
Paxson
Spring 2011

CS 161
Computer Security

1/27

Principles and Design Patterns for Secure Systems

In this set of notes we look at ways of building secure systems. The same ideas also allow
us to examine existing systems to understand their security properties.

1 General Principles

We’ll being with some general principles for secure system design.1

• Security is economics. No system is completely, 100% secure against all attacks.
Rather, systems may only need to resist a certain level of attack. There is no point
buying a $10,000 firewall to protect $1,000 worth of trade secrets.

Also, it is often helpful to quantify the level of effort that an attacker would need to
expend to break the system. Adi Shamir once wrote, “There are no secure systems,
only degrees of insecurity.” A lot of the science of computer security comes in measuring
the degree of insecurity.

Analogy: Safes come with a rating of their level of security. For instance, a consumer-
grade safe might indicate that it will resist attack for up to 5 minutes by anyone
without tools. A high-end safe might be rated TL-30: it is secure against a burglar
with safecracking tools and limited to 30 minutes access to the safe. (With such a safe,
we know that we need to hire security guards who are able to respond to any intrusion
within 30 minutes.)

A corollary of this principle is you should focus your energy on securing the weakest
links. Security is like a chain: it is only as secure as the weakest link. Attackers follow
the path of least resistance, and they will attack the system at its weakest point. There
is no sense putting an expensive high-end deadbolt on a screen door; attackers aren’t
going to bother trying to pick the lock when they can just rip out the screen and step
through.

• Least privilege. Give a program the set of access privileges that it legitimately needs
to do its job—but nothing more. Try to minimize how much privilege you give each
program and system component.

Least privilege is an enormously powerful approach. It doesn’t reduce the probability of
failure, but it can reduce the expected cost of failures. The less privilege that a program
has, the less harm it can do if it goes awry or becomes subverted. You can think of this

1Many of these principles are due to Saltzer and Schroeder, who wrote a classic paper in the 1970s with
advice on this topic.

1/27 CS 161, Spring 2011 — Material courtesy Prof. David Wagner 1 of 13

as the computer-age version of the shipbuilder’s notion of “watertight compartments”:
even if one compartment is breached, we want to minimize the damage to the integrity
of the rest of the system.

For instance, the principle of least privilege can help reduce the damage caused by
buffer overruns. If a program is compromised by a buffer overrun attack, then it will
probably be completely taken over by an intruder, and the intruder will gain all the
privileges the program had. Thus, the fewer privileges that a program has, the less
harm is done if it should someday be penetrated by a buffer overrun attack.

Example: How does Unix do, in terms of least privilege? Answer: Pretty lousy. Every
program gets all the privileges of the user that invokes it. For instance, if I run a editor
to edit a single file, the editor receives all the privileges of my user account, including
the powers to read, modify, or delete all my files. That’s much more than is needed;
strictly speaking, the editor probably only needs access to the file being edited to get
the job done.

Example: How is Windows, in terms of least privilege? Answer: Just as lousy. Ar-
guably worse, because many users run under an Administrator account, and many
Windows programs require that you be Administrator to run them. In this case, every
program receives total power over the whole computer. Folks on the Microsoft security
team have recognized the risks inherent in this, and are taking many steps to warn
people away from running with Administrator privileges, so things are getting better
in this respect.

• Use fail-safe defaults. Use default-deny polices. Start by denying all access, then allow
only that which has been explicitly permitted. Ensure that if the security mechanisms
fail or crash, they will default to secure behavior, not to insecure behavior.

Example: A packet filter is a router. If it fails, no packets will be routed. Thus, a
packet filter fails safe. This is good for security. It would be much more dangerous if
it had fail-open behavior, since then all an attacker would need to do is wait for the
packet filter to crash (or induce a crash) and then the fort is wide open.

Example: Long ago, SunOS machines used to ship with + in their /etc/hosts.equiv,
which allowed anyone with root access on any machine on the Internet to log into your
machine as root. Irix machines used to ship with xhost + in their X Windows con-
figuration files by default. These instances violate of the principle of fail-safe defaults,
since the machines came with an out-of-the-box configuration that was insecure by
default.

• Separation of responsibility. Split up privilege, so no one person or program has com-
plete power. Require more than one party to approve before access is granted.

Examples: In a nuclear missile silo, two launch officers must agree before the missile

1/27 CS 161, Spring 2011 — Material courtesy Prof. David Wagner 2 of 13

can be launched.

Example: In a movie theater, you pay the teller and get a ticket stub; then when you
enter the movie theater, a separate employee tears your ticket in half and collects one
half of it, putting it into a lockbox. Why bother giving you a ticket that 10 feet later
is going to be collected from you? One answer is that this helps prevent insider fraud.
Tellers are low-paid employees, and they might be tempted to under-charge a friend,
or to over-charge a stranger and pocket the difference. The presence of two employees
helps keep them both honest, since at the end of the day, the manager can reconcile
the number of ticket stubs collected against the amount of cash collected and detect
some common shenanigans.

Example: In many companies, purchases over a certain amount must be approved
both by the requesting employee and by a separate purchasing office. This control
helps prevent fraud, since it is less likely that both will collude and since it is unlikely
that the purchasing office will have any conflict of interest in the choice of vendor.

• Defense in depth. This is a closely related principle. There’s a saying that you can
recognize a security guru who is particularly cautious if you see someone wearing both
a belt and a set of suspenders. (What better way to avoid getting caught with your
trousers around your ankles?) The principle is that if you use multiple redundant
protections, then all of them would need to be breached before the system’s security
will be endangered.

• Psychological acceptability. It is important that your users buy into the security model.

Example: Suppose the company firewall administrator gains a reputation for capri-
ciously, for no good reason, blocking applications that the engineers need to use to get
their job done. Pretty soon, the engineers are going to view the firewall as damage
and route around it, maybe setting up tunnels, or bypassing it in any number of other
ways. This is not a game that the firewall administartor is going to win. No system
can remain secure for long when all its users actively seek to subvert it.

Example: The system administrator issues an edict that, henceforth, all passwords
will be automatically generated unmemorizable strings that are at least 17 characters
long, and must be changed once a month. What’s likely to happen is that users
will simply write down their password on a yellow sticky attached to their monitor,
visible to anyone who looks. Such well-intentioned edicts can ultimately turn out to
be counter-productive.

• Human factors matter. A related topic: Security systems must be usable by ordinary
people, and must be designed to take into account the role humans will play.

Example: Your web browser pops up security warnings all the time, with vague alarm-
ing warnings but no clear indication of what steps you can take and no guidance on

1/27 CS 161, Spring 2011 — Material courtesy Prof. David Wagner 3 of 13

how to handle the risk. What are you going to do? If you’re like most of the user pop-
ulation, you’re soon going to learn to always click “Ok” any time a security dialogue
box pops up.

Example: The NSA’s cryptographic equipment stores its key material on a small phys-
ical token. This token is built in the shape of an ordinary door key. To activate an
encryption device, you insert the key into a slot on the device and turn the key. This
interface is intuitively understandable, even for 18-year-olds soldiers out in the field
with minimal training in cryptography.

• Ensure complete mediation. When enforcing access control policies, make sure that
you check every access to every object.

Caching is a slightly sticky subject. In some cases, you can get away with not checking
every access and allowing security decisions to be cached, but beware. If the context
relevant to the security decision changes, and the cache entry isn’t invalidated, then
someone might get away with accessing something they shouldn’t.

• Know your threat model. Be careful with old code. The assumptions originally made
might no longer be valid. The threat model may have changed.

Example: In the early days, the Internet was populated only by researchers, who
mostly trusted each other. Many networking protocols designed during those days
made assumptions that all other network participants were benign and would not try
to harm others. Of course, today the Internet is populated by millions of users, who
do not always have such benign intent; consequently, many network protocols designed
long ago are now suffering under the strain of attack. Spam is one well-known example
of this syndrome.

• Detect if you can’t prevent. If you can’t prevent break-ins, at least detect them (and,
where possible, provide a way to recover or to identify the perpetrator). Save audit
logs so that you have some way to analyze break-ins after the fact.

Example: FIPS 140-1 sets out a federal standard on tamper-resistant hardware. Type
III devices—the highest level of security in the standard—are intended to be tamper-
resistant. However, Type III devices are very expensive. Type II devices are only
required to be tamper-evident, so that if someone tampers with them, this will be
visible (e.g., a seal will be visibly broken). This means they can be built more cheaply
and used in a broader array of applications.

• Don’t rely on security through obscurity. The phrase ‘security through obscurity’ has
come to be understood to refer to systems that rely on the secrecy of their design,
algorithms, or source code to be secure.2 The problem with this is that it is often very

2One might hear reasoning like: “this system is so obscure, only 100 people around the world understand

1/27 CS 161, Spring 2011 — Material courtesy Prof. David Wagner 4 of 13

hard to keep the design of the system secret from a dedicated adversary. For instance,
every running installation is going to have binary executable code, and it is tedious but
not all that difficult to disassemble and reverse-engineer such code. Also problematic
is that it is very difficult to assess, with any confidence, the chances that the secret will
leak or the difficulty of learning the secret. Moreover, it’s disastrous if this secret ever
leaks: it is often hard to update widely-deployed systems, so there may be no recourse
if someone ever succeeds in reverse-engineering the code. Historically, security through
obscurity has a lousy track record: many systems that have relied upon the secrecy of
their code or design for security have failed miserably.

This doesn’t mean that open-source applications are necessarily more secure than
closed-source applications. But it does mean that you shouldn’t trust any system
that relies on security through obscurity, and you should probably be skeptical about
claims that keeping the source code secret makes the system significantly more secure.

• Design security in from the start. Trying to retrofit security to an existing application
after it has already been spec’ed, designed, and implemented is usually a very difficult
proposition. At that point, you’re stuck with whatever architecture has been chosen,
and you don’t have the option of decomposing the system in a way that ensures least
privilege, separation of privilege, complete mediation, defense in depth, and other good
properties. Backwards compatibility is often particularly painful, because you are stuck
with supporting the worst insecurities of all previous versions of the software.

Finally, let’s examine three principles that are widely accepted in the cryptographic com-
munity (although not often articulated) that can play a useful role in considering computer
system security as well.

• Conservative design. Systems should be evaluated according to the worst security
failure that is at all plausible, under assumptions favorable to the attacker. If there is
any plausible circumstance under which the system can be rendered insecure, then it is
prudent to consider seeking a more secure system. Clearly, however, we must balance
this against Security is economics : that is, we must decide the degree to which our
threat model indicates we indeed should spend resources addressing the given scenario.

• Kerkhoff’s principle. Cryptosystems should remain secure even when the attacker
knows all internal details of the system. The key should be the only thing that must
be kept secret, and the system should be designed to make it easy change keys that
are leaked (or suspected to be leaked). If your secrets are leaked, it is usually a lot
easier to change the key than to replace every instance of the running software. (This
principle is closely related to Don’t rely on security through obscurity.)

anything about it, so what are the odds that an adversary will bother attacking it?” One problem with
such reasoning is that such an approach is self-defeating. As the system becomes more popular, there will
be more incentive to attack it, and then we cannot rely on its obscurity to keep attackers away.

1/27 CS 161, Spring 2011 — Material courtesy Prof. David Wagner 5 of 13

• Proactively study attacks. We should devote considerable effort to trying to break our
own systems; this is how we gain confidence in their security. Also, because security
is a game where the attacker gets the last move, and where it can be very costly if a
security hole is discovered after a system is widely deployed, it pays to try to identify
attacks before the bad guys find them, so that we have some lead time to close the
security holes before they are exploited in the wild.

2 Patterns for Building Secure Software

Let’s now turn to a look at some patterns for building secure systems, and, in particular,
what you can do at design time to improve security. How can you choose an architecture
that will help reduce the likelihood of flaws in your system, or increase the likelihood that
you will be able to survive such flaws? We begin with a powerful concept, the notion of a
trusted computing base (TCB).

2.1 The Trusted Computing Base (TCB)

A trusted component is a part of the system that we rely upon to operate correctly, if the
whole system is to be secure; to turn it around, a trusted component is one that is able to
violate our security goals if it misbehaves. A trustworthy component is a part of the system
that we would be justified in trusting, i.e., where we’d be justified in expecting it to operate
correctly. For instance, on Unix systems the super-user (root) is trusted; hopefully people
with access to this account are also trustworthy, or else we are in trouble.

In any system, the trusted computing base (TCB) is that portion of the system that must
operate correctly in order for the security goals of the system to be assured. We have to rely
on every component in the TCB to work correctly. However, anything that is outside the
TCB isn’t relied upon in any way: even if it misbehaves or operates maliciously, it cannot
defeat the system’s security goals. Indeed, we can take the latter statement as our definition
of the TCB: the TCB must be large enough so that nothing outside the TCB can violate
security.

Example: Suppose the security goal is that only authorized users are allowed to log into my
system using SSH. What is the TCB? Well, the TCB includes the SSH daemon, since it is
the one that makes the authentication and authorization decisions—if it has a bug (say, a
buffer overrun), or if it was programmed to behave maliciously (say, the SSH implementor
has included a backdoor in it), then it will be able to violate my security goal (e.g., by
allowing access to unauthorized users). That’s not all. The TCB also includes the operating
system, since the operating system has the power to tamper with the operation of the SSH

1/27 CS 161, Spring 2011 — Material courtesy Prof. David Wagner 6 of 13

daemon (e.g., by modifying its address space). Likewise, the CPU is in the TCB, since
we are relying upon the CPU to execute the SSH daemon’s machine instructions correctly.
Suppose a web browser application is installed on the same machine; is the web browser in
the TCB? Hopefully not! If we’ve built the system in a way that is at all reasonable, the
SSH daemon is supposed to be protected (by the operating system’s memory protection)
from interference by unprivileged applications, like a web browser.

Another example: Suppose that we deploy a firewall at the network perimeter to enforce
the security goal that only authorized connections should be permitted into our internal
network. Then in this case the firewall is the TCB for this security goal.

A third example: When we build access control into a system, there is always some mecha-
nism that is responsible for enforcing the access control policy. We term such a mechanism
as a reference monitor. The reference monitor is the TCB for security goal of ensuring that
the access control policy is followed. Basically, the notion of a reference monitor is just the
idea of a TCB, specialized to the case of access control.

Several principles guide us when designing a TCB:

• Unbypassable: There must be no way to breach system security by bypassing the TCB.

• Tamper-resistant: The TCB should be protected from tampering by anyone else. For
instance, other parts of the system outside the TCB should not be able to modify the
TCB’s code or state. The integrity of the TCB must be maintained.

• Verifiable: It should be possible to verify the correctness of the TCB. This usually
means that the TCB should be as simple as possible, as generally it is beyond the
state of the art to verify the correctness of subsystems with any appreciable degree of
complexity.

Keeping the TCB simple and small is good (excellent) practice. The less code you have to
write, the fewer chances you have to make a mistake or introduce some kind of implementa-
tion flaw. Industry standard error rates are 1–5 defects per thousand lines of code. Thus, a
TCB containing 1,000 lines of code might have 1–5 defects, while a TCB containing 100,000
lines of code might have 100–500 defects. If we need to then try to make sure we find and
eliminate any defects that an adversary can exploit, it’s pretty clear which one to pick!3 The
lesson is to shed code: design your system so that as much of the code can be moved outside
the TCB.

3 Windows XP consists of about 40 million lines of code—all of which is in the TCB. Yikes!

1/27 CS 161, Spring 2011 — Material courtesy Prof. David Wagner 7 of 13

2.2 TCBs: What are they good for?

Who cares about all this esoteric stuff about TCBs? Actually, the notion of a TCB is a very
powerful and pragmatic one. The concept of a TCB allows a primitive yet effective form of
modularity. It lets us separate the system into two parts: the part that is security-critical
(the TCB), and everything else.

This separation is a big win for security. Security is hard. It is really hard to build systems
that are secure and correct. The more pieces the system contains, the harder it is to assure
its security. If we are able to identify a clear TCB, then we will know that only the parts in
the TCB must be correct for the system to be security. Thus, when thinking about security,
we can focus our effort where it really matters. And, if the TCB is only a small fraction of
the system, we have much better odds at ending up with a secure system: the less of the
system we have to rely upon, the less likely that it will disappoint.

Let’s do a concrete example. You’ve been hired by the National Archives to help with
their email retention system. They’re chartered with saving a copy of every email ever sent
by government officials. They want to ensure that, once a record is saved, it cannot be
subsequently deleted or destroyed. For instance, if someone is investigated, they are worried
about the threat that someone might try to destroy embarassing or incriminating documents
previously stored in the archives. The security goal is to prevent this kind of after-the-fact
document destruction.4 So, you need to build a document storage system which is “append-
only”: once a document is added to the collection, it cannot be removed. How are you going
to do it?

One possible approach: You could augment the email program sitting on every government
official’s desktop computer to save a copy of all emails to some special directory on that
computer. What’s the TCB for this approach? Well, the TCB includes every copy of the
email application on every government machine, as well as the operating systems, other
privileged software, and system administrators with root/Administrator-level privilege on
those machines. That’s an awfully large TCB. The chances that everything in the TCB
works correctly, and that no part of the TCB can be subverted, don’t sound too good. After
all, any system administrator could just delete files from a special directory after the fact.
It’d be nice to have a better solution.

A different idea: We might set up a high-speed networked line-printer. An email will be
considered added to the collection when it has been printed. Let’s feed a giant roll of blank
paper into the printer. Once the paper is printed, the paper might spool out into some giant

4Assume that you don’t have to worry about the problem of making sure that documents are entered
into the archive in the first place. Maybe users will mostly comply initially, and we’re only really worried
about a “change of mind.” Or, maybe it is someone else’s job to ensure that the necessary documents get
into the archive.

1/27 CS 161, Spring 2011 — Material courtesy Prof. David Wagner 8 of 13

canister. We’ll lock up the room to make sure no one can tamper with the printouts. What’s
the TCB in this system? The TCB includes the physical security of the room. Also, the
TCB includes the printer: we’re counting on it to be impossible for the printer to be driven
in reverse and overwrite previously printed material.

This scheme can be improved if we add a ratchet in the paper spool, so that the spool can
only rotate in one direction. Thus, the paper feed cannot be reversed: once something is
printed on a piece of paper and it scrolls into the canister, it cannot later be overwritten.
Given such a ratchet, we no longer need to trust the printer. The TCB includes only this one
little ratchet gizmo, and the physical security for the room, but nothing else. Neat! That
sounds like something we could secure.

One problem with this one-way ratcheted printer business is that it involves paper. A lot
of paper. (Government bureaucrats can generate an awful lot of email.) Also, paper isn’t
keyword-searchable. Instead, let’s try to find an electronic solution.

An all-electronic approach: We set up a separate computer that is networked and runs a
special email archiving service. The service accepts connections from anyone; when an email
is sent over such a connection, the service adds the email to its local filesystem. The filesystem
is carefully implemented to provide write-once semantics: once a file is created, it can never
be overwritten or deleted. We might also configure the network routers so that hosts cannot
connect to any other port or service on that computer. What’s in the TCB now? Well,
the TCB includes that computer, the code of this server application, the operating system
and filesystem and other privileged code on this machine, the system administrators of this
machine, the packet firewall, the physical security mechanisms (locks and so on) protecting
the machine room where this computer is located, and so on. The TCB is bigger than with a
printer—but it is vastly better than an approach where the TCB includes all the privileged
software and privileged users on every government machine. This sounds manageable.

In summary, some good principles are:

• Know what is in the TCB. Design your system so that the TCB is clearly identifiable.

• Try to make the TCB unbypassable, tamper-resistant, and as verifiable as possible.

• Keep It Simple, Stupid (KISS). The simpler the TCB, the greater the chances you can
get it right.

• Decompose for security. Choose a system decomposition/modularization based not
just on functionality or performance grounds—choose an architecture that makes the
TCB as simple and clear as possible.

1/27 CS 161, Spring 2011 — Material courtesy Prof. David Wagner 9 of 13

2.3 TOCTTOU Vulnerabilities

It is worth knowing about a type of concurrency risk that is often particularly relevant when
enforcing access control policies. Consider the following code:

int openregularfile(char *path) {

struct stat s;

if (stat(path, &s) < 0)

return -1;

if (!S_ISRREG(s.st_mode)) {

error("only allowed to open regular files; nice try!");

return -1;

}

return open(path, O_RDONLY);

}

This code is trying to open a file, but only if it is a regular file (e.g., not a symlink, not a
directory, not a special device). On Unix, the stat() call is used to extract meta-data about
the file, including whether it is a regular file or not. Then, the open() call is used to open
the file.

The flaw in the above code is that it assumes the state of the filesystem will remain unchanged
between the stat() and the open(). However, this assumption may be faulty if there is
any other code that might execute concurrently. Suppose an attacker can change the file
that path refers to after the call to stat() completes, but before open() is invoked. If path
refers to a regular file when the stat() is executed, but refers to some other kind of file
when the open() is executed, this bypasses the check in the code! If that check was there
for a security reason, the attacker may be able to subvert system security.

This is known as a Time-Of-Check To Time-Of-Use (TOCTTOU) vulnerability, because the
meaning of path changed from the time when it is checked (the stat()) and the time when
it is used (the open()). In Unix, this often comes up with filesystem calls, because system
calls are not atomic and the filesystem is where most long-lived state is stored. However, this
is not specific to files. In general, TOCTTOU vulnerabilities can arise anywhere that there
is mutable state that is shared between two or more entities. For instance, multi-threaded
Java servlets and applications are at risk for this kind of flaw.

2.4 Modularity

A well-designed system will be decomposed into modules, where modules interact with each
other only through well-defined interfaces. Each module should perform a clear function;

1/27 CS 161, Spring 2011 — Material courtesy Prof. David Wagner 10 of 13

the essence is conceptual clarity of what it does (what functionality it provides), not how it
does it (how it is implemented).

The granularity of modules is dependent on the system and language. A module typically
has state and code. For instance, in an object-oriented language like Java a module might
consist of a class (or a few closely related classes). In C, a module might be in its own file
and contain some clear external interface, along with many internal functions that are not
externally visible or callable.

Modularity is as much about interface design as anything else. The interface is the contract
between caller and callee; hopefully, it should change less often than the implementation of
the module itself. A caller should only need to understand the interface. Modules should
interact only through the defined interface; for instance, you shouldn’t use global variables
to communicate information from caller to callee. Think of a module as a blob; the inter-
face is its surface area, and the implementation is its volume. Thoughtful design is often
characterized by narrow and conceptually clean interfaces, equivalent to modules with a low
surface-area-to-volume ratio.

When you decompose the system into modules, here are some suggestions that will improve
security:

• Minimize the harm that could be caused by failure of a module. Ensure that even if one
module is penetrated (e.g., by a buffer overrun) or behaves unexpectedly (e.g., due to
a bug in its implementation), then the damage is contained as much possible. Draw
a security perimeter around each module. Protect modules from each other, so that
one misbehaving module cannot cause other modules’s behavior to deviate from what
was expected by the programmer. Plan for failure: think in advance about what the
consequences of a compromise of each module might be, and structure the system to
reduce these consequences.

For instance, a monolithic architecture that places all modules in a common address
space is an unnecessary security risk, because if one module is compromised then all
others can be penetrated as well. Some languages (e.g., Java) provide mechanisms for
isolating modules from each other using type-safety; with legacy languages (like C),
you may need to place each module in its own process to protect it.

• Follow the principle of least privilege at a module granularity. Provide each module
the least privilege that is necessary to get its job done. Architect the system so that
most modules need only minimal privileges.

Think about whether there is a way to structure the system so that the complex
computations that will require a lot of code are isolated in modules with few privileges.
Modules with extra privileges should have very little code. The more privilege a module
is given, the greater the confidence we will want to have that it is correct, and more

1/27 CS 161, Spring 2011 — Material courtesy Prof. David Wagner 11 of 13

confidence generally requires less code.

Example: A network server that listens on a port below 1024 might be broken up into two
pieces: a small start-up wrapper, and the application itself. Because binding to a port in the
range 0–1023 requires root privileges, the wrapper could run as root, bind to the desired port
to some file descriptor, and then spawn the application and pass it the file descriptor. The
application itself could then run as a non-root user, limiting the damage if the application
is compromised. The wrapper can be written in only a few dozen lines of code, so we should
be able to validate it quite thoroughly.

Example: A web server might be structured as a composition of two modules. One module
might be responsible for interacting with the network; it could handle incoming network
connections and parse them to identify the requested URL. The second module might trans-
late the URL into a filename and read it from the filesystem. Note that the first module
can be run with no privileges at all (assuming it is started by a root wrapper that binds to
port 80). The second module might be run as some special userid (e.g., www), and we might
ensure that only documents intended to be publicly visible are readable by user www. This
then leverages the file access controls provided by the operating system so that even if the
second module is penetrated, the attacker cannot harm the rest of the system.

These practices are often known under the name privilege separation, because we split the
architecture up into multiple modules, some privileged and some unprivileged.

3 Optional: Defensive Consistency

We discussed defensive programming before, but now let’s look at a twist on the basic
concept. Consider the simple situation where we are writing a module M that provides
functionality to a single client. In this case, M should strive to provide useful responses
as long as the client provides valid inputs to M . However, if the client provides an invalid
input to M , then M is released from any obligation to provide useful output. The contract
between M and its client determines what inputs are valid and what inputs are invalid.

The situation becomes more elaborate if the module M provides some functionality to mul-
tiple clients that do not necessarily trust each other. In this case, it is important for M to
defend itself against malicious clients. It is also frequently helpful for M to ensure that one
malicious client cannot disrupt other clients. Thus, when M is performing some function on
behalf of a client, there are two cases:

• If a well-behaved client supplies valid inputs, M should provide correct and useful results
to that client. When M is invoked with a valid and meaningful request, M must respond
correctly. This is primarily a functionality requirement. It may also be relevant to
security, because the client may be relying upon M to do its job correctly.

1/27 CS 161, Spring 2011 — Material courtesy Prof. David Wagner 12 of 13

• If a misbehaving client supplies invalid inputs, M does not need to provide useful service
to this client, but other clients should not be disrupted. When M is invoked with
meaningless, unexpected, or malicious input, there is no requirement that M provide
a useful response to this client. The misbehaving client has violated its contract with
M , and thus has no right to expect any particular response from M . However, M
should protect itself from such requests, and M should not allow its internal state to
become corrupted or harmful side effects to occur. M should maintain the consistency
of its internal data structures no matter what inputs it receives. Also, M should ensure
that other clients are not disrupted by requests from a malicious client, and that all
well-behaved clients continue to receive correct and useful results.

Following these principles makes it easier to ensure that the resulting system will be secure.
If we didn’t follow these principles, then each client of M would be relying upon the proper
behavior and security of all of M ’s other clients, which would make it hard to reason about
system security. For instance, if Alice and Bob are two clients of M , and Alice becomes
compromised, it would be nice to know that Alice cannot attack M in a way that violates
Bob’s security; and that’s exactly what the principles above are intended to achieve.

There is a special case where we do not have to worry about multiple clients. Suppose M
computes a pure function, with no internal state and performing no I/O, so that its output
depends deterministically on its input. In this case, we do not need to worry about one
client disrupting another client or corrupting M ’s state. Thus, functional programming can
simplify the task of defensive programming.

1/27 CS 161, Spring 2011 — Material courtesy Prof. David Wagner 13 of 13

	General Principles
	Patterns for Building Secure Software
	The Trusted Computing Base (TCB)
	TCBs: What are they good for?
	TOCTTOU Vulnerabilities
	Modularity

	Optional: Defensive Consistency

