADSP-BF59x Blackfin Processor Hardware Reference



System Reset and Booting

dFlags Word, Bits 15-0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[efofefofofofofo[efefofo]ofo o]0}

BFLAG_FINALJ
BFLAG_FIRST DMACODE - DMA Coding

BFLAG_INDIRECT BFLAG_SAVE
BFLAG_IGNORE BFLAG_AUX
BFLAG_INIT

BFLAG_CALLBACK
BFLAG_QUICKBOOT
BFLAG_FILL

Figure 16-26. dFlags Word (Bits 15-0)

Callable ROM Functions for Booting

The following functions support boot management.

BFROM_FINALINIT

Entry address:

0xEF00 0002

Arguments:

no arguments

C prototype:

void bfrom_Finallnit (void);

The bfrom_FinalInit function never returns. It only executes a JUMP to
the address stored in EVT1.

ADSP-BF59x Blackfin Processor Hardware Reference 16-67



Callable ROM Functions for Booting

BFROM_PDMA

Entry address:

0xEF00 0004

Arguments:

pointer to ADI_BOOT_DATA in RO

C prototype:

void bfrom_PDma (ADI_BOOT_DATA *p);

This is the load function for peripherals such as SPI and UART that sup-
port DMA in their boot modes.

BFROM_MDMA

Entry address:

0xEF00 0006

Arguments:

pointer to ADI_BOOT_DATA in RO

C prototype:

void bfrom_MDma (ADI_BOOT_DATA *p);

This is the load function used for memory boot modes. This routine is
also reused when the BFLAG_FILL or the BFLAG_INDIRECT flags are
specified.

16-68 ADSP-BF59x Blackfin Processor Hardware Reference



System Reset and Booting

BFROM_SPIBOOT

Entry address:
0xEF00 000A
Arguments:
e SPI address in RO
* dFlags in R1
* dBlockCount in R2
* pCallHook passed over the stack in [FP+0x14]
* updated block count returned in RO
C prototype:

s32 bfrom_SpiBoot (
s32 dSpiAddress,
s32 dFlags,
s32 dBlockCount,
ADI_BOOT_HOOK_FUNC* pCallHook);

This SPI master boot routine processes boot streams residing in SPI mem-
ories, using the SPI1 controller. The fourth argument pCallHook is passed
over the stack. It provides a hook to call a callback routine after the
ADI_BOOT_DATA structure is filled with default values. For example, the
pCallHook routine may overwrite the default value of the uwSsel value in
the ADI_BOOT_DATA structure. The coding follows the rules of uwHWAIT (see
“Boot Host Wait (HWAIT) Feedback Strobe” on page 16-18). A value of
0x070B represents GPIO PG11 (SPTI_SSEL5).

Additional bits in the dF1ags word are relevant. The user should always set
the BFLAG_PERIPHERAL flag but never the BFLAG_SLAVE bit. The
BFLAG_NOAUTO flag instructs the system to skip the SPI device detection

ADSP-BF59x Blackfin Processor Hardware Reference 16-69



Callable ROM Functions for Booting

routine. The BFLAG_TYPE then tells the boot kernel what addressing mode
is required for the SPI memory. (see “SPI Device Detection Routine” on
page 16-42). The BFLAG_FASTREAD flag controls whether standard SPI read
(0x3 command) or fast read (0xB) is performed. The three lower bits of
the dF1ags word are translated by the boot kernel into specific values to
the SPT1_BAUD registers. This follows the truth table shown in Table 16-7
on page 16-42.

When called with the BFLAG_ALTERNATE flag, the bfrom_SpiBoot() func-
tion attempts to boot from external SPI memory device. Unless the uwSsel
variable in the ADI_BOOT_DATA structure is altered by a hook routine, the
memory is expected to be connected to SPTO_SSELZ. A pull-up resistor on
this signal is required when automatic device detection is desired.

The bfrom_SpiBoot () routine does not deal with port muxing at all.
When a part has been booted via SPI master mode after reset, the port
muxing configuration is typically already ready for a runtime call to the
bfrom_SpiBoot() routine. Otherwise ensure that the SPIx_MISO0,
SPIx_MOSI and SPIx_SCK signals are properly activated in the PORTx_FER
and PORTx_MUX registers. The SPTO_SSEL2 signal requires, however, that
the respective PORTx_FER bit be cleared, as the boot kernel toggles the sig-
nal in GPIO mode.

Similarly, the user shall set the PG11 bit in the PORTF_FER register when
booting from an external device.

The bfrom_SpiBoot () routine uses the MDMAO memory DMA channel
pair and the DMA7 peripheral DMA. Respective wake-up bits must be set
in the STC_IWRx registers. If a different peripheral DMA channel has been
assigned to the SPI0 controller, use the hook routine to store the MMR
address of the respective DMAx_CONFIG register into the pDmaControlRegis-
ter variable in the ADI_BOOT_DATA structure. Similarly, when using a
different SPI controller than SPIO0, write the MMR address of the relevant
SPIx_CTL register into the pControlRegister variable.

16-70 ADSP-BF59x Blackfin Processor Hardware Reference



System Reset and Booting

BFROM_BOOTKERNEL

Entry address:
0xEF00 0020
Arguments:
* pointer to ADI_BOOT_DATA in RO
* returns updated source address pSource in RO
C prototype:

s32 bfrom_BootKernel (
ADI_BOOT_DATA *p);

This ROM entry provides access to the raw boot kernel routine. It is the
user's responsibility to initialize the items passed in the ADI_BOOT_DATA
structure. Pay particular attention that the function pointers
(pLoadFunction, and pErrorFunction) point to functional routines.

BFROM_CRC32

Entry address:

0xEF00 0030

Arguments:
* pointer to look-up table in RO
* pointer to data in R1
* dByteCount in R2
* initial CRC value in RO

e CRC value returned in RO

ADSP-BF59x Blackfin Processor Hardware Reference 16-71



Callable ROM Functions for Booting

C prototype:

s32 bfrom_Crc32 (
s32 *plLut,
void *pData,
s32 dByteCount,
s32 dInitial);

This routine calculates the CRC32 checksum for a given array of bytes.
The look-up table is typically generated by the BFROM_CRC32POLY routine.
During the boot process this routine is called by the BFROM_CRC32CALLBACK
routine. The dInitial value is normally set to zero unless the CRC32 rou-
tine is called in multiple slices. Then, the dInitial parameter expects the
result of the former run.

BFROM_CRC32POLY

Entry address:
0xEF00 0032
Arguments:
* pointer to look-up table in RO
* polynomial in R1
* updated block count returned in RO
C prototype:

s32 bfrom_Crc32Poly (
unsigned s32 *plLut,
s32 dPolynomial);

This function generates a 1024-byte look-up table from a given CRC
polynomial. During the boot process this routine is hidden by the
BFROM_CRC32INITCODE routine.

16-72 ADSP-BF59x Blackfin Processor Hardware Reference



System Reset and Booting

BFROM_CRC32CALLBACK

Entry address:
0xEF00 0034
Arguments:
* pointer to ADI_BOOT_DATA in RO
* pointer to ADI_BOOT_BUFFER in R1* Callback Flags in R2
C prototype:

s32 bfrom_Crc32Callback (
ADI_BOOT_DATA *pBS,
ADI_BOOT_BUFFER *pCS,
s32 dCbhFlags);

This is a wrapper function that ensures the BFROM_CRC32 subroutine fits
into the boot process.

BFROM_CRC32INITCODE

Entry address:
0xEF00 0036
Arguments:

pointer to
ADI_BOOT_DATA in RO
C prototype:

void bfrom_Crc32Initcode (
ADI_BOOT_DATA *p);

ADSP-BF59x Blackfin Processor Hardware Reference 16-73



Programming Examples

This is an initcode residing in ROM with the following jobs:

* Register BFROM_CRC32CALLBACK as a callback routine to the
pCallback pointer in ADI_BOOT_DATA.

e Call BFROM_CRC32POLY to generate the look-up table.

This function is unlikely to be called by user code directly. This function
is called as an initcode during the boot process when the CRC calculation
is desired. See “CRC Checksum Calculation” on page 16-30 for details.

Programming Examples

The following programming examples demonstrate various booting
scenarios.

System Reset

To perform a system reset, use the code shown in Listing 16-1 or
Listing 16-2.

Listing 16-1. System Reset in Assembly

#include <blackfin.h>

PO.L = LO(BFROM_SYSCONTROL);
PO.H = HI(BFROM_SYSCONTROL);
RO.L = LO(SYSCTRL_SYSRESET);
RO.H = HI(SYSCTRL_SYSRESET);
RI =0

R2 = 0;

CALL (P0O);

16-74 ADSP-BF59x Blackfin Processor Hardware Reference



System Reset and Booting

Listing 16-2. System Reset in C Language

bfrom_SysControl(
SYSCTRL_SYSRESET,
0,
NULL) ;

Exiting Reset to User Mode

To exit reset while remaining in user mode, use the code shown in

Listing 16-3.
Listing 16-3. Exiting Reset to User Mode

_reset: Pl.L = LO(_usercode);
/* Point to start of user code */
P1.H = HI(_usercode);
RETI = P1; /* Load address of _start into RETI */
RTI; /* Exit reset priority */
_reset.end:
_usercode: /* Place user code here */

The reset handler most likely performs additional tasks not shown in the
examples above. Stack pointers and EVTx registers are initialized here.

Exiting Reset to Supervisor Mode

To exit reset while remaining in supervisor mode, use the code shown in

Listing 16-4.

ADSP-BF59x Blackfin Processor Hardware Reference 16-75



Programming Examples

Listing 16-4. Exiting Reset by Staying in Supervisor Mode

_reset:
PO.L = LOCEVT15);
/* Point to IVG15 in Event Vector Table */

PO.H = HI(EVT15);

Pl.L = LO(_isr_IVG15); /* Point to start of IVG15 code */

Pl.H = HI(_isr_IVG15);

[PO] = P1; /* Initialize interrupt vector EVT15 */

PO.L = LO(CIMASK); /* read-modify-write IMASK register */

RO = [PO]; /* to enable IVGL5 interrupts */

Rl = EVT_IVG15 (Z);

RO = RO | RI1; /* set IVG15 bit */

[PO] = RO; /* write back to IMASK */

RAISE 15; /* generate IVG15 interrupt request */

/* IVG 15 is not served until reset
handler returns */

PO.L = LO(_usercode);

PO.H = HI(_usercode);

RETI = PO; /* RETI loaded with return address */

RTI; /* Return from Reset Event */
_reset.end:
_usercode: /* Wait in user mode till IVG15 */

JUMP _usercode; /* interrupt is serviced */
_isr_IVG15: /* IVG15 vectors here due to EVT15 */

Initcode (Power Management Control)

The following examples show how to change PLL and the voltage regula-
tor within an initcode.

The ADSP-BF59x processors do not have an on-chip voltage regulator.
Set the bfrom_SysControl optkn1to SYSCTRL_EXTVOLTAGE

16-76 ADSP-BF59x Blackfin Processor Hardware Reference



System Reset and Booting

Listing 16-5. Changing PLL and Voltage Regulator in C Language

f#include <ccblkfn.h>
#include <bfrom.h>
void init_DPM(ADI_BOOT_DATA* pBS)
{
ADI_SYSCTRL_VALUES init_DPM;
init_DPM.uwP11Ct1 = SET_MSEL(12);
init_DPM.uwP11Div = (SET_SSEL(4) | CSEL_DIV1);
init_DPM.uwPl1lLockCnt = 0x0200;
bfrom_SysControl (SYSCTRL_EXTVOLTAGE | SYSCTRL_PLLCTL |
SYSCTRL_PLLDIV | SYSCTRL_LOCKCNT | SYSCTRL_WRITE, &init_DPM,
NULL);
}

Listing 16-6. Changing PLL and Voltage Regulator in Assembly

#include <blackfin.h>

#include <bfrom.h>

.import "bfrom.h";

/* Load Immediate 32-bit value into data or address register */
jtdefine IMM32(reg,val) regiHf.H=hi(val); regf#.L=1o(val)
.SECTION L1_code;

init_DPM:

lTink sizeof (ADI_SYSCTRL_VALUES)+2;

[--SP] = (R7:0,P5:5);

SP += -12;

RO.L = SET_MSEL(12);

W[FP+-sizeof (ADI_SYSCTRL_VALUES)+off-

setof (ADI_SYSCTRL_VALUES,uwP11Ct1)] = RO;

RO.L = (SET_SSEL(4) | CSEL_DIVI1);

W[FP+-sizeof (ADI_SYSCTRL_VALUES)+off-

setof (ADI_SYSCTRL_VALUES,uwP11Div)] = RO;

RO.L = 0x0200;

ADSP-BF59x Blackfin Processor Hardware Reference 16-77



Programming Examples

W[FP+-sizeof (ADI_SYSCTRL_VALUES)+off-

setof (ADI_SYSCTRL_VALUES,uwPTTLockCnt)] = RO;
RO = (SYSCTRL_EXTVOLTAGE | SYSCTRL_PLLCTL | SYSCTRL_PLLDIV |
SYSCTRL_LOCKCNT | SYSCTRL_WRITE);

R1 = FP;

Rl += -sizeof(ADI_SYSCTRL_VALUES);

R2 =0 (z);

IMM32(P5,BFROM_SYSCONTROL) ;

call(P5);

SP += 12;

(R7:0,P5:5) = [SP++];

unlink;

rts;

init_DPM.end:

Care must be taken that the reprogramming of the PLL does not break the
communication with the booting host. For example, in the case of UART
boot, the UARTx_DLL and UARTx_DLH registers must be updated to keep the
old bit rate.

XOR Checksum

Listing 16-7 illustrates how an initcode can be used to register a callback
routine. The routine is called after each boot block that has the
BFLAG_CALLBACK flag set. The calculated XOR checksum is compared
against the block header ARGUMENT field. When the checksum fails, this
example goes into idle mode. Otherwise control is returned to the boot
kernel.

Since this callback example accesses the data after it is loaded, it would fail
if the target address were in L1 instruction space. Therefore the
BFLAG_INDIRECT flag should also be set. The xor_callback routine could
then perform the checksum calculation at an intermediate storage place.
The boot kernel transfers the data from the temporary buffer to the final
destination after the callback routine returns.

16-78 ADSP-BF59x Blackfin Processor Hardware Reference



System Reset and Booting

In general, the block size is bigger than the size of the temporary buffer.
Therefore, the boot kernel may need to divide the processing of a single
block into multiple steps. The callback routine may also need to be
invoked multiple times—every time the temporary buffer is filled up and
once for the remaining bytes. The boot kernel passes the dFlags parame-
ter, so that the callback routines knows whether it is called the first time,
the last time or neither. The dUserlLong variable in the ADI_BOOT_DATA
structure is used to store the intermediate results between function calls.

Listing 16-7. XOR Checksum

s32 xor_callback(
ADI_BOOT_DATA* pBS,
ADI_BOOT_BUFFER* pCS,
s32 dFlags)

s32 i
if ((pCS!= NULL) && (pBS->pHeader!= NULL)) f{
if (dFlags & CBFLAG_FIRST) {
pBS->dUserLong = 0;
}
for (i=0; i<pCS->dByteCount/sizeof(s32); i++) {
pBS->dUserLong?= ((s32 *)pCS->pSource)[i];
}
if (dFlags & CBFLAG_FINAL) {
if (pBS->dUserlong!= pBS->pHeader->dArgument) {
idle ();

}

return 0;
}
void xor_initcode (ADI_BOOT_DATA *pBS)
{

ADSP-BF59x Blackfin Processor Hardware Reference 16-79



Programming Examples

pBS->pCallBackFunction = xor_callback;
}

Note that the callback routine is not volatile. It should not be overwritten
by subsequent boot blocks. It can, however, be overwritten after process-
ing the last block with BFLAG_CALLBACK flag set.

The checksum algorithm must be booted first and cannot protect itself.
The ADSP-BF59x processors provide a CRC32 checksum algorithm in
the on-chip L1 instruction ROM, that can be used for booting under this
scenario. For more information see “CRC Checksum Calculation” on

page 16-30.

16-80 ADSP-BF59x Blackfin Processor Hardware Reference



17 SYSTEM DESIGN

This chapter provides hardware, software and system design information
to aid users in developing systems based on the Blackfin processor. The
design options implemented in a system are influenced by cost, perfor-
mance, and system requirements. In many cases, design issues cited here
are discussed in detail in other sections of this manual. In such cases, a ref-
erence appears to the corresponding section of the text, instead of
repeating the discussion in this chapter.

Pin Descriptions

Refer to the processor data sheet for pin information, including pin
numbers.

Managing Clocks

Systems can drive the clock inputs with a crystal oscillator or a buffered,
shaped clock derived from an external clock oscillator. The external clock
connects to the processor’s CLKIN pin. It is not possible to halt, change, or
operate CLKIN below the specified frequency during normal operation. The
processor uses the clock input (CLKIN) to generate on-chip clocks. These
include the core clock (CCLK) and the peripheral clock (SCLK).

ADSP-BF59x Blackfin Processor Hardware Reference 17-1



Configuring and Servicing Interrupts

Managing Core and System Clocks

The processor produces a multiplication of the clock input provided on
the CLKIN pin to generate the PLL vC0 clock. This vC0 clock is divided to
produce the core clock (CCLK) and the system clock (SCLK). The core clock
is based on a divider ratio that is programmed via the CSEL bit settings in
the PLL_DIV register. The system clock is based on a divider ratio that is
programmed via the SSEL bit settings in the PLL_DIV register. For detailed
information about how to set and change CCLK and SCLK frequencies, see
Chapter 16, “Dynamic Power Management”.

Configuring and Servicing Interrupts

A variety of interrupts are available. They include both core and periph-
eral interrupts. The processor assigns default core priorities to system-level
interrupts. However, these system interrupts can be remapped via the sys-
tem interrupt assignment registers (SIC_IARx). For more information, see
Chapter 4, “System Interrupts”.

The processor core supports nested and non-nested interrupts, as well as
self-nested interrupts. For explanations of the various modes of servicing
events, please see the Blackfin Processor Programming Reference.

Data Delays, Latencies and Throughput

For detailed information on latencies and performance estimates on the
DMA and external memory buses, refer to “Chip Bus Hierarchy” on
page 3-1.

17-2 ADSP-BF59x Blackfin Processor Hardware Reference



System Design

Bus Priorities

For an explanation of prioritization between the various internal buses,
refer to “Chip Bus Hierarchy” on page 3-1.

High-Frequency Design Considerations

Because the processor can operate at very fast clock frequencies, signal
integrity and noise problems must be considered for circuit board design
and layout. The following sections discuss these topics and suggest various
techniques to use when designing and debugging signal processing
systems.

Signal Integrity

In addition to reducing signal length and capacitive loading, critical sig-
nals should be treated like transmission lines.

Capacitive loading and signal length of buses can be reduced by using a
buffer for devices that operate with wait states. This reduces the capaci-
tance on signals tied to the zero-wait-state devices, allowing these signals
to switch faster and reducing noise-producing current spikes.

Use simple signal integrity methods to prevent transmission line reflec-
tions that may cause extraneous extra clock and sync signals. Additionally,
avoid overshoot and undershoot that can cause long term damage to input
pins.

Some signals are especially critical for short trace length and usually
require series termination. The CLKIN pin should have impedance match-
ing series resistance at its driver. SPORT interface signals TCLK, RCLK, RFS,
and TFS should use some termination. Although the serial ports may be
operated at a slow rate, the output drivers still have fast edge rates and for
longer distances the drivers often require resistive termination located at

ADSP-BF59x Blackfin Processor Hardware Reference 17-3



High-Frequency Design Considerations

the source. (Note also that TFS and RFS should not be shorted in
multi-channel mode.) On the PPI interface, the PPI_CLK and SYNC signals
also benefit from these standard signal integrity techniques. If these pins
have multiple sources, it will be difficult to keep the traces short.

Adding termination to fix a problem on an existing board requires delays
for new artwork and new boards. A transmission line simulator is recom-
mended for critical signals. IBIS models are available from Analog Devices
Inc. that will assist signal simulation software. Some signals can be cor-
rected with a small zero or 22 ohm resistor located near the driver. The
resistor value can be adjusted after measuring the signal at all endpoints.

For details, see the reference sources in “Recommended Reading” on
page 17-13 for suggestions on transmission line termination.

Other recommendations and suggestions to promote signal integrity:

e Use more than one ground plane on the Printed Circuit Board
(PCB) to reduce crosstalk. Be sure to use lots of vias between the
ground planes.

* Keep critical signals such as clocks, strobes, and bus requests on a
signal layer next to a ground plane and away from or laid out per-
pendicular to other non-critical signals to reduce crosstalk.

* Experiment with the board and isolate crosstalk and noise issues
from reflection issues. This can be done by driving a signal wire
from a pulse generator and studying the reflections while other
components and signals are passive.

Decoupling Capacitors and Ground Planes

Ground planes must be used for the ground and power supplies. The
capacitors should be placed very close to the VDDEXT and VDDINT pins of the
package as shown in Figure 17-4. Use short and fat traces for this. The
ground end of the capacitors should be tied directly to the ground plane

17-4 ADSP-BF59x Blackfin Processor Hardware Reference



System Design

inside the package footprint of the processor (underneath it, on the bot-
tom of the board), not outside the footprint. A surface-mount capacitor is
recommended because of its lower series inductance.

Connect the power plane to the power supply pins directly with minimum
trace length. A ground plane should be located near the component side of
the board to reduce the distance that ground current must travel through
vias. The ground planes must not be densely perforated with vias or traces
as their effectiveness is reduced.

VDDINT is the highest frequency and requires special attention. Two things
help power filtering above 100 MHz. First, capacitors should be physically
small to reduce the inductance. Surface mount capacitors of size 0402 give
better results than larger sizes. Secondly, lower values of capacitance will
raise the resonant frequency of the LC circuit. While a cluster of 0.1uF is
acceptable below 50 MHz, a mix of 0.1uF, 0.01uF, 0.001uF and even
100 pF is preferred in the 500 MHz range.

Note that the instantaneous voltage on both internal and external power
pins must at all times be within the recommended operating conditions as
specified in the product data sheet. Local “bulk capacitance” (many micro-
farads) is also necessary. Although all capacitors should be kept close to

ADSP-BF59x Blackfin Processor Hardware Reference 17-5



High-Frequency Design Considerations

the power consuming device, small capacitance values should be the clos-
est and larger values may be placed further from the chip.

ANALOG
DEVICES

P

BuackiZos

ADSP-BF59x
CASE 1. / E\
BYPASS CAPACITORS ON NON- BYPASS CAPACITORS ON
COMPONENT (BOTTOM) SIDE OF COMPONENT (TOP) SIDE OF
BOARD, BENEATH PACKAGE BOARD, AROUND PACKAGE
oo oo
[ [
[ [
ooo
[ O
[ O
[ O
ooo
[ [
] ]
oo oo

Figure 17-1. Bypass Capacitor Placement

Test Point Access

The debug process is aided by test points on signals such as CLKOUT, bank
selects, PPICLK, and RESET. If selection pins such as boot mode are con-
nected directly to power or ground, they are inaccessible under the chip.
Use pull-up and pull-down resistors instead.

17-6 ADSP-BF59x Blackfin Processor Hardware Reference



System Design

Oscilloscope Probes

When making high-speed measurements, be sure to use a “bayonet” type
or similarly short (< 0.5 inch) ground clip, attached to the tip of the oscil-
loscope probe. The probe should be a low-capacitance active probe

with 3 pF or less of loading. The use of a standard ground clip with

4 inches of ground lead causes ringing to be seen on the displayed trace
and makes the signal appear to have excessive overshoot and undershoot.
To see the signals accurately, a 1 GHz or better sampling oscilloscope is

needed.

Recommended Reading

For more information, refer to High-Speed Digital Design: A Handbook of
Black Magic, Johnson & Graham, Prentice Hall, Inc., ISBN
0-13-395724-1.

This book is a technical reference that covers the problems encountered in
state of the art, high-frequency digital circuit design. It is an excellent

source of information and practical ideas. Topics covered in the book
include:

* High-speed properties of logic gates
* Measurement techniques

e Transmission lines

* Ground planes and layer stacking

e Terminations

* Vias

* Power systems

e Connectors

ADSP-BF59x Blackfin Processor Hardware Reference 17-7



Resetting the Processor

e Ribbon cables
e Clock distribution
¢ Clock oscillators

Consult your CAD software tools vendor. Some companies offer demon-
stration versions of signal integrity software. Simply by using their free
software, you can learn:

e Transmission lines are real

e Unterminated printed circuit board traces will ring and have over-
shoot and undershoot

* Simple termination will control signal integrity problems

Resetting the Processor

The reset pin requires a monotonic rise and fall. Therefore the pin should
not be connected directly to an R/C time delay because such a circuit
could be noise sensitive. In addition to the hardware reset mode provided
via the RESET pin, the processor supports several software reset modes.
For detailed information on the various modes, see Blackfin Processor Pro-
gramming Reference. The processor state after reset is also described in the
programming reference.

Recommendations for Unused Pins

Most often, there is no need to terminate unused pins, but the handful
that do require termination are listed at the end of the pin list description
section of the product data sheet.

If the real-time clock is not used, RTXI should be pulled low.

17-8 ADSP-BF59x Blackfin Processor Hardware Reference



System Design

Also note that unused peripherals may have separate power connections.
These should be driven to the specified value.

Programmable Outputs

During power up, each GPIO pin is set to an input and any pins used in
the system as an output should be connected to a pullup or pulldown
resistor to maintain the desired state.

This would be particularly important in motor drive applications. It is also
important for UART TX and RTS, SPI and serial TWI, or other commu-

nications interfaces. Some memory enable pull-ups may also be desired.

After the boot cycle, each GPIO pin may be set to input or output
depending on ADSP-BF59x model number and the boot cycle chosen.
The I/0 / GPIO muxing of all pins may need to be reprogrammed to sup-
port the users application. Care should be taken for compatibility of
function and state, before boot, during boot, and application pin usage.

Voltage Regulation Interface

ADSP-BF59x processors must use an external voltage regulator to power
the VppinT domain. The EXT_WAKE and PG signals can facilitate commu-
nication with the external voltage regulator. EXT_WAKE is high-true for
power-up and low only when the processor is in the hibernate state.
EXT_WAKE may be connected directly to the low-true shut down input of
many common regulators.

The PG (power-good, low-true) signal that allows the processor to start
only after the internal voltage has reached a chosen level. In this way, the
startup time of the external regulator will be detected after hibernation.

If the processor never will enter the hibernate state, the PG signal can be
grounded in this mode. This will always indicate 'power good', meaning

ADSP-BF59x Blackfin Processor Hardware Reference 17-9



Voltage Regulation Interface

that Vppyn is at a safe operating level. Any delay required at initial
power-on, to guarantee a safe operating level for Vot will be pro-
vided by the RESET signal.

If the external regulator for VppnT has a power-good signal output, it

can be used to help the processor recover properly from it's hibernate
state. This signal may need to be inverted, as the processor's input should
be low-true in order to indicate a "power good" condition.

If the external regulator does not have a power-good output, the PG signal
should be driven to a fixed level (just below the desired operating voltage)
so that the PG pin voltage can be compared to Vppnt by the internal
startup logic. This can be accomplished with an external resistor divider
from VppgxT or any other fixed stable voltage. A divider with impedance
of IM Ohm is sufficient to supply current to this PG input. To save even
more current during hibernation, the EXT_WAKE signal may be used as the
voltage source to the divider. EXT_WAKE is low during hibernation, but will
go high before the VT voltage is applied by the external regulator. In

all cases, care should be taken to account for the min and max values of
Vppext of Vop for EXT_WAKE. The voltage applied to the PG pin is used as

the threshold that is compared internally to the rising value of Vppn to

signal the processor to start. The voltage at PG should be calculated such
that the Vppnt value has risen to the desired voltage range for the

application.

17-10 ADSP-BF59x Blackfin Processor Hardware Reference



A SYSTEM MMR ASSIGNMENTS

This appendix lists MMR addresses and register names for all system regis-
ters. Table A-1 groups the registers by function/peripheral and indicates
the section later in this chapter where individual registers for that group
are listed. The tables in the later sections cross reference to individual reg-
ister diagrams located in the chapter where that register is described. The
diagrams show individual bit descriptions for each register.

Table A-1. Register Tables in This Chapter

Function/Peripheral

“System Reset and Interrupt Control Registers” on page A-3

“DMA/Memory DMA Control Registers” on page A-4

“Ports Registers” on page A-7

“Timer Registers” on page A-9

“Core Timer Registers” on page A-3

“Watchdog Timer Registers” on page A-11

“Dynamic Power Management Registers” on page A-11

“Processor-Specific Memory Registers” on page A-2

“PPI Registers” on page A-12

“SPI Controller Registers” on page A-12

“SPORT Controller Registers” on page A-14

“SPORT Clock Gating Register” on page A-17

“UART Controller Registers” on page A-18

“TWI Registers” on page A-19

ADSP-BF59x Blackfin Processor Hardware Reference A-1



Processor-Specific Memory Registers

These notes provide general information about the system mem-

ory-mapped registers (MMRs):
* The system MMR address range is 0xFFCO0 0000 — OxFFDF FFFF.
e All system MMRs are either 16 bits or 32 bits wide. MMRs that are

16 bits wide must be accessed with 16-bit read or write operations.
MMRs that are 32 bits wide must be accessed with 32-bit read or
write operations. Check the description of the MMR to determine
whether a 16-bit or a 32-bit access is required.

e All system MMR space that is not defined in this appendix is

reserved for internal use only.

Processor-Specific Memory Registers

Processor-specific memory registers (OxFFEQ 0004 — 0xFFEO 0300) are
listed in Table A-2.

Table A-2. Processor-Specific Memory Registers

Memory-Mapped Register Name For individual bits, see this diagram:

Address

0xFFEO0 0300 DTEST_COMMAND | “Data Test Command Register” on
page 2-5

A-2 ADSP-BF59x Blackfin Processor Hardware Reference



System MMR Assignments

Core Timer Regqisters

Core timer registers (0xFFE0Q 3000 — 0xFFEO 300C) are listed in
Table A-3.

Table A-3. Core Timer Registers

Memory-Mapped Register Name For individual bits, see this diagram:
Address
0xFFEO 3000 TCNTL “Core Timer Control Register (TCNTL)” on
page 9-5
0xFFEO 3004 TPERIOD “Core Timer Period Register (TPERIOD)” on
page 9-6
0xFFEO0 3008 TSCALE “Core Timer Scale Register (TSCALE)” on page 9-7
0xFFEO 300C TCOUNT “Core Timer Count Register (TCOUNT)” on
page 9-5

System Reset and Interrupt Control
Registers

System reset and interrupt control registers (0xFFC0 0100 —
0xFFCO0 01FF) are listed in Table A-4.

Table A-4. System Reset and Interrupt Control Registers

Memory-Mapped |Register For individual bits, see this diagram:
Address Name

0xFFCO0 0104 SYSCR “System Reset Configuration (SYSCR) Register” on

page 16-55

0xFFCO0 010C SIC_IMASKO | “System Interrupt Mask (SIC_IMASK) Register” on
page 4-12

0xFFCO0 0110 SIC_IARO “System Interrupt Assignment (SIC_IAR) Register” on

page 4-11

ADSP-BF59x Blackfin Processor Hardware Reference A-3



DMA/Memory DMA Control Registers

Table A-4. System Reset and Interrupt Control Registers (Continued)

Memory-Mapped |Register For individual bits, see this diagram:

Address Name

0xFFCO0 0114 SIC_IAR1 “System Interrupt Assignment (SIC_IAR) Register” on
page 4-11

0xFFCO0 0118 SIC_IAR2 “System Interrupt Assignment (SIC_IAR) Register” on
page 4-11

0xFFCO0 011C SIC_IAR3 “System Interrupt Assignment (SIC_IAR) Register” on
page 4-11

0xFFCO0 0120 SIC_ISRO “System Interrupt Status (SIC_ISR) Register” on page 4-12

0xFFCO0 0124 SIC_IWRO “System Interrupt Wakeup-Enable (SIC_ITWR) Register” on
page 4-12

DMA/Memory DMA Control Registers

DMA control registers (0xFFC0 0B00 — 0xFFCO OFFF) are listed in

Table A-5.

Table A-5. DMA Traffic Control Registers

Memory-Mapped
Address

Register Name

For individual bits, see this diagram:

0xFFCO0 0BOC

DMA_TC_PER

“DMA_TC_PER Register” on page 5-91

0xFFCO0 0B10

DMA_TC_CNT | “DMA_TC_CNT Register” on page 5-92

Since each DMA channel has an identical MMR set, with fixed offsets
from the base address associated with that DMA channel, it is convenient
to view the MMR information as provided in Table A-6 and Table A-7.
Table A-6 identifies the base address of each DMA channel, as well as the
register prefix that identifies the channel. Table A-7 then lists the register
suffix and provides its offset from the Base Address.

A-4

ADSP-BF59x Blackfin Processor Hardware Reference




System MMR Assignments

As an example, the DMA channel 0 Y_MODIFY register is called
DMAO_Y_MODIFY, and its address is 0OxFFCO 0C1C. Likewise, the memory

DMA stream 0 source current address register is called
MDMA_SO_CURR_ADDR, and its address is 0xFFCO0 0E64.

Table A-6. DMA Channel Base Addresses

DMA Channel Identifier MMR Base Address Register Prefix
0 0xFFCO0 0C00 DMAO_

1 0xFFCO0 0C40 DMA1_

2 0xFFCO0 0C80 DMA2_

3 0xFFCO0 0CCO0 DMA3_

4 0xFFCO0 0D00 DMA4_

5 0xFFCO0 0D40 DMAS_

6 0xFFCO0 0D80 DMAG_

7 0xFFCO0 0DCO DMA7_

8 0xFFCO0 0E00 DMAS_
MemDMA stream 0 destination 0xFFCO0 0F00 MDMA_DO0_
MemDMA stream 0 source 0xFFCO0 0F40 MDMA_S0_
MemDMA stream 1 destination 0xFFCO0 0F80 MDMA_D1_
MemDMA stream 1 source 0xFFCO0 0FCO0 MDMA_S1_

Table A-7. DMA Register Suffix and Offset

Register Suffix Offset For individual bits, see this diagram:
From Base

NEXT_DESC_PTR 0x00 “DMA Next Descriptor Pointer Registers
(DMAx_NEXT_DESC_PTR/ MDMA_yy_NEXT_DESC_PTR)”
on page 5-82

START_ADDR 0x04 “DMA Start Address Registers
(DMAx_START_ADDR/MDMA_yy_START_ADDR)” on
page 5-76

ADSP-BF59x Blackfin Processor Hardware Reference A-5




DMA/Memory DMA Control Registers

Table A-7. DMA Register Suffix and Offset (Continued)

Register Suffix Offset For individual bits, see this diagram:
From Base
CONFIG 0x08 “DMA Configuration Registers
(DMAx_CONFIG/MDMA_yy_CONFIG)” on page 5-68
X_COUNT 0x10 “DMA Inner Loop Count Registers
(DMAx_X_COUNT/MDMA_yy_X_COUNT)” on page 5-77
X_MODIFY 0x14 “DMA Inner Loop Address Increment Registers
(DMAx_X_MODIFY/MDMA_yy_X_MODIFY)” on page 5-79
Y_COUNT 0x18 “DMA Outer Loop Count Registers
(DMAx_Y_COUNT/MDMA_yy_Y_COUNT)” on page 5-80
Y_MODIFY 0x1C “DMA Outer Loop Address Increment Registers
(DMAx_Y_MODIFY/MDMA_yy_Y_MODIFY)” on page 5-81
CURR_DESC_PTR 0x20 “DMA Current Descriptor Pointer Registers
(DMAx_CURR_DESC_PTR/ MDMA_yy_ CURR_DESC_PTR)”
on page 5-83
CURR_ADDR 0x24 “DMA Current Address Registers
(DMAx_CURR_ADDR/MDMA_yy_ CURR_ADDR)” on
page 5-76
IRQ_STATUS 0x28 “DMA Interrupt Status Registers
(DMAx_IRQ_STATUS/MDMA_yy_IRQ_STATUS)” on
page 5-73
PERIPHERAL _MAP | 0x2C “DMA Peripheral Map Registers(DMAx_PERIPHERAL_MAP/
MDMA_yy_PERIPHERAL_MAP)” on page 5-68
CURR_X_COUNT 0x30 “DMA Current Inner Loop Count Registers
(DMAx_CURR_X_COUNT /MDMA_yy_CURR_X_COUNT)”
on page 5-78
CURR_Y_COUNT 0x38 “DMA Outer Loop Count Registers

(DMAx_Y_COUNT/MDMA Y_COUNT)” on page 5-80

A-6

ADSP-BF59x Blackfin Processor Hardware Reference




Ports Registers

System MMR Assignments

Ports registers (port F: 0xFFCO0 0700 — 0xFFCO 07FF, port G:
0xFFCO0 1500 — 0xFFCO 15FF, port H: 0xFFCO0 1700 — 0xFFCO 17FF,
pin control: 0xFFCO 3200 — 0xFFCO 32FF) are listed in Table A-8.

Table A-8. Ports Registers

Address

Memory-Mapped

Register Name

For individual bits, see this diagram:

0xFFCO0 0700

PORTFIO

“GPIO Data Registers” on page 7-25

0xFFCO0 0704

PORTFIO_CLEAR

“GPIO Clear Registers” on page 7-26

0xFFCO0 0708

PORTFIO_SET

“GPIO Set Registers” on page 7-26

0xFFCO0 070C

PORTFIO_TOGGLE

“GPIO Toggle Registers” on page 7-27

0xFFCO0 0710

PORTFIO_MASKA

“GPIO Mask Interrupt A Registers” on
page 7-29

0xFFCO0 0714

PORTFIO_MASKA_CLEAR

“GPIO Mask Interrupt A Clear Registers”
on page 7-32

0xFFCO0 0718

PORTFIO_MASKA_SET

“GPIO Mask Interrupt A Set Registers” on
page 7-30

0xFFCO0 071C

PORTFIO_MASKA_TOGGLE

“GPIO Mask Interrupt A Toggle Registers”
on page 7-34

0xFFCO0 0720

PORTFIO_MASKB

“GPIO Mask Interrupt B Registers” on
page 7-29

0xFFCO0 0724

PORTFIO_MASKB_CLEAR

“GPIO Mask Interrupt B Clear Registers”
on page 7-33

0xFFCO0 0728

PORTFIO_MASKB_SET

“GPIO Mask Interrupt B Set Registers” on
page 7-31

0xFFCO0 072C

PORTFIO_MASKB_TOGGLE

“GPIO Mask Interrupt B Toggle Registers”
on page 7-35

0xFFCO0 0730

PORTFIO_DIR

“GPIO Direction Registers” on page 7-24

0xFFCO0 0734

PORTFIO_POLAR

“GPIO Polarity Registers” on page 7-27

ADSP-BF59x Blackfin Processor Hardware Reference

A-7




Ports Registers

Table A-8. Ports Registers (Continued)

Address

Memory-Mapped

Register Name

For individual bits, see this diagram:

0xFFCO0 0738

PORTFIO_EDGE

“Interrupt Sensitivity Registers” on

page 7-28

0xFFCO0 073C

PORTFIO_BOTH

“GPIO Set on Both Edges Registers” on
page 7-28

0xFFCO0 0740

PORTFIO_INEN

“GPIO Input Enable Registers” on
page 7-25

0xFFCO0 1500

PORTGIO

“GPIO Data Registers” on page 7-25

0xFFCO0 1504

PORTGIO_CLEAR

“GPIO Clear Registers” on page 7-26

0xFFCO 1508

PORTGIO_SET

“GPIO Set Registers” on page 7-26

0xFFCO 150C

PORTGIO_TOGGLE

“GPIO Toggle Registers” on page 7-27

0xFFCO0 1510

PORTGIO_MASKA

“GPIO Mask Interrupt A Registers” on
page 7-29

0xFFCO0 1514

PORTGIO_MASKA_CLEAR

“GPIO Mask Interrupt A Clear Registers”
on page 7-32

0xFFCO 1518

PORTGIO_MASKA_SET

“GPIO Mask Interrupt A Set Registers” on
page 7-30

0xFFCO0 151C

PORTGIO_MASKA_TOGGLE

“GPIO Mask Interrupt A Toggle Registers”
on page 7-34

0xFFCO 1520

PORTGIO_MASKB

“GPIO Mask Interrupt B Registers” on
page 7-29

0xFFCO0 1524

PORTGIO_MASKB_CLEAR

“GPIO Mask Interrupt B Clear Registers”
on page 7-33

0xFFCO 1528

PORTGIO_MASKB_SET

“GPIO Mask Interrupt B Set Registers” on
page 7-31

0xFFCO 152C

PORTGIO_MASKB_TOGGLE

“GPIO Mask Interrupt B Toggle Registers”
on page 7-35

0xFFCO 1530

PORTGIO_DIR

“GPIO Direction Registers” on page 7-24

0xFFCO0 1534

PORTGIO_POLAR

“GPIO Polarity Registers” on page 7-27

0xFFCO0 1538

PORTGIO_EDGE

“Interrupt Sensitivity Registers” on
page 7-28

ADSP-BF59x Blackfin Processor Hardware Reference




System MMR Assignments

Table A-8. Ports Registers (Continued)

Memory-Mapped
Address

Register Name

For individual bits, see this diagram:

0xFFCO 153C PORTGIO_BOTH

“GPIO Set on Both Edges Registers” on

page 7-28

0xFFCO0 1540 PORTGIO_INEN “GPIO Input Enable Registers” on

page 7-25
0xFFCO0 3200 PORTF_FER “Function Enable Registers” on page 7-23
0xFFCO0 3204 PORTG_FER “Function Enable Registers” on page 7-23
0xFFCO0 3210 PORTF_MUX “Port Multiplexer Control Register” on

page 7-22
0xFFCO0 3214 PORTG_MUX

“Port Multiplexer Control Register” on
page 7-22

Timer Registers

Timer registers (0xFFCO0 0600 — 0xFFCO OGFF) are listed in Table A-9.

Table A-9. Timer Registers

Memory-Mapped
Address

Register Name

For individual bits, see this diagram:

0xFFCO0 0600 TIMERO_CONFIG

“Timer Configuration Register

(TIMER_CONFIG)” on page 8-40

0xFFCO0 0604 TIMERO_COUNTER

“Timer Counter Register

(TIMER_COUNTER)” on page 8-41

0xFFCO0 0608 TIMERO_PERIOD

“Timer Period (TIMER_PERIOD) and Timer
Width (TIMER_WIDTH) Registers” on
page 8-43

0xFFCO0 060C TIMERO_WIDTH

“Timer Period (TIMER_PERIOD) and Timer
Width (TIMER_WIDTH) Registers” on
page 8-43

0xFFCO0 0610 TIMER1_CONFIG

“Timer Configuration Register
(TIMER_CONFIG)” on page 8-40

ADSP-BF59x Blackfin Processor Hardware Reference

A-9




Timer Registers

Table A-9. Timer Registers (Continued)

Memory-Mapped |Register Name For individual bits, see this diagram:

Address

0xFFCO0 0614 TIMERI_COUNTER | “Timer Counter Register
(TIMER_COUNTER)” on page 8-41

0xFFCO0 0618 TIMER1_PERIOD “Timer Period (TIMER_PERIOD) and Timer
Width (TIMER_WIDTH) Registers” on
page 8-43

0xFFCO0 061C TIMERI_WIDTH “Timer Period (TIMER_PERIOD) and Timer
Width (TIMER_WIDTH) Registers” on
page 8-43

0xFFCO0 0620 TIMER2_CONFIG “Timer Configuration Register
(TIMER_CONTFIG)” on page 8-40

0xFFCO0 0624 TIMER2_COUNTER | “Timer Counter Register
(TIMER_COUNTER)” on page 8-41

0xFFCO0 0628 TIMER2_PERIOD “Timer Period (TIMER_PERIOD) and Timer
Width (TIMER_WIDTH) Registers” on
page 8-43

0xFFCO0 062C TIMER2_WIDTH “Timer Period (TIMER_PERIOD) and Timer
Width (TIMER_WIDTH) Registers” on
page 8-43

0xFFCO0 0680 TIMER_ENABLE “Timer Enable Register (TIMER_ENABLE)” on
page 8-35

0xFFCO0 0684 TIMER_DISABLE “Timer Disable Register (TIMER_DISABLE)”
on page 8-36

0xFFCO0 0688 TIMER_STATUS “Timer Status Register (TIMER_STATUS)” on
page 8-37

A-10 ADSP-BF59x Blackfin Processor Hardware Reference



System MMR Assignments

Watchdog Timer Registers

Watchdog timer registers (OxFFCO 0200 — 0xFFCO 02FF) are listed in

Table A-10.

Table A-10. Watchdog Timer Registers

Memory-Mapped

Register Name

For individual bits, see this diagram:

Address

0xFFCO0 0200 WDOG_CTL “Watchdog Control (WDOG_CTL) Register” on
page 10-7

0xFFCO0 0204 WDOG_CNT “Watchdog Count (WDOG_CNT) Register” on
page 10-5

0xFFCO0 0208 WDOG_STAT

“Watchdog Status (WDOG_STAT) Register” on
page 10-6

Dynamic Power Management Registers

Dynamic power management registers (OxFFCO0 0000 — 0xFFCO 00FF)
are listed in Table A-11.

Table A-11. Dynamic Power Management Registers

Memory-Mapped

Register Name

For individual bits, see this diagram:

Address

0xFFCO0 0000 PLL_CTL “PLL_CTL Register” on page 6-21
0xFFCO0 0004 PLL_DIV “PLL_DIV Register” on page 6-21
0xFFCO0 0008 VR_CTL “VR_CTL Register” on page 6-23
0xFFCO0 000C PLL_STAT

“PLL_STAT Register” on page 6-22

0xFFCO0 0010

PLL_LOCKCNT

“PLL_LOCKCNT Register” on page 6-22

ADSP-BF59x Blackfin Processor Hardware Reference A-11



PPI Registers

PPl Registers

PPI registers (0xFFCO 1000 — OxFFCO 10FF) are listed in Table A-12.

Table A-12. PPI Registers

Memory-Mapped
Address

Register Name

For individual bits, see this diagram:

0xFFCO0 1000

PPI_CONTROL

“PPI Control Register (PPI_CONTROL)” on
page 15-26

0xFFCO0 1004 PPI_STATUS “PPI Status Register (PPI_STATUS)” on page 15-30
0xFFCO0 1008 PPI_COUNT “PPI Transfer Count Register (PPI_COUNT)” on
page 15-33
0xFFCO0 100C PPI_DELAY “PPI Delay Count Register (PPI_DELAY)” on
page 15-33
0xFFCO0 1010 PPI_FRAME “PPI Lines Per Frame Register (PPI_FRAME)” on

page 15-34

SPI Controller Registers

SPIO controller registers (0xFFCO0 0500 — 0xFFCO 05FF) are listed in

Table A-13.

SPI1 controller registers (0xFFCO0 3400 — 0xFFCO 34FF) are listed in

Table A-14.

Table A-13. SPI0 Controller Registers

Memory-Mapped
Address

Register Name

For individual bits, see this diagram:

0xFFCO0 0500 SPI0O_CTL “SPI Control (SPI_CTL) Register” on page 13-35
0xFFCO0 0504 SPI0_FLG “SPI Flag (SPI_FLG) R